首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
城市河流近自然治理--概念构架与治理设计   总被引:6,自引:0,他引:6  
河流是城市生态系统的重要组成部分,是城市的自然元素和景观组分,具有提供水生生物生境和水源、调节小气候、美化城市、休闲娱乐等多种生态服务功能.随着城市化进程的飞速发展,城市河流生态系统面临着生物多样性减少、污染加剧等多方面的危害.如何恢复受损的城市河流生态系统已经成为我们的当务之急.对城市河流的生态结构及其在城市中的生态功能进行了简要介绍,讨论了河流生态恢复的近自然方法,并对现有的河流生态恢复存在的问题及发展趋势提出了几点看法.  相似文献   

2.
The U.S. Department of Agriculture-Natural Resources Conservation Service has recommended domestic cattle grazing exclusion from riparian corridors for decades. This recommendation was based on a belief that domestic cattle grazing would typically destroy stream bank vegetation and in-channel habitat. Continuous grazing (CG) has caused adverse environmental damage, but along cohesive-sediment stream banks of disturbed catchments in southeastern Minnesota, short-duration grazing (SDG), a rotational grazing system, may offer a better riparian management practice than CG. Over 30 physical and biological metrics were gathered at 26 sites to evaluate differences between SDG, CG, and nongrazed sites (NG). Ordinations produced with nonmetric multidimensional scaling (NMS) indicated a gradient with a benthic macroinvertebrate index of biotic integrity (IBI) and riparian site management; low IBI scores associated with CG sites and higher IBI scores associated with NG sites. Nongrazed sites were associated with reduced soil compaction and higher bank stability, as measured by the Pfankuch stability index; whereas CG sites were associated with increased soil compaction and lower bank stability, SDG sites were intermediate. Bedrock geology influenced NMS results: sites with carbonate derived cobble were associated with more stable channels and higher IBI scores. Though current riparian grazing practices in southeastern Minnesota present pollution problems, short duration grazing could reduce sediment pollution if managed in an environmentally sustainable fashion that considers stream channel response.  相似文献   

3.
ABSTRACT: Forestation of riparian areas has long been promoted to restore stream ecosystems degraded by agriculture in central North America. Although trees and shrubs in the riparian zone can provide many benefits to streams, grassy or herbaceous riparian vegetation can also provide benefits and may be more appropriate in some situations. Here we review some of the positive and negative implications of grassy versus wooded riparian zones and discuss potential management outcomes. Compared to wooded areas, grassy riparian areas result in stream reaches with different patterns of bank stability, erosion, channel morphology, cover for fish, terrestrial runoff, hydrology, water temperature, organic matter inputs, primary production, aquatic macroinvertebrates, and fish. Of particular relevance in agricultural regions, grassy riparian areas may be more effective in reducing bank erosion and trapping suspended sediments than wooded areas. Maintenance of grassy riparian vegetation usually requires active management (e.g., mowing, burning, herbicide treatments, and grazing), as successional processes will tend ultimately to favor woody vegetation. Riparian agricultural practices that promote a dense, healthy, grassy turf, such as certain types of intensively managed livestock grazing, have potential to restore degraded stream ecosystems.  相似文献   

4.
Denitrification potential in urban riparian zones   总被引:3,自引:0,他引:3  
Denitrification, the anaerobic microbial conversion of nitrate (NO3-) to nitrogen (N) gases, is an important process contributing to the ability of riparian zones to function as "sinks" for NO3- in watersheds. There has been little analysis of riparian zones in urban watersheds despite concerns about high NO3- concentrations in many urban streams. Vegetation and soils in urban ecosystems are often highly disturbed, and few studies have examined microbial processes like denitrification in these ecosystems. In this study, we measured denitrification potential and a suite of related microbial parameters (microbial biomass carbon [C] and N content, potential net N mineralization and nitrification, soil inorganic N pools) in four rural and four urban riparian zones in the Baltimore, MD metropolitan area. Two of the riparian zones were forested and two had herbaceous vegetation in each land use context. There were few differences between urban and rural and herbaceous and forest riparian zones, but variability was much higher in urban than rural sites. There were strong positive relationships between soil moisture and organic matter content and denitrification potential. Given the importance of surface runoff in urban watersheds, the high denitrification potential of the surface soils that we observed suggests that if surface runoff can be channeled through areas with high denitrification potential (e.g., stormwater detention basins with wetland vegetation), these areas could function as important NO3- sinks in urban watersheds.  相似文献   

