首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The morphology of three different detonation soot samples along with other common soot materials such as carbon black, diesel soot and chimney soot was studied by elemental and proximate analysis, X-ray diffraction and electron microscopy. The goal of this study was to better define the morphology of the detonation soot in order to better assess the interactions of this type of soot with explosive residues. The detonation soot samples were obtained by the detonation of artillery 155mm projectiles filled with either pure TNT (2,4,6-trinitrotoluene) or composition B, a military explosive based on a mixture of TNT and RDX (trimethylentrinitramine). The carbon content of the soot samples varied considerably depending on the feedstock composition. Detonation soot contains less carbon and more nitrogen than the other carbonaceous samples studied, due to the molecular structure of the energetic materials detonated such as TNT and RDX. The ash concentration was higher for detonation soot samples due to the high metal content coming from the projectiles shell and to the soil contamination which occurred during the detonation. By X-ray diffraction, diamond and graphite were found to be the major crystalline carbon forms in the detonation soot. Two electron microscopy techniques were used in this study to visualise the primary particles and to try to explain the formation mechanism of detonation soot samples.  相似文献   

2.
In-service diesel engines are a significant source of particulate matter (PM) emissions, and they have been subjected to increasingly strict emissions standards. Consequently, the wide-scale use of some type of particulate filter is expected. This study evaluated the effect of an Engelhard catalyzed soot filter (CSF) and a Rypos electrically heated soot filter on the emissions from in-service diesel engines in terms of PM mass, black carbon concentration, particle-bound polycyclic aromatic hydrocarbon concentration, and size distribution. Both filters capture PM. The CSF relies on the engine's exhaust to reach the catalyst regeneration temperature and oxidize soot, whereas the electrically heated filter contains a heating element to oxidize soot. The filters were installed on several military diesel engines. Particle concentrations and compositions were measured before and after installation of the filter and again after several months of operation. Generally, the CSF removed at least 90% of total PM, and the removal efficiency improved or remained constant after several months of operation. In contrast, the electrical filters removed 44-69% of PM mass. In addition to evaluating the soot filters, the sampling team also compared the results of several real-time particle measurement instruments to traditional filter measurements of total mass.  相似文献   

3.
Abstract

In-service diesel engines are a significant source of particulate matter (PM) emissions, and they have been subjected to increasingly strict emissions standards. Consequently, the wide-scale use of some type of particulate filter is expected. This study evaluated the effect of an Engelhard catalyzed soot filter (CSF) and a Rypos electrically heated soot filter on the emissions from in-service diesel engines in terms of PM mass, black carbon concentration, particle-bound polycyclic aromatic hydrocarbon concentration, and size distribution. Both filters capture PM. The CSF relies on the engine's exhaust to reach the catalyst regeneration temperature and oxidize soot, whereas the electrically heated filter contains a heating element to oxidize soot. The filters were installed on several military diesel engines. Particle concentrations and compositions were measured before and after installation of the filter and again after several months of operation. Generally, the CSF removed at least 90% of total PM, and the removal efficiency improved or remained constant after several months of operation. In contrast, the electrical filters removed 44-69% of PM mass. In addition to evaluating the soot filters, the sampling team also compared the results of several real-time particle measurement instruments to traditional filter measurements of total mass.  相似文献   

4.
The emissions of diesel vehicles mainly contain soot, which is difficult to distinguish from soot originating from other sources. The use of a tracer which can be detected in extremely low mass concentrations and does not occur normally in the atmospheric aerosol can help to differentiate between aerosols from different sources. The rare earth element Dysprosium has proven useful for this purpose. It can be detected by neutron activation analysis in quantities of nanograms and does not occur naturally.An organic, diesel soluble Dysprosium compound was added to the fuel. During the combustion process the Dysprosium is oxidized and attaches to the formed soot particles. For the atmospheric filter samples an extraction technique was used.This marking method has been successfully applied for an extended field experiment.  相似文献   

