首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Urea is an important source of ammonia (NH3) emissions to the atmosphere from agricultural soils. Abatement strategies are necessary in order to achieve NH3 emission targets by reducing those emissions. In this context, a field experiment was carried out on a sunflower crop in spring 2006 with the aim of evaluating the effect of the N-(n-butyl) thiophosphoric triamide (NBPT) in the mitigation of volatilized NH3 from a urea-fertilised soil. Ammonia emission was quantified, using the integrated horizontal flux (IHF) method, following application of urea with and without the urease inhibitor NBPT. Urea and a mixture of urea and NBPT (0.14%, w/w) were surface-applied at a rate of 170 kg N ha−1 to circular plots (diameter 40 m). The soil was irrigated with 10 mm of water just after the application of urea to dissolve and incorporate it into the upper layer of soil. Over the duration of the measurement period (36 days) three peaks of NH3 were observed. The first peak was associated with hydrolysis of urea after irrigation and the others with the increase of ammonia in soil solution after changes in atmospheric variables such as wind speed and rainfall. The total NH3 emission during the whole experiment was 17.3 ± 0.5 kg NH3–N ha−1 in the case of urea treated soils and 10.0 ± 2.2 kg NH3–N ha−1 where NBPT was included with the urea (10.1 and 5.9%, respectively, of the applied urea–N). The lower NH3 emissions from plots fertilised with urea + NBPT, compared with urea alone, were associated with a reduction in urease activity during the first 9 days after inhibitor application. This reduction in enzymatic activity promoted a decrease in the exchangeable NH4+ pool.  相似文献   

2.
Atmospheric CO2 concentration (Ca) is rising, predicted to cause global warming, and alter precipitation patterns. During 1994, spring barley (Hordeum vulgare L. cv. Alexis) was grown in a strip-split-plot experimental design to determine the effects that the main plot Ca treatments [A: Ambient at 370 μmol (CO2) mol−1; E: Enriched with free-air CO2 enrichment (FACE) at ∼550 μmol (CO2) mol−1] had on several gas exchange properties of fully expanded sunlit primary leaves. The interacting strip-split-plot irrigation treatments were Dry or Wet [50% (D) or 100% (W) replacement of potential evapotranspiration] at ample nitrogen (261 kg N ha−1) and phosphorous (29 kg P ha−1) fertility. Elevated Ca facilitated drought avoidance by reducing stomatal conductance (gs) by 34% that conserved water and enabled stomata to remain open for a longer period into a drought. This resulted in a 28% reduction in drought-induced midafternoon depression in net assimilation rate (A). Elevated Ca increased A by 37% under Dry and 23% under Wet. Any reduction in A under Wet conditions occurred because of nonstomatal limitations, whereas under Dry it occurred because of stomatal limitations. Elevated Ca increased the diurnal integral of A (A′) that resulted in an increase in the seasonal-long integral of A′ (A″) for barley leaves by 12% (P = 0.14) under both Dry and Wet - 650, 730, 905 and 1020 ± 65 g (C) m−2 y−1 for AD, ED, AW and EW treatments, respectively. Elevated Ca increased season-long average dry weight (DWS; crown, shoots) by 14% (P = 0.02), whereas deficit irrigation reduced DWS by 7% (P = 0.06), although these values may have been affected by a short but severe pea aphid [Acyrthosiphon pisum (Harris)] infestation. Hence, an elevated-Ca-based improvement in gas exchange properties enhanced growth of a barley crop.  相似文献   

3.
The necessity to understand the relationship between cyanobacterial species abundance and water quality variations in coastal lagoons is crucial to develop strategies to prevent further cyanobacterial proliferation. This paper evaluates the relationship between water quality variations on the distribution of cyanobacteria during a 12-month period in Batticaloa Lagoon (Sri Lanka) using Redundancy analysis and Pearson correlations. Drastic variations in pH, temperature, salinity, dissolved oxygen (DO) and total phosphorus (TP) levels were reported, but not turbidity and NO3. This brackish waterbody is hypereutrophic (TP levels > 0.1 mg/L). The cyanobacterial community contained 13 genera and 22 species. NO3, TP and turbidity levels positively influenced cyanobacterial abundance during all seasons indicating that nutrient (largely phosphorus) and sediment entry control is highly crucial along with periodic monitoring of cyanobacterial growth.  相似文献   