5.
Riparian areas link aquatic and terrestrial habitats, supporting species-rich bird communities, which integrate both terrestrial and aquatic processes. For this reason, inclusion of riparian birds in stream bioassessment could add to the information currently provided by existing programs that monitor aquatic organisms. To assess if bird community metrics could indicate stream conditions, we sampled breeding birds in the riparian zone of 37 reaches in 5 streams draining watersheds representing a gradient of agricultural intensity in central Italy. As a more direct indicator of water quality, stream macroinvertebrates were also sampled for computation of the Italian Extended Biotic Index (IBE). An anthropogenic index was calculated within 1 km of sampled reaches based on satellite-derived land-use classifications. Predictive models of macroinvertebrate integrity based on land-use and avian metrics were compared using an information-theoretic approach (AIC). We also determined if stream quality related to the detection of riverine species. Apparent bird species diversity and richness peaked at intermediate levels of land-use modification, but increased with IBE values. Water quality did not relate to the detection of riverine species as a guild, but two species, the dipper Cinclus cinclus and the grey wagtail Motacilla cinerea, were only observed in reaches with the highest IBE values. Small-bodied insectivorous birds and arboreal species were detected more often in reaches with better water quality and in less modified landscapes. In contrast, larger and granivorous species were more common in disturbed reaches. According to the information-theoretic approach, the best model for predicting water quality included the anthropogenic index, bird species diversity, and an index summarizing the trophic structure of the bird community. We conclude that, in combination with landscape-level information, the diversity and trophic structure of riparian bird communities could serve as a rapid indicator of stream-dwelling macroinvertebrates and, therefore, degradation of in-stream biotic integrity.  相似文献   

6.
Management of riparian habitats has been recognized for its importance in reducing instream effects of agricultural nonpoint source pollution. By serving as a buffer, well structured riparian habitats can reduce nonpoint source impacts by filtering surface runoff from field to stream. A system has been developed where key characteristics of riparian habitat, vegetation type, height, width, riparian and shoreline bank slope, and land use are classified as discrete categorical units. This classification system recognizes seven riparian vegetation types, which are determined by dominant plant type. Riparian and shoreline bank slope, in addition to riparian width and height, each consist of five categories. Classification by discrete units allows for ready digitizing of information for production of spatial maps using a geographic information system (GIS). The classification system was tested for field efficiency on Tom Beall Creek watershed, an agriculturally impacted third-order stream in the Clearwater River drainage, Nez Perce County, Idaho, USA. The classification system was simple to use during field applications and provided a good inventory of riparian habitat. After successful field tests, spatial maps were produced for each component using the Professional Map Analysis Package (pMAP), a GIS program. With pMAP, a map describing general riparian habitat condition was produced by combining the maps of components of riparian habitat, and the condition map was integrated with a map of soil erosion potential in order to determine areas along the stream that are susceptible to nonpoint source pollution inputs. Integration of spatial maps of riparian classification and watershed characteristics has great potential as a tool for aiding in making management decisions for mitigating off-site impacts of agricultural nonpoint source pollution.  相似文献   

7.
The plankton communities of oligotrophic Canadian Shield lakes are strongly regulated by the allochthonous supply of total phosphorus (TP) and dissolved organic carbon (DOC), a proportion of both of which originate from particulate organic matter. Although decreased inputs of allochthonous leaf litter have been documented for small streams whose riparian forests have been removed, no such data exist for boreal lakes. Through estimates of airborne litter input from forested and clear-cut shorelines and laboratory measurements of concentrations released from leaf leachate, we determined that riparian deforestation resulted in reductions of DOC from 17.8 to 0.4 g/m shoreline/yr and of TP from 2.9 to 0.3 g/m shoreline/yr. Previous predictive models indicate that such reductions may be substantial enough to decrease basic metabolic processes of lake plankton communities by as much as 9% in primary production and 17% in respiration.  相似文献   

