首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
ABSTRACT

The kinetics of pentachlorophenol (PCP) ozonation in terms of the gaseous O3 and dissolved PCP concentrations has been investigated. When the O3 concentration in the gas phase was in the range of 10 to 40 g O3/m3, the O3 dissolved for a short time period was proportional to the gaseous O3 concentration. In this range, the ozonation reaction was first order for each reactant and the overall reaction was second order. At 25 °C, in an aqueous solution, the reaction rate constant was estimated to be 10.048 L/mol-sec. The reaction rate was much greater than the mass-transfer rate, indicating that the reaction of O3 and PCP was an interface reaction on the surface of gaseous O3 bubbles. The final product of the PCP ozonation was oxalic acid, with the carbon yield of the reaction being 59.4%. The ozonation of PCP in the aqueous solution was not a radical reaction but a direct reaction between O3 and PCP molecules under the conditions investigated in this study, since O3 has a high selectivity toward PCP. The reaction rate increased with the reaction temperature up to 35 °C but decreased at temperatures greater than 35 °C due to the decreased solubility of O3. The addition of H2O2 did not increase the reaction rate significantly.  相似文献   

2.
Phorate (O,O-diethyl S-ethylthiomethyl phosphorodithioate) dissolved in aqueous solution was almost completely decomposed by ozonation to form various species within 10 minutes of reaction time for the experimental conditions examined in this research. The generation rate of sulfate was found to be fairly independent of solution pH value. However, the formation of phosphate and carbonate was more favorable for alkaline solutions where hydroxyl free radical is the primary oxidative species. The reaction rates increased with initial gaseous ozone concentrations, indicating the reaction was mass transfer-controlled within the experimental range of this research. Combining the analytical results by various instruments, including gas chromatograph equipped with an electron ionization detector (GC-EID), high performance liquid chromatography (HPLC), ion chromatography (IC), and total organic carbon (TOC), the temporal sequence of phorate ozonation was proposed in this study. The oxidation of sulfur atoms on the phosphorus-sulfur double bond or carbon-sulfur-carbon bond by ozonation was found to occur at first to form sulfate and various intermediates.  相似文献   

3.
Liou RM  Chen SH  Hung MY  Hsu CS 《Chemosphere》2004,55(9):1271-1280
Pentachlorophenol (PCP) is a wood preserving agent that is commonly found in contaminated soils at wood treatment sites. The catalytic properties of Fe+3-resin for the oxidation of PCP in aqueous solution and soil suspension with H2O2 were tested. Batch tests in aqueous solution were performed at various dosages of catalyst and H2O2, and reaction temperatures. The results showed that the oxidation of PCP in aqueous solution depends on the dose of H2O2 and the temperature. Essentially complete oxidation of 100 mgl(-1) PCP was obtained with 0.5% Fe+3-resin catalyst, 0.1 M H2O2 and at a reaction temperature of 80 degrees C. The oxidation of PCP achieved in three different soil suspensions was more than 94% within 30-50 min. Moreover, it was demonstrated that the same Fe+3-resin could be reused for at least six cycles of PCP oxidation in soil solutions without loss in efficiency unless the pH of the reaction falls below 5. It was proposed that the loss in used Fe+3-resin catalyst activity could be related to the leaching of Fe+3 at low pH.  相似文献   

4.
Degradation of diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] in aqueous solution and the proposed degradation mechanism of diuron by ozonation were investigated. The factors that affect the degradation efficiency of diuron were examined. The generated inorganic ions and organic acids during the ozonation process were detected. Total organic carbon removal rate and the amount of the released Cl(-) increased with increasing ozonation time, but only 80.0% of the maximum theoretical concentration of Cl(-) at total mineralization was detected when initial diuron concentration was 13.8 mg L(-1). For N species, the final concentrations of NO3(-) and NH4+ after 60 min of reaction time were 0.28 and 0.19 mg L(-1), respectively. The generated acetic acid, formic acid and oxalic acid were detected during the reaction process. The main degradation pathway of diuron by ozonation involved a series of dechlorination-hydroxylation, dealkylation and oxidative opening of the aromatic ring processes, leading to small organic species and inorganic species. The degradation efficiency of diuron increased with decreasing initial diuron concentration. Higher pH value, more ozone dosage, additive Na2CO3, additive NaHCO3 and additive H2O2 were all advantageous to improve the degradation efficiency of diuron.  相似文献   