4.
Agricultural activities are the main source of non-point pollution in the Taihu Lake region, and therefore reduction of nitrogen (N) fertilizer is imperative in this area. A two-year experiment was carried out in a paddy field of summer rice-winter wheat rotation in the Taihu Lake area, and the rice growing seasons were mainly concerned in this research. Grain yield, N accumulation at rice crucial stages, N use efficiency, as well as N losses via run off during rice growing season were determined under different N application rates. No significant differences were observed in grain yield under N fertilizer application rates of 135-270 kg N ha−1 (50-100% of the conventional N application rate). Nitrogen accumulation before the heading stage (Pre-NA) accounted for 61-95% of total nitrogen absorption in mature rice, and was positively correlated with straw dry matter at harvest. Positive correlations were found between Pre-NA and straw (0.53, p < 0.05), and between grain yield and N accumulation after the heading stage (Post-NA) (0.58, p < 0.05), suggesting that increasing nitrogen accumulation after the heading stage is crucial for grain yield improvement. Poor agronomic efficiency of applied N (AEN), partial factor productivity of applied N (PFPN) and internal utilization efficiency of applied N (IEN) were observed for the higher soil fertility and a higher N fertilizer input; a simple N fertilizer reduction could significantly increase the nitrogen use efficiency in this region. Nitrogen loss via runoff was positively linearly related to N application rates and severely affected by rainfall events. The highest-yielding N rates were around 232-257 kg N ha−1, accounting for 86-95% of the conventional N application rates for the rice season. To reduce N losses and enhance N use efficiency, the recommendable N fertilization rate should be lower than that of the highest yield rate for rice season. Our findings indicated that nitrogen fertilizer reduction in the Taihu Lake area is feasible and necessary for maintaining grain yield, enhancing nitrogen use efficiency, and reducing environmental impact. However, the longer-term yield sustainability for the proper N application rate needs to be further investigated.  相似文献   

5.
Influence of common dye-bath additives, namely sodium chloride, ammonium sulphate, urea, acetic acid and citric acid, on the reductive decolouration of Direct Green 1 dye in the presence of Fe0 was investigated. Organic acids improved dye reduction by augmenting Fe0 corrosion, with acetic acid performing better than citric acid. NaCl enhanced the reduction rate by its ‘salting out’ effect on the bulk solution and by Cl anion-mediated pitting corrosion of iron surface. (NH4)2SO4 induced ‘salting out’ effect accompanied by enhanced iron corrosion by SO42 − anion and buffering effect of NH4+ improved the reduction rates. However, at 2 g/L (NH4)2SO4 concentration, complexating of SO42 − with iron oxides decreased Fe0 reactivity. Urea severely compromised the reduction reaction, onus to its chaotropic and ‘salting in’ effect in solution, and due to it masking the Fe0 surface. Decolouration obeyed biphasic reduction kinetics (R2 > 0.993 in all the cases) exhibiting an initial rapid phase, when more than 95% dye reduction was observed, preceding a tedious phase. Maximum rapid phase reduction rate of 0.955/min was observed at pH 2 in the co-presence of all dye-bath constituents. The developed biphasic model reckoned the influence of each dye-bath additive on decolouration and simulated well with the experimental data obtained at pH 2.  相似文献   

6.
建立田间原位试验,采用静态箱-气相色谱法,研究了常规尿素及其与硫包膜和聚氨酯包膜控释尿素配施(比例分别为30%∶70%、 50%∶50%和70%∶30%)对黄河故道沙性潮土玉米生长季氧化亚氮(N_2O)排放的影响.研究发现:常规尿素处理N_2O排放量(以N计,下同)为1.78 kg·hm~(-2),排放系数为0.38%;与之相比,配施30%、 50%和70%硫包膜尿素处理的N_2O排放量分别降低了1.12%、 22.5%和11.2%,排放系数下降2.63%~26.3%.相反,配施聚氨酯包膜尿素处理增加N_2O排放量0.02~0.41 kg·hm~(-2),其中70%聚氨酯包膜尿素处理增幅最大,达到23.0%.回归分析表明,各处理N_2O排放通量与10 cm处土温、土壤NH~+_4-N和NO~-_3-N含量呈极显著正相关(P0.01),而与土壤孔隙含水量和溶解性有机碳含量无显著关系.与常规尿素相比, 50%常规尿素+50%硫包膜控释尿素处理玉米产量略有增加,而30%常规尿素+70%硫包膜尿素处理稍微降低了玉米产量,但不显著(P0.05).因此,控释肥减缓土壤N_2O排放以及对作物产量的影响主要受控于包衣材料.  相似文献   