5.
A wet effluent denuder - aerosol collector (WEDD/AC) system coupled to ion chromatography for the measurement of atmospheric HONO, HNO3 and particulate nitrite, nitrate and sulfate is described. Several experiments were performed to outline its performance. The main features are low detection limits and a fast response to concentration changes which enables measurements with high time resolution. In contrast to highly soluble gases, the collection efficiency of less soluble gases is shown to depend on the Henry’s law constant rather than on the uptake kinetics. To improve the collection efficiency for HONO under simultaneous presence of acidifying gases, NaHCO3 was added to the effluent solution. The system was tested in a field campaign in the suburban area of Zürich, Switzerland. Elevated concentrations of nitrous acid up to 3.2 ppb were detected during the measurement campaign. The diurnal variation of the HONO to NO2 ratio clearly points to a fast and persistent process producing HONO in the atmosphere. The correlation with NOx and black carbon suggests a heterogeneous formation of HONO, and is consistent with a reaction on soot aerosol particle surfaces postulated from previous laboratory results.  相似文献   

6.
Several studies in modeling atmospheric processes have suggested that heterogeneous chemistry on soot emitted from high altitude aircraft could affect stratospheric ozone depletion. However, these modeling studies were limited because they did not adequately consider the decrease in reaction probability with time as the surface of the soot becomes “poisoned” by its interactions with various gases. Here we extend UIUC's two-dimensional chemical-transport model to investigate possible effects of heterogeneous reactions of ozone on aircraft-generated carbon particles, including a treatment of soot poisoning in the model. We generally follow literature recommendations for ozone uptake probabilities and determine the available active sites on soot given partial pressures of the reactants, temperature, and time since soot emission in order to investigate ozone decrease. The regeneration of soot active sites is also taken into account in this study. We find that, even if active sites on soot surfaces are regenerated, upper troposphere and lower stratosphere ozone losses on aircraft emitted soot occurring through heterogeneous reactions are insignificant once poisoning effects are considered.  相似文献   

7.
Scanning electron microscopy, surface area determination, elemental analysis, organic matter extraction and solid-state cross polarization/magic angle spinning and Bloch decay/magic angle spinning 13C nuclear magnetic resonance (NMR) spectroscopy were used to investigate distinctive features among carbonaceous combustion residues. Black carbon (BC) samples included diesel soot, urban dust, carbon black, chimney soot, vegetation fire residues, wood and straw charcoals. Particles varied from small spheres (<50 nm) in fossil BC (>100 m(2)/g), to large layered structures in plant-derived BC (generally <8 m(2)/g). Chimney soot also included large (>1 micrometer) liquid-like structures, while spherules >100 nm were unique to urban dust. The ratios of amorphous to soot carbon (SC) (isolated by thermal degradation) were not necessarily correlated with the degree of aromaticity estimated from H/C ratios. In particular, values of SC in diesel soot were clearly overestimated. Solvent-extractable organic matter (SEOM) was <2% for charcoals and carbon black, but >13% for urban dust, chimney and diesel soot. SEOM is thought to clog pores or to form large waxy globules, hence reducing surface areas. The ratio of polar/nonpolar SEOM was generally <7 for fossil BC, but >30 for plant-derived BC. NMR analysis revealed essentially one chemical shift in the aromatic C region of charcoals, while diesel soot also showed important aliphatic contributions. Aliphatic and oxygenated C predominated over aryl C in urban dust and chimney soot. These morphological and chemical characteristics of the BC samples are discussed in terms of their environmental implications.  相似文献   