5.
He Z  Song S  Xia M  Qiu J  Ying H  Lü B  Jiang Y  Chen J 《Chemosphere》2007,69(2):191-199
The operational parameters and mechanism of mineralization of C.I. Reactive Yellow 84 (RY84), one of the azo dyes, in aqueous solution were investigated using sonolytic ozonation (US/O(3) oxidation). Of the pseudo-first-order degradation rate constants of TOC reduction, 9.0 x 10(-4), 7.3 x 10(-3) and 1.8 x 10(-2)min(-1) were observed with US, O3, and a combination of US and O3, respectively. These results illustrate that ozonation combined with sonolysis for removal of TOC is more efficient than ozonation alone or ultrasonic irradiation alone without considering the operating costs. With the initial pH value at 10.0, the ozone dose at 4.5 g h(-1), the energy density of ultrasound at 176 W l(-1), and the initial concentration of RY84 at 100 mg l(-1), the extent of mineralization measured as TOC loss was maximized. The variation of the concentrations of related ions (oxalate, formate, acetate, NO3(-), NO2(-), NH4(+), Cl(-), and SO4(2-)) during the reaction process was monitored. Other organic intermediates detected by GC/MS were N-methyleneaniline, phthalic acid, 4-hydroxyphthalic acid, isocyanatobenzene, aniline, 4-iminocyclohexa-2,5-dien-1-one, butene diacid and urea. Based on these findings, a tentative degradation pathway was proposed.  相似文献   

6.
Chu W  Chan KH  Graham NJ 《Chemosphere》2006,64(6):931-936
In this study, the degradation of atrazine (ATZ) by ozone (O3) oxidation and its associated processes (i.e. UV, UV/O3) in the presence and absence of surfactant was investigated and compared. A non-ionic surfactant, Brij 35, was selected. It was found that the presence of a low concentration of surfactant could improve the removal of ATZ by increasing the dissolution of ozone and the indirect generation of hydroxyl radicals. The saturated ozone level and the reaction rate constants were increased with increasing the concentration of surfactant and then decreased at higher surfactant doses at pH level of 2.5. A similar trend was observed at pH level of 7.0 in the presence of bicarbonate ion, because it is capable of deactivating the hydroxyl radicals generating at higher pH level. However, when the radical reactions become dominant in the ozonation (at pH 7.0 without bicarbonate), the saturated ozone level was higher than that with bicarbonate and the kinetic rate constants were increased first and levelled off with increasing of the dose of surfactant. Through the examining of a proposed unit performance index, the low concentration of surfactant is surely beneficial to the ozonation process. Besides, the direct photolysis and photo-assisted ozonation were compared to the ozonation. A significant enhancement on the decay rate of ATZ was resulted exclusively by adding the surfactant. An enhancement index for quantifying the improvement of the various processes was developed.  相似文献   

7.
Kinetics of photodegradation and ozonation of pentachlorophenol   总被引:3,自引:0,他引:3  
The oxidation of 2,3,4,5,6-pentachlorophenol (PCP) has been carried out by a photodecomposition process using a polychromatic UV irradiation, and by an ozonation process. In the photodegradation process, the pH accelerated the decomposition rate and the approximate first-order rate constants were evaluated, with values between 0.16+/-0.005 min(-1) at pH=3 and 0.26+/-0.007 min(-1) at pH=9. A more rigorous kinetic study led to the determination of the quantum yields of the reaction, with values of 200+/-7x10(-3) mol/Eins for pH=3 and 22+/-1.1x10(-3) mol/Eins for pH=9. In the ozonation process, the rate constants for the reaction between ozone and PCP were determined by means of a competition kinetics, with values in the range from 0.67x10(5) to 314x10(5) l/mols. The specific rate constants for the un-dissociated and dissociated forms of PCP were also calculated. Finally, in both processes, the intermediate reaction products were identified, the most important being tetrachlorocatechol, tetrachlorohydroquinone and tetra-p-chlorobenzoquinone. Free chloride ion released, which was favored at high pHs, was also followed in both processes.  相似文献   