8.
Forested riparian corridors are thought to minimize impacts of landscape disturbance on stream ecosystems; yet, the effectiveness of streamside forests in mitigating disturbance in urbanizing catchments is unknown. We expected that riparian forests would provide minimal benefits for fish assemblages in streams that are highly impaired by sediment or hydrologic alteration. We tested this hypothesis in 30 small streams along a gradient of urban disturbance (1–65% urban land cover). Species expected to be sensitive to disturbance (i.e., fluvial specialists and “sensitive” species that respond negatively to urbanization) were best predicted by models including percent forest cover in the riparian corridor and a principal components axis describing sediment disturbance. Only sites with coarse bed sediment and low bed mobility (vs. sites with high amounts of fine sediment) had increased richness and abundances of sensitive species with higher percent riparian forests, supporting our hypothesis that response to riparian forests is contingent on the sediment regime. Abundances of Etheostoma scotti, the federally threatened Cherokee darter, were best predicted by models with single variables representing stormflow (r2 = 0.34) and sediment (r2 = 0.23) conditions. Lentic-tolerant species richness and abundance responded only to a variable representing prolonged duration of low-flow conditions. For these species, hydrologic alteration overwhelmed any influence of riparian forests on stream biota. These results suggest that, at a minimum, catchment management strategies must simultaneously address hydrologic, sediment, and riparian disturbance in order to protect all aspects of fish assemblage integrity.  相似文献   

9.
Impact of recreational activities on soil and vegetation was evaluated in eight forested camping and picnic areas in southern Rhode Island. Forest vegetation consists of mixed-oak and white pine stands. Soils are of granitic glacial till or outwash origin and textures range from loamy sand to find sandy loam. Recreational use resulted in significant compaction of soils as indexed by soil penetration resistance and bulk density. Evidence indicates that compaction influences bulk densities to a depth of about 12.7 cm. Rates of water infiltration are less on recreation areas. Soil water accretion and depletion during the growing season are less rapid on recreation sites than on control sites. Differences are attributed to reduced infiltration, percolation, and rooting activity. Much of the ground surface on recreation areas is devoid of vegetation. The surface consists primarily of bare mineral soil, rock, or litter. The plants most commonly present are grasses. Native ground cover vegetation including tree seedlings, ericaceous shrubs and herbs has been eliminated or greatly reduced by trampling. Damage to tree trunks is common in recreation areas. White pine radial growth and scarlet oak height growth were significantly less on recreation sites. Scarlet oak appears intolerant to heavy recreation use.  相似文献   

10.
We developed logistic regression models from data on biotic and abiotic variables for 172 sites on Banks Peninsula, New Zealand, to predict the probability of occurrence of two diadromous fish, banded kokopu (Galaxias fasciatus) and koaro (G. brevipinnis). Banded kokopu occurrence was positively associated with small streams and low-intensity land uses (e.g., sheep grazing or forested), whereas intensive land uses (e.g., mixed sheep and cattle farming) and lack of riparian forest cover impacted negatively on occurrence at sampled sites. Also, if forests were positioned predominantly in lowland areas, banded kokopu occurrence declined with increasing distance to stream mouth. Koaro occurrence was positively influenced by catchment forest cover, high stream altitudes, and areas of no farming activity or mixed land uses. Intensive land uses, distance to stream mouth, and presence of banded kokopu negatively influenced koaro occupancy of stream reaches. Banded kokopu and koaro presence was predicted in 86.0% and 83.7% agreement, respectively, with field observations. We used the models to quantify the amount of stream reaches that would be of good, moderate, and poor quality, based on the probability of occurrences of the fish being greater than 0.75, between 0.75 and 0.5, or less than 0.5, respectively. Hindcasting using historical data on vegetation cover undertaken for one catchment, Pigeon Bay, showed they would have occupied most of the waterway before anthropogenic modification. We also modeled potential future scenarios to project potential fish distribution.  相似文献   