8.
Emissions from flares constitute unburned hydrocarbons, carbon monoxide (CO), soot, and other partially burned and altered hydrocarbons along with carbon dioxide (CO2) and water. Soot or visible smoke is of particular concern for flare operators/regulatory agencies. The goal of the study is to develop a computational fluid dynamics (CFD) model capable of predicting flare combustion efficiency (CE) and soot emission. Since detailed combustion mechanisms are too complicated for (CFD) application, a 50-species reduced mechanism, LU 3.0.1, was developed. LU 3.0.1 is capable of handling C4 hydrocarbons and soot precursor species (C2H2, C2H4, C6H6). The new reduced mechanism LU 3.0.1 was first validated against experimental performance indicators: laminar flame speed, adiabatic flame temperature, and ignition delay. Further, CFD simulations using LU 3.0.1 were run to predict soot emission and CE of air-assisted flare tests conducted in 2010 in Tulsa, Oklahoma, using ANSYS Fluent software. Results of non-premixed probability density function (PDF) model and eddy dissipation concept (EDC) model are discussed. It is also noteworthy that when used in conjunction with the EDC turbulence-chemistry model, LU 3.0.1 can reasonably predict volatile organic compound (VOC) emissions as well.

Implications: A reduced combustion mechanism containing 50 C1–C4 species and soot precursors has been developed and validated against experimental data. The combustion mechanism is then employed in the computational fluid dynamics (CFD) of modeling of soot emission and combustion efficiency (CE) of controlled flares for which experimental soot and CE data are available. The validated CFD modeling tools are useful for oil, gas, and chemical industries to comply with U.S. Environmental Protection Agency’s (EPA) mandate to achieve smokeless flaring with a high CE.  相似文献   


9.
为实现对柴油机碳烟和NOx的低温同步去除,采用柠檬酸络合法制备分子筛负载钙钛矿型金属复合氧化物催化剂,应用x衍射分析仪(XRD)和电镜扫描仪(SEM)对催化剂性能进行表征,并在微型固定床反应器中对催化剂低温去除碳烟和NOx进行活性评价。利用程序升温反应(TPR)技术,进行催化剂活性评价、柴油机负荷和排放等特性实验。结果表明,A位用适量Ce部分取代La,B位用适量cu部分取代Mn,可使碳颗粒燃烧温度降低,CO2选择性好,NOx转化率升高。La0.4 Ce0.6 Cu0.2 Mn0.8O3/HZSM-5催化剂的最大NOx转化率为81.0%,Ti、Tm和Tf分别为250、350和475℃,表明该催化剂具有较好的催化活性,能在低温条件下去除碳烟和NOx。  相似文献   

10.
《Environmental Forensics》2013,14(3):191-197
To determine whether polycyclic aromatic hydrocarbons (PAHs) in household soot were derived from the combustion of scrap wood or creosote that was impregnated in the wood (or some combination of both), the molecular composition and radiocarbon ( 14 C) content of the total carbon and several PAHs in the soot was investigated. The 5730-year half-life of 14 C makes it an ideal marker for identifying creosote-derived PAHs ( 14 C-free) versus those derived from the combustion of wood (contemporary 14 C). The 14 C abundance of phenanthrene, fluoranthene, pyrene, and retene was determined by accelerator mass spectrometry after solvent extraction and purification by preparative capillary gas chromatography. The molecular analysis (presence of retene and 1,7-dimethylphenanthrene) and bulk 14 C content (contemporary) of the soot indicated that wood combustion was a strong source of carbon to the soot. The 14 C of retene in two soot samples was also contemporary, indicating that it was derived from the combustion of the scrap wood. These results are consistent with previous work that has suggested that retene is an excellent marker of wood combustion. However, the 14 C content of phenanthrene, fluoranthene, and pyrene in one soot sample was much lower and revealed that these compounds had a mixed creosote and wood source. Using an isotopic mass balance approach, we estimate that 40 to 70% of phenanthrene, fluoranthene, and pyrene were derived from the combustion of the scrap wood. The results of this study show that molecular marker and bulk 14 C analysis can be potentially misleading in apportioning sources of every PAH, and that molecular-level 14 C analysis of PAHs can be a powerful tool for environmental forensics.  相似文献   