8.
催化臭氧氧化染料溶液的研究   总被引:2,自引:0,他引:2  
采用催化臭氧化技术降解染料废水,以甲基紫溶液为目标污染物,研究了过渡型金属离子的类型,Fe2+的浓度,溶液初始pH值,染料浓度和正丁醇等因素对其降解率的影响。实验结果表明:臭氧氧化甲基紫溶液的过程中,加入一定浓度的过渡型金属离子对甲基紫的去除具有促进作用;当臭氧浓度为16 mg/L,一定浓度范围内,Fe2+催化臭氧化的效果随着浓度的增加而增加,但Fe2+浓度为13 mg/L时,甲基紫的降解率下降;在酸性范围时,pH值增大其降解率会减小;染料浓度增加,甲基紫的降解率减小,但是其绝对降解值会增加;正丁醇的加入抑制氧化反应的进行,甲基紫的降解率下降,说明催化臭氧化过程中有羟基自由基产生。染料降解过程符合一级反应动力学规律。  相似文献   

9.
Zhao W  Shi H  Wang D 《Chemosphere》2004,57(9):1189-1199
Ozonation of the azo dye Cationic Red X-GRL was investigated in a bubble column reactor at varying operating parameters such as oxygen flow rate, temperature, initial Cationic Red X-GRL concentration, and pH. The conversion of dye increased with the increasing of pH and oxygen flow rate. As the reaction rate constant and the volumetric mass transfer coefficient increase while the ozone equilibrium concentration decreases with the temperature, there is a minimum conversion of dye at 25 degrees C. The increasing of initial dye concentration leads to a decreasing conversion of dye while the ozonation rate increases. The formation of intermediates and the variation of pH, TOC, and nitrate ion during ozonation were investigated by the use of some analytical instruments such as GC/MS, GC, and IC. The intermediates of weak organic acids lower the pH value of the solution. The probable degradation mechanism of the Cationic Red X-GRL in aqueous solution was deliberated with the aid of Molecular Orbital calculations. The N(12)-C(13) site in Cationic Red X-GRL, instead of the N(6)-N(7) site, is found to be the principal site for ozone cycloaddition in the degradation processes. During the degradation process, among the six nitrogen atoms of Cationic Red X-GRL, one is transferred into a nitrate ion, one is converted into an amine compound, and the remaining four are transformed into two molecules of nitrogen.  相似文献   

10.
采用臭氧氧化技术处理给水系统中难降解的诺氟沙星(NOR),考察了NOR臭氧氧化的影响因素,得出最佳的处理条件:初始pH为8,臭氧投加量为5 mg/L,反应90 min后去除效率达31.02%,较常规处理大大提高,同时还对反应机理进行了初步探索,研究表明,NOR经臭氧氧化后生成多种小分子物质。  相似文献   

11.
以自制的介孔γ-A12O3为载体,通过等体积浸渍法合成了MnOx/介孔γ-A12O3催化剂。采用X射线衍射(XRD)、透射电镜(TEM)以及紫外一可见漫反射(uV—VisDRS)等手段对其进行表征。结果表明,锰氧化物在介孔氧化铝载体上具有较高的分散度,并且锰以多种价态存在。高度分散以及多价态的MnOx能够提高催化臭氧化过程中电荷转移,引起更高的催化活性。MnOx/介孑γ-A12O3催化剂能够有效地提高臭氧对水中安替比林的矿化效果,对含量为10mg/L的安替比林水溶液在反应60min后基本达到完全矿化。  相似文献   

12.
Zhang F  Yediler A  Liang X 《Chemosphere》2007,67(4):712-717
In this study, an aqueous solution of purified, hydrolyzed C.I. Reactive Red 120 (RR 120, Color Index), was selected as a model to investigate the degradation pathways and to obtain additional information on the reaction intermediate formation. The dye was purified to avoid the influence of the impurities on the ozonation process and on the formation of oxidation by-products. To simulate the dye-bath effluents from dyeing processes with azo reactive dyes, a hydrolyzed form of the dye was chosen as a representative compound. High performance liquid chromatography/mass spectrometry and its tandem mass spectrometry was chosen to identify the decomposition pathways and reaction intermediate formation during the ozonation process. In addition total organic carbon and high performance ion chromatography analysis were employed to obtain further information on the reaction processes during ozonation. Purified, hydrolyzed RR 120 was decomposed under the direct nucleophilic attack by ozone resulting in oxidation and cleavage of azo group and aromatic ring, while the triazine group still remained in the solution even after prolonged oxidation time (120 min) due to its high resistance to ozonation. Phenol, 1,2-dihydroxysulfobezene, 1-hydroxysulfonbezene were detected as the degradation intermediates, which were further oxidized by O(3) and *OH to other open-ring products and then eventually led to simple oxalic and formic acid identified by HPIC.  相似文献   