7.
The present study aimed to investigate the potential ammonia (NH3) emission from flag leaves of paddy rice (Oryza sativa L. cv. Koshihikari). The study was conducted at a paddy field in central Japan that was designed as a free-air CO2 enrichment (FACE) facility for paddy rice. A dynamic chamber method was used to measure the potential NH3 emissions. The air concentrations of NH3 at two heights (2 and 6 m from the ground surface) were measured using a filter-pack method, and the exchange fluxes of NH3 of the whole paddy field were calculated using a gradient method. The flag leaves showed potential NH3 emissions of 25-38 ng N cm−2 h−1 in the daytime from the heading to the maturity stages, and they showed potentials of approximately 22 ng N cm−2 h−1, even in the nighttime, at the heading and mid-ripening stages. The exchange fluxes of NH3 of the whole paddy field in the daytime were net emissions of 0.9-3.9 g N ha−1 h−1 whereas the exchange fluxes of NH3 in the nighttime were approximately zero.  相似文献   

8.
选取内蒙古河套灌区轻度盐渍土S_1(EC为0.46 dS·m~(-1))及中度盐渍土S_2(EC为1.07 dS·m~(-1))为研究对象,在等施氮量条件下,采用静态箱-气相色谱法研究了不同有机无机肥配施比例:CK(不施肥)、U_1(240 kg·hm~(-2)化肥)、U_3O_1(180 kg·hm~(-2)化肥+60 kg·hm~(-2)有机肥)、U_1O_1(120 kg·hm~(-2)化肥+120 kg·hm~(-2)有机肥)、U_1O_3(60 kg·hm~(-2)化肥+180 kg·hm~(-2)有机肥)和O_1(240 kg·hm~(-2)有机肥)对春玉米农田土壤N_2O排放的影响,旨在明确不同施肥策略下土壤N_2O排放特征,为制定盐渍化农田合理的减排措施提供理论依据.结果表明, 2种不同程度盐渍化土壤N_2O排放存在显著差异,同一处理S_2土壤N_2O排放总量较S_1土壤高出11.86%~47.23%(P0.05).各施肥处理对土壤N_2O排放通量影响趋势基本一致,即施肥后出现排放高峰,基肥和追肥后累积排放量占整个生育期排放量60%左右.适当施入有机肥可以显著降低土壤N_2O排放,S_1和S_2盐渍土分别以U_1O_1及O_1处理N_2O排放量最小,较U_1处理显著降低33.62%和28.51%(P0.05),同时可以获得较高的玉米产量.各施肥处理N_2O排放通量与土壤NH~+_4-N呈极显著正相关关系(P0.01),而与土壤NO~-_3-N含量呈负相关关系,表明硝化作用是盐渍化玉米农田N_2O产生的主要途径,配施有机肥可以持续减少土壤NH~+_4-N供给而减少N_2O的排放.从玉米产量及减少温室效应的角度,得到本地区适宜的施肥管理模式:轻度盐渍土为120 kg·hm~(-2)有机肥+120 kg·hm~(-2)化肥,中度盐渍土为240 kg·hm~(-2)有机肥.  相似文献   