11.
A biomass-generated soot was sequentially treated by HCl-HF solution, organic solvent, and oxidative acid to remove ash, extractable native organic matter (EOM), and amorphous carbon. The compositional heterogeneity and nano-structure of the untreated and treated soot samples were characterized by elemental analysis, thermal gravimetric analysis, BET-N2 surface area, and electron microscopic analysis. Sorption properties of polar and nonpolar organic pollutants onto the soot samples were compared, and individual contributions of adsorption and absorption were quantified. The sorption isotherms for raw sample were practically linear, while were nonlinear for the pretreated-soot. The removal of EOM enhanced adsorption and reduced absorption, indicating that EOM served as a partitioning phase and simultaneously masked the adsorptive sites. By drastic-oxidation, the outer amorphous carbon and the inner disordered core of the soot particles were completely removed, and a fullerene-like nanoporous structure (aromatic shell) was created, which promoted additional π-π interaction between phenanthrene and the soot.  相似文献   

12.
A systematic comparison of spectra obtained with extra and in situ diagnostics in the soot preinception region of rich, premixed ethylene air flames suggests that combustion generated organic carbon (OC) particulate can be extracted from flames and isolated from other flame material for further chemical analysis. Both the trend with height above the burner and the form of UV fluorescence and absorption spectra from extra situ sampled material captured in water agree with those measured in situ. These results show that the OC particulate formed in flames is partially water soluble. However, the collection efficiency can be increased using less polar solvents, like acetonitrile and dichloromethane. The fluorescence spectra from the water samples are comprised both a naphthalene-like component and a broad band UV fluorescence component similar to that observed in situ which is attributed to flame generated OC particulate. The broad band UV fluorescence centered around 320 nm is also observed very early in flames and does not change considerably with increasing flame residence time. These results support previous hypotheses that the UV broad band fluorescence is from carbonaceous material comprised two-ring aromatics, formed earlier than soot in the flame, and is still present along with soot at higher heights or flame residence times.  相似文献   

13.
The determination of the structure of carbon materials is an analytical problem that join the research scientific communities involved in the chemical characterization of heavy fuel-derived products (heavy fuel oils, coal-derived fuels, shale oil, etc.) and of carbon materials (polycyclic aromatic compounds, tar, soot) produced in many combustion processes.

The knowledge of the structure of these “difficult” fuels and of the carbon materials produced by incomplete combustion is relevant to research for the best low-environmental impact operation of combustion systems; but an array of many analytical and spectroscopic tools are necessary, and often not sufficient, to attempt the characterization of such complex products and in particular to determine the distribution of molecular masses.

In this paper the size exclusion chromatography using N-methyl-pyrrolidinone as eluent has been applied for the characterization of different carbon materials starting from typical carbon species, commercially available like polyacenaphthylene, carbon black, naphthalene pitch up to combustion products like soot and soot extract collected in fuel-rich combustion systems. Two main fractions were detected, separated and molecular weights (MWs) determined by comparison with polystyrene standards: a first fraction consisted of particles with very large molecular masses (>100 000 u); a second fraction consisted of species in a relatively small MW range (200–600 u). The distribution of these fractions changes in dependence on the carbon sample characteristics.

Fluorescence spectroscopy applied on the fractions separated by size-exclusion chromatography has been used and comparatively interpreted giving indications on the differences and similarities in chemical structure of such different materials.  相似文献   


14.
Formation and destruction of PCDD/F inside a grate furnace   总被引:1,自引:0,他引:1  
Hunsinger H  Jay K  Vehlow J 《Chemosphere》2002,46(9-10):1263-1272
Formation and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans PCDD/F during the combustion process was investigated experimentally in a pilot plant. All important process steps like the burnout of the fuel bed on the grate, the burnout of the flue gas inside the combustion chamber, the heat recovery in a boiler as well as influences of the fuel composition are described in detail.

High concentrations especially of PCDF are formed during the burnout of the fuel bed. The formation reaction is mainly influenced by the fuel composition and the burnout characteristic of the fuel bed. Fuels with low chlorine and low metal content (Cu) result only in negligible concentrations of PCDD/F.