11.
Elevated levels of P in urban streams can pose significant water quality problems. Sources of P in urban streams, however, are difficult to identify. It is important to recognize both natural and anthropogenic sources of P. We investigated near-stream chemistry and land use factors on stream water P in the urbanizing Johnson Creek watershed in Portland, OR, USA. We sampled stream water and shallow groundwater soluble reactive P (SRP) and total P (TP) and estimated P flux at 13 sites along the main stem of Johnson Creek, with eight sites in urban land use areas and five sites in nonurban land use areas. At each site, we sampled the A and B horizons, measuring soil pH, water-soluble P, acid-soluble P, base-soluble P, total P, Fe, and Al. We found continuous input of P to the stream water via shallow groundwater throughout the Johnson Creek watershed. The shallow groundwater P concentrations were correlated with stream water P within the nonurban area; however, this correlation was not found in the urban area, suggesting that other factors in the urban area masked the relationship between groundwater P and stream water P. Aluminum and Fe concentrations were inversely correlated with shallow groundwater P, suggesting that greater P adsorption to Al and Fe oxides in the nonurban area reduced availability of shallow groundwater P. Using stepwise multiple regression analysis, however, we concluded that while riparian soil chemistry was related to stream water P, land use patterns had a more significant relationship with stream water P concentrations in this urbanizing system.  相似文献   

12.
Riparian areas of large streams provide important habitat to many species and control many instream processes — but is the same true for the margins of small streams? This review considers riparian areas alongside small streams in forested, mountainous areas of the Pacific Northwest and asks if there are fundamental ecological differences from larger streams and from other regions and if there are consequences for management from any differences. In the moist forests along many small streams of the Pacific Northwest, the contrast between the streamside and upslope forest is not as strong as that found in drier regions. Small streams typically lack floodplains, and the riparian area is often constrained by the hillslope. Nevertheless, riparian‐associated organisms, some unique to headwater areas, are found along small streams. Disturbance of hillslopes and stream channels and microclimatic effects of streams on the riparian area provide great heterogeneity in processes and diversity of habitats. The tight coupling of the terrestrial riparian area with the aquatic system results from the closed canopy and high edge‐to‐area ratio for small streams. Riparian areas of the temperate, conifer dominated forests of the Pacific Northwest provide a unique environment. Forest management guidelines for small streams vary widely, and there has been little evaluation of the local or downstream consequences of forest practices along small streams.  相似文献   

13.
Habitat valuation methods were implemented to support remedial decisions for aquatic and terrestrial contaminated sites at the East Tennessee Technology Park (ETTP) on the US Department of Energy (DOE) Oak Ridge Reservation in Oak Ridge, TN, USA. The habitat valuation was undertaken for six contaminated sites: Contractor's Spoil Area, K-901-N Disposal Area, K-770 Scrapyard, K-1007-P1 pond, K-901 pond, and the Mitchell Branch stream. Four of these sites are within the industrial use area of ETTP and two are in the Black Oak Ridge Conservation Easement. These sites represent terrestrial and aquatic habitat for vertebrates, terrestrial habitat for plants, and aquatic habitat for benthic invertebrates. Current and potential future, no-action (no remediation) scenarios were evaluated primarily using existing information. Valuation metrics and scoring criteria were developed in a companion paper, this volume. The habitat valuation consists of extensive narratives, as well as scores for aspects of site use value, site rarity, and use value added from spatial context. Metrics for habitat value were expressed with respect to different spatial scales, depending on data availability. There was significant variation in habitat value among the six sites, among measures for different taxa at a single site, between measures of use and rarity at a single site, and among measures for particular taxa at a single site with respect to different spatial scales. Most sites had aspects of low, medium, and high habitat value. Few high scores for current use value were given. These include: wetland plant communities at all aquatic sites, Lepomid sunfish and waterbirds at 1007-P1 pond, and Lepomid sunfish and amphibians at K-901 pond. Aquatic sites create a high-value ecological corridor for waterbirds, and the Contractor's Spoil Area and possibly the K-901-N Disposal Site have areas that are part of a strong terrestrial ecological corridor. The only example of recent observations of rare species at these sites is the gray bat observed at the K-1007-P1 pond. Some aspects of habitat value are expected to improve under no-action scenarios at a few of the sites. Methods are applicable to other contaminated sites where sufficient ecological data are available for the site and region.  相似文献   