9.
Physiological changes in crop plants in response to the elevated tropospheric ozone (O3) may alter N and C cycles in soil. This may also affect the atmosphere-biosphere exchange of radiatively important greenhouse gases (GHGs), e.g. methane (CH4) and nitrous oxide (N2O) from soil. A study was carried out during July to November of 2007 and 2008 in the experimental farm of Indian Agricultural Research Institute, New Delhi to assess the effects of elevated tropospheric ozone on methane and nitrous oxide emissions from rice (Oryza sativa L.) soil. Rice crop was grown in open top chambers (OTC) under elevated ozone (EO), non-filtered air (NF), charcoal filtered air (CF) and ambient air (AA). Seasonal mean concentrations of O3 were 4.3 ± 0.9, 26.2 ± 1.9, 59.1 ± 4.2 and 27.5 ± 2.3 ppb during year 2007 and 5.9 ± 1.1, 37.2 ± 2.5, 69.7 ± 3.9 and 39.2 ± 1.8 ppb during year 2008 for treatments CF, NF, EO and AA, respectively. Cumulative seasonal CH4 emission reduced by 29.7% and 40.4% under the elevated ozone (EO) compared to the non-filtered air (NF), whereas the emission increased by 21.5% and 16.7% in the charcoal filtered air (CF) in 2007 and 2008, respectively. Cumulative seasonal emission of N2O ranged from 47.8 mg m−2 in elevated ozone to 54.6 mg m−2 in charcoal filtered air in 2007 and from 46.4 to 62.1 mg m−2 in 2008. Elevated ozone reduced grain yield by 11.3% and 12.4% in 2007 and 2008, respectively. Global warming potential (GWP) per unit of rice yield was the least under elevated ozone levels. Dissolved organic C content of soil was lowest under the elevated ozone treatment. Decrease in availability of substrate i.e., dissolved organic C under elevated ozone resulted in a decline in GHG emissions. Filtration of ozone from ambient air increased grain yield and growth parameters of rice and emission of GHGs.  相似文献   

10.
In the search for new technologies that would ensure optimum yield and environmental sustainability, various irrigation, nitrogen and cropping system management strategies for the production of vegetables with a shorter growing period were assessed at a benchmark site in Slovenia for the years 2006 and 2007. In the studied years four irrigation and fertilization treatments were applied: (1) 50% drip irrigation of plants water requirements ETcrop and the farmer's practice of fertilisation (broadcasting), (2) fertilisation and 100% drip irrigation (fertigation), (3) the farmer's practice of irrigation (sprinkler irrigation using water stored in plastic tanks) and fertilisation, and (4) control (the farmer's practice of irrigation but no fertilisation). An equivalent of 80, 80 and 200 kg ha−1 of nitrogen (N), 50, 50 and 80 kg ha−1 of phosphorous (P) and 120, 120 and 300 kg ha−1 of potassium (K) was added for iceberg lettuce, endive and cabbage, respectively. Nitrogen (N) labelled fertilizer (15N) was applied to trace the movement of the applied N fertiliser. The tested irrigation and fertilisation techniques for the production of vegetables with a shorter growing period in the Slovenian climate showed that environmentally sustainable practices (split application of nutrients compared to broadcast incorporating fertilisation) should be a practice of choice in water protection zones. The results confirm that fertigation and improved irrigation scheduling can be an effective way of minimizing nitrate leaching, and should be considered for vegetable production in or close to groundwater protection zones.  相似文献   

11.
Ni/Fe-Fe_3O_4 nanocomposites were synthesized for dechlorination of 2,4-dichlorophenol(2,4-DCP). The effects of the Ni content in Ni/Fe-Fe_3O_4 nanocomposites, solution pH, and common dissolved ions on the dechlorination efficiency were investigated, in addition to the reusability of the nanocomposites. The results showed that increasing content of Ni in Ni/Fe–Fe_3O_4 nanocomposites, from 1 to 5 wt.%, greatly increased the dechlorination efficiency; the Ni/Fe–Fe_3O_4 nanocomposites had much higher dechlorination efficiency than bare Ni/Fe nanoparticles. Ni content of 5 wt.% and initial p H below 6.0 was found to be the optimal conditions for the catalytic dechlorination of 2,4-DCP. Both 2,4-DCP and the intermediate product 2-chlorophenol(2-CP) were completely removed, and the concentration of the final product phenol was close to the theoretical phenol production from complete dechlorination of 20 mg/L of 2,4-DCP, after 3 hr reaction at initial p H value of 6.0,3 g/L Ni/Fe-Fe_3O_4 , 5 wt.% Ni content in the composite, and temperature of 22℃. 2,4-DCP dechlorination was enhanced by Cl-and inhibited by NO3-and SO_4~(2-). The nanocomposites were easily separated from the solution by an applied magnetic field. When the catalyst was reused, the removal efficiency of 2,4-DCP was almost 100% for the first seven uses, and gradually decreased to 75% in cycles 8–10. Therefore, the Ni/Fe–Fe_3O_4 nanocomposites can be considered as a potentially effective tool for remediation of pollution by 2,4-DCP.  相似文献   