Under stable combustion conditions characterized by an excellent flue gas burnout PCDD/F will almost be completely destroyed already inside the combustion chamber. “Cold strands” of unburned flue gas (high CO concentrations) caused by disturbed combustion conditions will result in high concentrations of PCDD and especially of PCDF in the raw gas.

A second place of PCDD/F formation is the well-known boiler section. Here fly ash deposits containing residual carbon (mainly soot particles) are the source for the formation reaction. Under stationary effective combustion conditions, they are dominant for PCDD/F concentrations in the raw gas over a very long period of time.

Stationary efficient flue gas burnout (especially soot) together with effective boiler cleaning will guaranty low concentrations of PCDD/F in the flue gas in front of the flue gas cleaning system.  相似文献   


15.
The desorption kinetics of hexachlorobenzene (HCB) in four freshly spiked artificial sediments were determined using a polymeric adsorbent Tenax-mediated desorption. The sediments included a standard sediment (SS) prepared as per Organisation for Economic Cooperation and Development 218 guidelines and three derived artificial sediments prepared by supplementing the SS sediment with various levels of black carbon (lamp black soot) and/or montmorillonite clay. The desorption kinetics exhibited biphasic behavior, i.e., a fast desorbing fraction followed by a slow desorbing fraction. The addition of either lamp black soot or montmorillonite clay resulted in the reduction of the fast desorbing fraction (Ffast) of HCB in three derived sediments compared with SS sediment. Both black carbon and montmorillonite clay treatment effects on the fast desorbing fraction were statistically significant for the four artificial sediments. The black carbon treatment (i.e., addition of 0.5% wt/wt lamp black soot) effect was an average reduction of Ffast by approximately 11%, whereas the montmorillonite treatment (i.e., addition of 15% wt/wt montmorillonite clay) effect was an average reduction of Ffast by approximately 17%. The presence of soot black carbon particles reduced the desorption rate of HCB in sediments since black carbon exhibits very high sorption capacity and extremely slow diffusion rate compared with those of the natural organic matter in sediment.  相似文献   

16.
Fernandes MB  Brooks P 《Chemosphere》2003,53(5):447-458
Aromatic and aliphatic fractions of black carbon (BC) solvent extracts were examined by gas chromatography/mass spectrometry to determine how differences in broad chemical and physical features are correlated with the load, composition, "extractability" and bioavailability of organic compounds. Diesel soot, urban dust and chimney soot had concentrations of n-alkanes >20 microg/g and of carcinogenic polycyclic aromatic hydrocarbons (PAHs)>8 microg/g. These high levels of solvent-extractable compounds were interpreted as resulting from combustion at temperatures below optimum values for BC formation. PAH concentrations normalized to the amount of soot carbon in chimney soot were close to values for diesel soot. However, the high proportion of polar amorphous organic matter in chimney soot suggests a higher bioavailability for associated PAHs. Carbon black, vegetation fire residues, and straw and wood charcoals had only residual concentrations of n-alkanes (<9 microg/g) and PAHs (<0.2 microg/g). PAH distributions were mostly unspecific, while the overall signature of the aliphatic fraction varied with BC origin. Molecular markers among plant-derived BC included steroid and sesquiterpenoid hydrocarbons. Molecular fingerprints suggest that compounds associated with fossil BC might be more refractory than those associated with plant-derived BC.  相似文献   

17.
A hybrid setup consisting of low pressure burner, flow reactor and photo-ionization mass spectrometer was used for the simultaneous detection of primary soot and of flame generated nanoparticles precursing soot. The studied flames were low pressure (120-180 mbar) C2H4/O2 flames surrounded by an N2 shield. The flow reactor was not used in this study. Through variation of the burner conditions (stoichiometry, sampling height) it could be shown that nanoparticles and soot are entirely independent species. The former, in particular, are found very early in the flame and their concentration profiles do not vary very much throughout the flame. This renders the possibility that nanoparticles are emitted together with soot and consequently may constitute an additional environmental hazard. Photo-ionization mass spectrometry is well suited for the detection of these particles.  相似文献   