13.
A pilot-scale plug-flow reactor was built to investigate its performance in treating airborne propylene glycol monomethyl ether acetate (PGMEA) via ozonation, ultraviolet (UV) photolysis and UV/O3 technologies. Governing factors, such as the initial molar ratio of ozone (O3) to PG-MEA, UV volumetric electric power input, and moisture content in the influent airstream, were investigated. A 1-L batch reactor was used to investigate some photodegradation characteristics of PGMEA in advance. Experiments were conducted at a fixed influent PGMEA concentration of approximately 50 ppm and an ambient temperature of 26 degrees C. A gas space time of 85 sec in the plug-flow reactor was kept for either ozonation or photolysis reaction, whereas a gas space time of 170 sec was used for the UV/O3 degradation. Results show that an initial molar ratio of O3 to PGMEA of >2.91 and an UV volumetric electric input power of 0.294 W/L(-1) sufficed to obtain PGMEA decompositions of >90% by UV/O3. Kinetic analyses indicate that all types of PGMEA decomposition are pseudo-first order with respect to its concentration. Moisture content (relative humidity = 15-99%) and UV volumetric electric input power (0.147 and 0.294 W/L(-1)) were major factors that strongly affect the PGMEA degradation rate.  相似文献   

14.
The mass transfer of naphthalene vapor to water droplets in air was studied in the presence of ozone (O3) in the gas phase. A falling droplet reactor with water droplets of diameters 55, 91, and 182 microm was used for the study. O3 reacted with naphthalene at the air-water interface, thereby decreasing the mass transfer resistance and increasing the rate of uptake of naphthalene into the droplet. A Langmuir-Hinshelwood reaction mechanism at the air-water interface satisfactorily described the surface reaction. The first-order surface reaction rate constant, ks, increased with decreasing droplet size. Three organic intermediates were identified in the aqueous phase as a result of ozonation of naphthalene at the surface of the droplet indicating both peroxidic and nonperoxidic routes for ozonation. The presence of an organic carbon surrogate (fulvic acid) increased both the partition constant of naphthalene and the surface reaction rate of O3. The heterogeneous oxidation of naphthalene by O3 on the droplet was 15 times faster than the homogeneous oxidation by O3 in the bulk air phase, whereas it was only 0.08 times the homogeneous gas-phase oxidation by hydroxyl radicals under atmospheric conditions.  相似文献   

15.
Ozonation of alpha endosulfan and the effects of some parameters such as pH, temperature and partial pressure on ozonation were investigated and the kinetic constants were calculated in this study. Alpha endosulfan solutions were ozonated in a lab-scale semi-batch reactor under variable experimental conditions. Increase in dissolved ozone concentration had a positive effect on oxidation rate. Alpha endosulfan could be removed up to 94% at pH 4 for an ozonation time of 60 minutes. The oxidation reaction was found to be of second order and of first order with respect to both ozone and alpha endosulfan. The temperature dependent reaction expression of alpha endosulfan was obtained as kd = (1.889 exp(- 2.21 x 10(-3)/T). It was concluded that, although the rate of reaction was lower than the rate of other pesticide oxidation reported in the literature. alpha endosulfan presented an obvious reaction to ozonation.  相似文献   

16.
The aqueous degradation of iodinated X-ray contrast media (ICM) by the combination of ozone and ultrasound has been studied. Experiments were conducted at a constant ultrasound frequency of 20 kHz, at five power densities up to 0.235 W/mL, and various ozone centrations. In experiments involving dissolved ozone in solution, the addition of ultrasound significantly decreased the oxidation performance of the dissolved ozone, while the combination of dissolved oxygen and ultrasound gave a greater oxidation performance than ultrasound alone. However, the combination of gaseous ozone and ultrasound was found to give a higher degree of compound degradation than either ozone or ultrasound alone. In the experiments with final effluent, the degradation of ICM compounds by gaseous ozone and ultrasound was found to depend on the ozone dose applied. The degradation of ICM compounds in final effluent was modeled, which was found to moderately overestimate the observed compound degradation.  相似文献   