12.
In New Zealand, phosphate (P) fertilisers used in agriculture are the main sources of the potentially toxic elements cadmium (Cd) and uranium (U), which occur as unwanted contaminants. New Zealand is developing draft soil guideline values (SGV) for maximum concentrations of Cd. To assess when soils under pasture for sheep production might reach a particular SGV, we analysed archived soil samples from a 23 yr P fertiliser trial. The pasture sites were at Whatawhata, North Island, New Zealand, and had received P fertiliser at the rates of 0, 30, 50 and 100 kg P ha−1 yr−1. From 1983 to 1989, P was applied as single superphosphate, from 1989 to 2006, P was applied as triple superphosphate. Soils from replicate paddocks were sampled annually to a depth of 75 mm on easy (10-20°) and steep (30-40°) slope classes. Total P, Cd and U were analysed by ICP-MS after acid digestion. Data were analysed by fitting trend lines using linear mixed models for two slope classes and for two sampling periods 1983-1989 and 1989-2006 when the soil sampling method and fertiliser type had been changed.The changes in total P, Cd and U were directly related to the type and amount of P fertiliser applied, the control treatment showed no significant change in P, Cd or U. At 50 and 100 kg P ha−1 yr−1 there were generally linear increases in total P and total U, and the same trend line applied to both time periods, but the rate of increase in P was greater on the easy slope class. For Cd, a “broken stick” model was needed to explain the data. Pre-1989, Cd increased in the 50 and 100 kg P ha−1 yr−1 treatment (0.036-0.045 mg kg−1 yr−1, respectively): post 1988 the rate of increase declined markedly on those two treatments (0.005-0.015 mg kg−1 yr−1, respectively), and declined absolutely in the 30 kg P ha−1 yr−1 treatments. The maximum content of Cd was in the 100 kg P ha−1 yr−1 treatment which reached 0.931 mg Cd kg−1 on the easy slope. For U there were steady linear increases for the 30, 50 and 100 kg P ha−1 treatments, and no significant difference between the steep and easy slopes, nor the two sampling periods, the maximum concentration obtained was 2.80 mg U kg−1 on the 100 kg P ha−1 treatment. The results suggest that at rates of P fertiliser likely to be applied to hill farms (<50 kg P ha−1 yr−1), and using P fertiliser with low Cd content, then the Cd concentration in this soil will never reach a SGV of 1 mg kg−1.  相似文献   

13.
TiO_2 nanotube(Ti NT) electrodes anodized in fluorinated organic solutions were successfully prepared on Ti sheets. Field-emission scanning electron microscopy(FE-SEM) and X-ray diffraction(XRD) were performed to characterize the TiNT electrodes. The linear voltammetry results under irradiation showed that the TiNT electrode annealed at 450°C presented the highest photoelectrochemical activity. By combining photocatalytic with electrochemical process, a significantly synergetic effect on ammonia degradation was observed with Na_2SO_4 as supporting electrolyte at pH 10.7. Furthermore, the photoelectrocatalytic efficiency on the ammonia degradation was greatly enhanced in presence of chloride ions without the limitation of pH. The degradation rate was improved by 14.8 times reaching 4.98 × 10~(-2) min~(-1) at pH 10.7 and a faster degradation rate of 6.34 × 10~(-2) min~(-1)was obtained at pH 3.01. The in situ photoelectrocatalytic generated active chlorine was proposed to be responsible for the improved efficiency. On the other hand, an enhanced degradation of ammonia using TiNT electrode fabricated in fluorinated organic solution was also confirmed compared to TiNT electrode anodized in fluorinated water solution and TiO_2 film electrode fabricated by sol–gel method. Finally, the effect of chloride concentration was also discussed.  相似文献   

14.
A better understanding of nitrogen transformation in soils could reveal the capacity for biological inorganic N supply and improve the efficiency of N fertilizers. In this study, a 15N tracing study was carried out to investigate the effects of converting woodland to orchard, and orchard age on the gross rates of N transformation occurring simultaneously in subtropical soils in Eastern China. The results showed that inorganic N supply rate was remained constant with soil organic C and N contents increased after converting woodland into citrus orchard and with increasing orchard age. This phenomenon was most probably due to the increase in the turnover time of recalcitrant organic-N, which increased with decreasing soil pH along with increasing orchard age significantly. The amoA gene copy numbers of both archaeal and bacterial were stimulated by orchard planting and increased with increasing orchard age. The nitrification capacity (defined as the ratio of gross rate of nitrification to total gross rate of mineralization) increased following the Michaelis–Menten equation, sharply in the first 10 years after woodland conversion to orchard, and increased continuously but much more slowly till 30 years. Due to the increase in nitrification capacity and unchanged NO3 consumption, the dominance of ammonium in inorganic N in woodland soil was shifted to nitrate dominance in orchard soils. These results indicated that the risk of NO3 loss was expected to increase and the amount of N needed from fertilizers for fruit growth did not change although soil organic N accumulated with orchard age.  相似文献   