18.
For many types of hydrophobic compounds, sorption non-linearity and solid-water distributions in the field well above expectations from organic matter partitioning models have lead to the proposition that strong adsorption to soot surfaces may not be limited to polycyclic aromatic hydrocarbons but may extend as a significant process for many aromatic compound classes. Here, the soot-water distribution coefficients (Ksc) were determined with the soot cosolvency-column method for homolog series of five polychlorinated dibenzo-p-dioxins (PCDDs), five polychlorinated dibenzofurans (PCDFs) and for two polybrominated diphenylethers (PBDEs). All compounds exhibited significantly stronger association with soot carbon than expected from estimates of their bulk organic-carbon normalized partition coefficients (Koc). The Ksc/Koc ratios (at aqueous concentrations of around 0.1-1 microg/l) were for PCDDs (up to tetrachlorination) 19-130 (median 25), for PCDFs (also up to tetrachlorination) 150-490 (median 300), and for both the tetra- and pentabrominated PBDEs a factor of 60. The particularly strong soot sorption for the PCDFs is of similar enhancement factors as previously elucidated for polycyclic aromatic hydrocarbons. Compound-class specific correlations between log Ksc and octanol-water partition coefficients (log Kow) were significant for both PCDDs and PCDFs (and with R2 > 98%). These may prove useful for anticipating variable fractions of dissolved exposures between different environmental regimes and putative remediation objects.  相似文献   

19.
Im J  Lee CM  Coates JT 《Chemosphere》2008,71(4):621-628
In studies assessing sorption of hydrophobic organic compounds (HOCs) in natural systems, the choice of an appropriate reference black carbon, which can represent environmental black carbon (BC), is essential. This study compared isotherms of two commonly available and distinct reference BCs (n-hexane soot (BCRM) and diesel particulate matter (SRM 2975)) and a natural sediment from a source with little black carbon (Lake Hartwell, SC) using 3,3',4-trichlorobiphenyl (IUPAC #35) as a model sorbate. There was greater sorptivity for PCB-35 by BCRM than by SRM 2975. The observed differences in sorption between the two reference black carbons for PCB-35 may be ascribed to the different chemical characteristics of the black carbons. Differences in pore volume distribution at <16A pore width are less likely to be responsible for the observed differences in sorption. The elemental analysis confirmed that BCRM was a pure n-hexane soot because only C, H and O were measured. In contrast, SRM 2975 also contained N and S and a higher O% than BCRM. Compared to the low BC sediment, the two reference BCs had greater pore volume distributions, surface areas, total pore volumes and sorption. The observed nF (i.e., Freundlich exponent) values for PCB indicated greater linearity of the isotherms for the natural sediment than for the reference black carbons. For designing studies of sorption of HOCs in natural systems, in particular, when PCBs are contaminants of concern, results of this study can aid selection of the appropriate reference BCs.  相似文献   

20.
The apparently dissolved concentration of polychlorinated naphthalenes (PCNs) and three planar polychlorinated biphenyls (pPCBs) were sampled and analysed in the water column of a marine fjord system. We also measured how much of these persistent organic pollutants (POPs) were associated with suspended particles. The field observations showed that an unexpectedly high portion of the pollutants were particle-associated. The factor of deviation from model predictions had positive linear regression on the soot carbon:particulate organic carbon ratio of the particles, and on estimates of the soot-water distribution coefficient for the PCNs. The spatial distribution of surface sediment concentrations of PCNs and polycyclic aromatic hydrocarbons (PAH) were found to consistently follow the sediment content of soot (f(SC)) to a larger extent than the bulk organic matter (f(OC)). There were no systematic differences in the strength of correlation of sediments concentrations of other POPs, i.e. octachlorostyrene and organochlorine pesticides with sediment concentration to f(SC) and f(OC). Mechanisms possible of generating these types of observations, e.g. adsorption to soot carbon in the marine particle, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号