17.
With dimethyl phthalate as the model pollutant and Ru/Al(2)O(3) as catalyst, this paper systemically investigates the removal of total organic carbon (TOC) of system. Our results have confirmed that Ru/Al(2)O(3) can significantly increase the effect of ozonation. TOC removal in 120 min can reach 72% while only 24% with ozone alone. The optimal catalyst preparing condition was 0.1 wt% Ru content, 600 degrees C calcination temperature, 0.5-1.0mm particle diameter, which is characterized by a high surface area and a large population of surface active sites. The contrasting experiments of ozone alone, catalyst adsorption after ozonation, and catalytic ozonation confirmed that catalytic reaction was the most important process to TOC removal in system with Ru/Al(2)O(3) as catalyst.  相似文献   

18.
Antibiotic formulation effluents are well known for their difficult elimination by traditional bio-treatment methods and their important contribution to environmental pollution due to its fluctuating and recalcitrant nature. In the present study the effect of ozonation on the degradation of oxytetracycline (OTC) aqueous solution (100mgl(-1)) at different pH values (3, 7 and 11) was investigated. Ozone (11mgl(-1) corresponds the concentration of ozone in gas phase) was chosen considering its rapid reaction and decomposition rate. The concentration of oxytetracycline, chemical oxygen demand (COD), biochemical oxygen demand (BOD) and BOD5/COD ratio were the parameters to evaluate the efficiency of the ozonation process. In addition, the toxic potential of the OTC degradation was investigated by the bioluminescence test using the LUMIStox 300 instrument and results were expressed as the percentage inhibition of the luminescence of the marine bacteria Vibrio fischeri. The results demonstrate that ozonation as a partial step of a combined treatment concept is a potential technique for biodegradability enhancement of effluents from pharmaceutical industries containing high concentration of oxytetracycline provided that the appropriate ozonation period is selected. At pH 11 and after 60min of ozonation of oxytetracycline aqueous solutions (100 and 200mgl(-1)) the BOD5/COD ratios were 0.69 and 0.52, respectively. It was also shown that COD removal rates increase with increasing pH as a consequence of enhanced ozone decomposition rates at elevated pH values. The results of bioluminescence data indicate that first by-products after partial ozonation (5-30min) of OTC were more toxic than the parent compound.  相似文献   

19.
Chen YH  Chang CY  Chen CC  Chiu CY  Yu YH  Chiang PC  Ku Y  Chen JN  Chang CF 《Chemosphere》2004,56(2):133-140
This study investigates the ozonation of 2-mercaptothiazoline (2-MT). The 2-MT is one of the important organic additives for the electroplating solution of the printed wiring board industry and has been widely used as a corrosion inhibitor in many industrial processes. It is of concern for the aquatic pollution control especially in the wastewaters. Semibatch ozonation experiments in the completely stirred tank reactor are performed under various concentrations of input ozone. The concentrations of 2-MT, sulfate, and ammonium are analyzed at specified time intervals to elucidate the decomposition of 2-MT during the ozonation. In addition, the time variation of the dissolved ozone concentration (C(ALb)) is continuously monitored in the course of experiments. Total organic carbon (TOC) is chosen and measured as a mineralization index of the ozonation of 2-MT. The results indicate that the decomposition of 2-MT is efficient, while the mineralization of TOC is limited via the ozonation only. Simultaneously, the yield of sulfate with the maximum value of about 47% is characterized by the increases of TOC removal and ozone consumption. These results can provide some useful information for assessing the feasibility of the treatment of 2-MT in the aqueous solution by the ozonation.  相似文献   

20.
Brás I  Lemos L  Alves A  Pereira MF 《Chemosphere》2005,60(8):1095-1102
The minimization of pentachlorophenol (PCP) transport in the environment driven by industrial wastewater discharges can be accomplished by sorption in natural, available and low cost by-products like pine bark. Taking into account that PCP is a chemical which behaviour is highly dominated by the surrounding features, this work intended to evaluate the sorption kinetics and equilibrium parameters according to the pH and temperature as well as the pine bark particle size. The PCP uptake by pine bark showed to be faster in the initial phase followed by a slower process, being 24 h the suitably time to reach the sorption equilibrium in the range of pH studied. The neutral PCP species showed to have higher binding capacity to pine bark than the anionic PCP, which was reflected in a decrease in the distribution coefficient (Kd) of the linear sorption isotherm with the increase of solution pH from 2 to 7. On the other hand, between 10 degrees C and 35 degrees C, the temperature does not seem to play a significant role in the PCP sorption by pine bark, while the sorbent size is a key parameter to enhance the overall process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号