首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Significant positive effects of 30 kg/ha of sulphur as manifested on yield and yield parameters of garlic were further carried over to following maize crop. Garlic bulb and foliage yield (6.3 and 0.8 t/ha respectively) obtained at 30 kg/ha of sulphur dose was significantly higher over without sulphur (3.7 and 0.5 t/ha respectively) as revealed from two years' pooled data. Similarly number of leaves/plant, weight of cloves/5bulbs and weight/100 cloves at the said sulphur dose significantly increased over without sulphur from 10.5 to 11.9, 98.3 to 141.2 g and from 159 to 217 g in respective manner Increase in grain yield of maize (residual effect) and in the economic yield of the whole cropping sequence (Bulb yield of garlic and grain yield of maize) i.e. direct plus residual effect at 30 kg/ha of sulphur dose over without sulphur was from 28.3 to 47.2 and from 71 to 116 q/ha in respective manner i.e. with significant differences. Sulphur use efficiencies (kg yield/kg sulphur) of these crops at 15, 30 and 45 kg/ha over no sulphur were 57, 43 and 32; 53, 63 and 6 and 160, 150 and 67, all in respective order An optimum sulphur dose of 44.3 kg/ha produced increased bulb yield (over no S) worth Rs 34892 over fertilizer cost giving B:C ratio of 31.5:1. Utilization of sulphur added at 15, 30 and 45 kg/ha rates was 24.1, 19.3 and 15.7% by the garlic crop; and 29.6. 24.5 and 9.02% by the following maize crop, thus, adding up to 54.1, 43.8 and 24.9% by the cropping sequence, all in respective order.  相似文献   

2.
A field experiment was conducted to study the impact of Sulphur(S) and Phosphorus (P) on yield, nutrient status of soil and their contents in pigeonpea (Cajanus cajan) during the year 2008-2009. Seven treatments were studied in Factorial Randomized Block Design with three replications. The treatment combinations were derived from three levels of sulphur (0, 20 and 40 kg S ha(-1)) and four levels of phosphorus (0, 25, 50 and 75 kg ha(-1)). The experimental soil was medium black, slightly calcareous, clay in texture and slightly alkaline in reaction. The results indicated a significant increase in grain yield (14.81 q ha(-1)) and straw yield (41.26 q ha(-1)) of pigeonpea after 20 kg S ha(-1) and 50 kg P2O5 ha(-1) treatment with common dose of nitrogen @ 30 kg ha(-1). The increase in grain and straw yield was 102.77 and 52.87% as compare to higher over control. Maximum number of pods plant(-1), maximum number of grains pod and test weight by this treatment was also observed as compared to control. Application of S and P improved soil fertility status and S alone did not influence P availability. Hence, in order to maintain the fertility status of the soil at high level, combine application of 20 kg S ha(-1) with 50 kg P2O5 ha(-1) is essential. The residual fertility status of soil is advocated for rainfed pigeonpea crop grown on vertisol in Vidarbha region.  相似文献   

3.
The agricultural non-point source pollution by nitrogen (N) and phosphorus (P) loss from typical paddy soil (whitish soil, Bai Tu in Chinese) in the Taihu Lake region was investigated through a case study. Results shown that the net load of nutrients from white soil is 34.1 kg ha(-1) for total nitrogen (TN), distributed as 19.4 kg ha(-1), in the rice season and 14.7 kg ha(-1) in the wheat season, and for total phosphorus (TP) 1.75 kg ha(-1), distributed as 1.16 kg ha(-1) in the rice season and 0.58 kg ha(-1) in the wheat season. The major chemical species of N loss is different in the two seasons. NH4-N is main the form in the rice season (53% of TN). NO3-N is the main form in wheat season (46% of TN). Particle-P is the main form in both seasons, (about 56% of TP). The nutrient loss varied with time of the year. The main loss of nutrients happened in the 10 days after planting, 64% of TN and 42% of TP loss, respectively. Rainfall and fertilizer application are the key factors which influence nitrogen and phosphorus loss from arable land, especially rainfall events shortly after fertilizer application. So it is very important to improve the field management of the nutrients and water during the early days of planting.  相似文献   

4.
We present soil surface nitrogen (N) budgets for the agricultural sector of India, calculated as inputs minus outputs over 21 agroecological zones (AEZ), for 2000–2001. Nearly 35.4 Tg N was input from different sources, with output from harvested crops of about 21.2 Tg N. Soil surface N balance for agricultural lands showed a surplus of about 14.4 Tg. Livestock manure constituted 44% of total inputs, followed by 32.5% from inorganic fertilizer, 11.9% from atmospheric deposition and 11.6% from N fixation. Though the N balance was negative in some states, due to aggregation of states in agroecological regions, all regions showed surplus N loads, with a range of about 19–110 kg/ha. The lowest loads were found for AEZ 17 in the Eastern Himalaya, with 19 kg/ha surplus, and the highest surplus N load in AEZ 7 with 111 kg/ha in Deccan plateau and the Eastern Ghats. Temporal trends in fertilizer consumption from 1950–2000 for India suggested a massive increase of ~47-fold, whereas production of major crops, rice, wheat and maize, increased nearly ~4.0-, 10- and 6-fold, respectively. Fertilizer consumption patterns were highly concentrated in Tamilnadu (204.6 kg/ha), Haryana (132.0 kg/ha) and Punjab (148.6 kg/ha). The paper addresses the role of agricultural intensification and its implications for water quality in agroecological regions of India.  相似文献   