15.
ZnBiYO4 was synthesized by a solid-state reaction method for the first time. The structural and photocatalytic properties of ZnBiYO4 were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–Vis diffuse reflectance. ZnBiYO4 crystallized with a tetragonal spinel structure with space group I41/A. The lattice parameters for ZnBiYO4 were a = b = 11.176479 Å and c = 10.014323 Å. The band gap of ZnBiYO4 was estimated to be 1.58 eV. The photocatalytic activity of ZnBiYO4 was assessed by photodegradation of methyl orange under visible light irradiation. The results showed that ZnBiYO4 had higher catalytic activity compared with N-doped TiO2 under the same experimental conditions using visible light irradiation. The photocatalytic degradation of methyl orange with ZnBiYO4 or N-doped TiO2 as catalyst followed first-order reaction kinetics, and the first-order rate constant was 0.01575 and 0.00416 min− 1 for ZnBiYO4 and N-doped TiO2, respectively. After visible light irradiation for 220 min with ZnBiYO4 as catalyst, complete removal and mineralization of methyl orange were observed. The reduction of total organic carbon, formation of inorganic products, SO42 − and NO3, and evolution of CO2 revealed the continuous mineralization of methyl orange during the photocatalytic process. The intermediate products were identified using liquid chromatography–mass spectrometry. The ZnBiYO4/(visible light) photocatalysis system was found to be suitable for textile industry wastewater treatment and could be used to solve other environmental chemical pollution problems.  相似文献   

16.
旱地农田温室气体净排放(以全球增温潜势表示)主要取决于土壤固碳速率和氧化亚氮(N2O)排放量.基于长期定位施肥试验,综合分析2010~2017年表层(0~20 cm)土壤有机碳含量和2014~2017年N2O排放通量的观测结果,定量评价秸秆还田对关中平原冬小麦-夏玉米农田土壤固碳速率、N2O年排放量和全球增温潜势的影响...  相似文献   

17.
Results from the UK were reviewed to quantify the impact on climate change mitigation of soil organic carbon (SOC) stocks as a result of (1) a change from conventional to less intensive tillage and (2) addition of organic materials including farm manures, digested biosolids, cereal straw, green manure and paper crumble. The average annual increase in SOC deriving from reduced tillage was 310 kg C ± 180 kg C ha−1 yr−1. Even this accumulation of C is unlikely to be achieved in the UK and northwest Europe because farmers practice rotational tillage. N2O emissions may increase under reduced tillage, counteracting increases in SOC. Addition of biosolids increased SOC (in kg C ha−1 yr−1 t−1 dry solids added) by on average 60 ± 20 (farm manures), 180 ± 24 (digested biosolids), 50 ± 15 (cereal straw), 60 ± 10 (green compost) and an estimated 60 (paper crumble). SOC accumulation declines in long-term experiments (>50 yr) with farm manure applications as a new equilibrium is approached. Biosolids are typically already applied to soil, so increases in SOC cannot be regarded as mitigation. Large increases in SOC were deduced for paper crumble (>6 t C ha−1 yr−1) but outweighed by N2O emissions deriving from additional fertiliser. Compost offers genuine potential for mitigation because application replaces disposal to landfill; it also decreases N2O emission.  相似文献   