14.
ABSTRACT: This study was conducted in the Klamath Basin of southwestern Oregon to evaluate the dependency of riparian plant communities upon infrequent flooding. Plant communities were sampled with 1 m2 quadrats along established cross‐sections. Data collected for purposes of hydraulic modeling included channel and floodplain elevations (i.e., cross‐sectional profiles) and water surface elevations associated with specific discharges. The elevational distribution of hydrophytic plant communities relative to modeled return periods provided the basis for establishing relationships between these variables for nine sites. Results indicate that, on average, a peak flow frequency of 4.6 years (range of 3.1 to 7.6 years) was needed to sustain riparian plant communities at seven of nine sites. At two sites, results indicated return periods of more than 25 years were needed; these results possibly were influenced by local geomorphic conditions (a narrow steep channel in one case and an incised channel in the other). Overall, these results tend to confirm a strong dependency of riparian plant communities on overbank flows.  相似文献   

15.
ABSTRACT: Increased riverine nitrogen (N) fluxes have been strongly correlated with land use changes and are now one of the largest pollution problems in the coastal region of the United States. In the present study, the Hydrological Simulation Program‐FORTRAN (HSPF) is used to simulate transport of N in the Ipswich River basin in Massachusetts and to evaluate the effect of future land use scenarios on the water quality of the river. Model results show that under a land use change scenario constructed with restrictions from environmental protection laws, where 44 percent of the forest in the basin was converted to urban land, stream nitrate concentrations increased by about 30 percent of the present values. When an extreme land use scenario was used, and 100 percent of the forest was converted to urban land, concentrations doubled in comparison to present values. Model simulations also showed that present stream nitrate concentrations might be four times greater than they were prior to urbanization. While pervious lands with high density residential land use generated runoff with the highest N concentrations in HSPF simulations, the results suggested that denitrification in the riparian zone and wetlands coupled with the hydrology of the basin are likely to control the magnitude of nitrate loads to the aquatic system. The simulation results showed that HSPF can predict the general patterns of inorganic N concentrations in the Ipswich River and tributaries. Nevertheless, HSPF has some difficulty simulating the extreme variability of the observed data throughout the main stem and tributaries, probably because of limitations in the representation of wetlands and riparian zones in the model, where N processes such as denitrification seem to play a major role in controlling the transport of N from the terrestrial system to the river reaches.  相似文献   

16.
ABSTRACT: Streambank protection projects are intended to prevent streambank erosion, thereby preventing streambank failure and maintaining a desirable channel alignment. Streambank erosion is a natural process of unaltered, dynamic river systems, and protection projects seek to impose stability on this natural system. The environmental impacts of such projects are primarily changes to terrestrial and aquatic habitats and to aesthetics. Adverse environmental impacts have been minimized and enhancement of existing habitat and aesthetics have been achieved through the development of new, innovative designs or modifications to existing designs and through use of construction and maintenance practices that promote habitat and aesthetics. Designs based on channel flow characteristics, e.g., revetments using a variety of structural materials, can result in preservation of wildlife habitat by reducing the use of structural protection by matching the erosion potential of flow at the bank with the protection capability of the materials used. Designs based on streambed stabilization prevent bank failure caused by bank undermining, result in preservation or establishment of streamside vegetation, and enhance aesthetics. Protection schemes that manage and preserve floodplains, berms, and riparian areas preserve the natural condition of the floodplain area. Designs based on deflection of erosive flows, e.g., dikes, minimize disturbance to the bank vegetation and create low-velocity aquatic habitats. Use of vegetation for bank protection is most effective when used in combination with structural components. Construction and maintenance practices can be scheduled and modified to minimize impacts to floodplain areas and to enhance wildlife habitat while preserving the integrity of the protection structure.  相似文献   