18.
Grazed grasslands occupy 26% of the earth's ice free land surface and are therefore an important component of the global C balance. In New Zealand, pastoral agriculture is the dominant land use and recent research has shown that soils under intensive dairy pastures have lost large amounts of carbon (∼1000 kg C ha−1 y−1) during the past few decades. The objective of this research was to determine the net ecosystem carbon balance (NECB) of an intensively grazed dairy pasture in New Zealand. Net ecosystem CO2 exchange (NEE) was measured using an eddy covariance (EC) system from 1 January 2008 to 31 December 2009. Other C imports (feed) and exports (milk, methane, leaching, and harvested biomass) were calculated from farm production data and literature values. During 2008 there was a one in 100 year drought during summer/autumn, which was followed by a very wet winter. There were no prolonged periods of above or below average rainfall or soil moisture in 2009, but temperatures were consistently lower than 2008. The severe summer/autumn drought during 2008 caused a loss of CO2 to the atmosphere, but annual NEE remained negative (a CO2 sink, −1610 ± 500 kg C ha−1), because CO2 lost during the drought was regained during the winter and spring. The site was also a net CO2 sink during 2009 despite the colder than usual conditions (−2290 ± 500 kg C ha−1). Including C imports and exports in addition to CO2 exchange revealed that the site was a C sink in both years, with a NECB of 590 ± 560 kg C ha−1 in 2008, and 900 ± 560 kg C ha−1 in 2009. The C sequestration found in this study is in agreement with most other Northern Hemisphere EC studies of grazed pastures on mineral soils, but is not consistent with the large C losses reported for soils under dairy pastures throughout New Zealand. In the current study (like many other EC studies) the influence of climatic conditions and management practices on the annual C balance was only semi-quantitatively assessed. An extended period of EC measurements combined with modelling is required to more accurately quantify the effect of different climatic conditions on the annual C balance, and the influence of different management practices needs to be quantified using specifically designed studies (such as paired EC towers), so that practices which minimise C losses and maximise C sequestration can be identified.  相似文献   

19.
Nitrite accumulation in shrimp ponds can pose serious adverse effects to shrimp production and the environment.This study aims to develop an effective process for the enrichment of ready-to-use nitrite-oxidizing bacteria(NOB)inocula that would be appropriate for nitrite removal in brackish shrimp ponds.To achieve this objective,the effects of nitrite concentrations on NOB communities and nitrite oxidation kinetics in a brackish environment were investigated.Moving-bed biofilm sequencing batch reactors and continuous moving-bed biofilm reactors were used for the enrichment of NOB at various nitrite concentrations,using sediment from brackish shrimp ponds as seed inoculum.The results from NOB population analysis with quantitative polymerase chain reaction(q PCR)show that only Nitrospira were detected in the sediment from the shrimp ponds.After the enrichment,both Nitrospira and Nitrobacter coexisted in the reactors controlling effluent nitrite at 0.1 and 0.5 mg-NO_2~--N/L.On the other hand,in the reactors controlling effluent nitrite at 3,20,and 100 mg-NO_2~--N/L,Nitrobacter outcompeted Nitrospira in many orders of magnitude.The half saturation coefficients(Ks)for nitrite oxidation of the enrichments at low nitrite concentrations(0.1 and 0.5 mg-NO_2~--N/L)were in the range of 0.71–0.98 mg-NO_2~--N/L.In contrast,the Ksvalues of NOB enriched at high nitrite concentrations(3,20,and 100 mg-NO_2~--N/L)were much higher(8.36–12.20 mg-NO_2~--N/L).The results suggest that the selection of nitrite concentrations for the enrichment of NOB inocula can significantly influence NOB populations and kinetics,which could affect the effectiveness of their applications in brackish shrimp ponds.  相似文献   

20.
The influence of the various preparation methods of Cu-SAPO-34 nanocatalysts on the selective catalytic reduction of NO with NH3 under excess oxygen was studied. Cu-SAPO-34 nanocatalysts were prepared by using four techniques: conventional impregnation (IM), ultrasound-enhanced impregnation (UIM), conventional deposition precipitation (DP) using NaOH and homogeneous deposition precipitation (HDP) using urea. These catalysts were characterized in detail by various techniques such as N2-sorption, XRD, TEM, H2-TPR, NH3-TPD and XPS to understand the catalyst structure, the nature and the dispersed state of the copper species, and the acid sites for NH3 adsorption. All of the nanocatalysts showed high activities for NO removal. However, the activities were different and followed the sequence of Cu-SAPO-34 (UIM) > Cu-SAPO-34 (HDP) > Cu-SAPO-34 (IM) > Cu-SAPO-34 (DP). Based on the obtained results, it was concluded that the NO conversion on Cu-SAPO-34 nanocatalysts was mainly related to the high reducibility of the isolated Cu2 + ions and CuO species, the number of the acid sites and the dispersion of CuO species on SAPO-34.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号