17.
Catchment riparian areas are considered key zones to target mitigation measures aimed at interrupting the movement of diffuse substances from agricultural land to surface waters. Hence, unfertilized buffer strips have become a widely studied and implemented "edge of field" mitigation measure assumed to provide an effective physical barrier against nitrogen (N), phosphorus (P), and sediment transfer. To ease the legislative process, these buffers are often narrow mandatory strips along streams and rivers, across different riparian soil water conditions, between bordering land uses of differing pollution burdens, and without prescribed buffer management. It would be easy to criticize such regulation for not providing the opportunity for riparian ecosystems to maximize their provision for a wider range of ecosystem goods and services. The scientific basis for judging the best course of action in designing and placing buffers to enhance their multifunctionality has slowly increased over the last five years. This collection of papers aims to add to this body of knowledge by giving examples of studies related to riparian buffer management and assessment throughout Europe. This introductory paper summarizes discussion sessions and 13 selected papers from a workshop held in Ballater, UK, highlighting research on riparian buffers brought together under the EU COST Action 869 knowledge exchange program. The themes addressed are (i) evidence of catchment- to national-scale effectiveness, (ii) ecological functioning linking terrestrial and aquatic habitats, (iii) modeling tools for assessment of effectiveness and costs, and (iv) process understanding enabling management and manipulation to enhance pollutant retention in buffers. The combined understanding led us to consider four principle key questions to challenge buffer strip research and policy.  相似文献   

18.
Most nonpoint source pollution problems on forest lands can be controlled by careful planning and management of specific critical areas. Critical areas include sites with high mass and surface erosion hazards, overland flow areas, and the riparian zone. Some guides for identifying critical areas are presented along with examples of land-use constraints that might be applied.  相似文献   

19.
Data collected from 172 sites in 20 major river basins between 1993 and 1995 as part of the US Geological Survey's National Water-Quality Assessment Program were analyzed to assess relations among basinwide land use (agriculture, forest, urban, range), water physicochemistry, riparian condition, and fish community structure. A multimetric approach was used to develop regionally referenced indices of fish community and riparian condition. Across large geographic areas, decreased riparian condition was associated with water-quality constituents indicative of nonpoint source inputs—total nitrogen and suspended sediment and basinwide urban land use. Decreased fish community condition was associated with increases in total dissolved solids and rangeland use and decreases in riparian condition and agricultural land use. Fish community condition was relatively high even in areas where agricultural land use was relatively high (>50% of the basin). Although agricultural land use can have deleterious effects on fish communities, the results of this study suggest that other factors also may be important, including practices that regulate the delivery of nutrients, suspended sediments, and total dissolved solids into streams. Across large geographic scales, measures of water physicochemistry may be better indicators of fish community condition than basinwide land use. Whereas numerous studies have indicated that riparian restorations are successful in specific cases, this analysis suggests the universal importance of riparian zones to the maintenance and restoration of diverse fish communities in streams.  相似文献   

20.
Recent research has emphasized the importance of riparian ecosystems as centers of biodiversity and links between terrestrial and aquatic systems. Riparian ecosystems also belong among the environments that are most disturbed by humans and are in need of restoration to maintain biodiversity and ecological integrity. To facilitate the completion of this task, researchers have an important function to communicate their knowledge to policy-makers and managers. This article presents some fundamental qualities of riparian systems, articulated as three basic principles. The basic principles proposed are: (1) The flow regime determines the successional evolution of riparian plant communities and ecological processes. (2) The riparian corridor serves as a pathway for redistribution of organic and inorganic material that influences plant communities along rivers. (3) The riparian system is a transition zone between land and water ecosystems and is disproportionately plant species-rich when compared to surrounding ecosystems. Translating these principles into management directives requires more information about how much water a river needs and when and how, i.e., flow variables described by magnitude, frequency, timing, duration, and rate of change. It also requires information about how various groups of organisms are affected by habitat fragmentation, especially in terms of their dispersal. Finally, it requires information about how effects of hydrologic alterations vary between different types of riparian systems and with the location within the watershed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号