5.
Sweet sorghum is adapted to the hot and dry climatic conditions and its tolerance to slat is moderately. It can be used for different products such as food, feed, fiber and fuel. This study was carried out to evaluate the effects, three nitrogen treatments, and three harvesting stages on the aconitic acid, fiber and invert sugar of three sweet sorghum cultivars in the experimental station and the results showed that the effects were significant. Among nitrogen treatments, application of 100 kg ha(-1) urea at planting and 200 kg ha(-1) urea at 4 leaf stage had the highest aconitic acid (0.26%) and invert sugar (3.44%). Among sweet sorghum cultivars, IS2325 and Vespa had the highest aconitic acid (0.26%) and invert sugar (3.86%), respectively Plant harvested at 4 leaf stage had the highest aconitic acid (0.26%) and the highest invert sugar (3.85%). Rio had higher fiber content than Vespa and IS2325 and all cultivars had the highest fiber content before chilling harvesting stage. In general, since high invert sugar and high aconitic acid interfere crystallization of sugar so, it is suggested that to plant Vespa, apply urea 100 kg ha(-1) urea at planting, 100 kg ha' urea at 4 leaf stage and 100 kg ha(-1) urea at booting and harvested before chilling that had lowest aconitic acid and invert sugar. Thereby, it is recommended to plant Vespa, apply urea 100 kg ha(-1) urea at planting, 100 kg ha(-1) urea at 4 leaf stage and 100 kg ha(-1) urea at booting and harvested at 4 leaf stage that had the highest aconitic acid.  相似文献   

6.
The spatial distribution patterns of the nitrogen and phosphorus input/intake amounts in crop production within two small basins are examined, based upon a cropping unit distribution map that is obtained from remote sensing data analysis. Firstly, we examine the availability and suitability of approaches to the spatial distribution analysis of cultivation patterns classified from material flow characteristics of crop production using seasonal remote-sensing data. Secondly, material flow units in crop production are grouped according to the cultivation patterns obtained from the remote-sensing data analysis. Consequently, the spatial patterns of the amounts of both nitrogen and phosphorus inputs/intakes through crop production on farmland are examined and their spatial distribution maps are prepared according to the material flow units. In addition, we developed a nitrogen flow and runoff model and the model is simulated based on the examination of the results of spatial distribution patterns of the material flow units. The annual nitrogen runoff from small catchments, where various crops are cultivated, varies from 2.7 kg ha(-1) year(-1) to 108 kg ha(-1) year(-1) and the annual balanced losses of nitrogen in small catchments varied from -30 kg ha(-1) year(-1) to 101 kg ha(-1) year(-1). Also, the monthly changes in soil nitrogen of each material flow unit is estimated at -55 kg ha(-1) as a maximum decrease and 114 kg ha(-1) as a maximum increase. These results indicate that the spatial distribution patterns of nutrient input and intake through agricultural activities should be considered when analyzing the material flows and nutritient movement in soil-water systems in rural areas for watershed environmental control and regional agricultural management.  相似文献   

7.
The monitoring of chemical properties, including heavy metals, in soils is necessary if better management and remediation practices are to be established for polluted soils. The National Institute of Agricultural Science and Technology initiated a monitoring study that investigated fertility and heavy metal contents of the benchmarked soils. The study covered paddy soils, upland soils, and horticultural soils in the plastic film houses, and orchard soils throughout the Korea from 1990 to 1998. Likewise, 4047 samples of paddy and 2534 samples of plastic house in 1999 and 2000 were analyzed through the Soil Environment Conservation Act. Soil chemical properties such as pH, organic matter, available phosphate and extractable calcium, magnesium and potassium contents, and heavy metal contents such as cadmium, copper, lead, zinc, arsenic, mercury, and cobalt contents were analyzed. The study showed that the average contents of organic matter, available phosphate, and extractable potassium rapidly increased in plastic house soils than in upland or paddy soils. Two kinds of fertilizer recommendation systems were established for the study: the standard levels by national soil average data for 77 crops and the recommendation by soil test for 70 crops. Standard nitrogen fertilizer application levels for cereal crops changed from 94 kg/ha in 1960s, 99 kg/ha in 1970s, 110 kg/ha in 1980s to 90 kg/ha in 1990s. The K2O-fertilizer also changed from 67 kg/ha in 1960s, 76 kg/ha in 1970s, 92 kg/ha in 1980s, and only 44 kg/ha in 1990s. In rice paddy fields, the average contents of Cd, Cu, Pb, and Zn in surface soils (0-15 cm depth) were 0.11 mg kg(-1) (ranged from 0 to 1.01), 4.70 mg kg(-1) (0-41.59), 4.84 mg kg(-1) (0-66.44), and 4.47 mg kg(-1) (0-96.70), respectively. In the uplands, the average contents of Cd, Cu, Pb, Zn, and As in surface soils (0-15 cm depth) were 0.135 mg kg(-1) (ranged from 0 to 0.660), 2.77 mg kg(-1) (0.07-78.24), 3.47 mg kg(-1) (0-43.00), 10.70 mg kg(-1) (0.30-65.10), and 0.57 mg kg(-1) (0.21-2.90), respectively. In plastic film houses, the average contents of Cd, Cu, Pb, Zn, and As in surface soil were 0.12 mg kg(-1) (ranging from 0 to 1.28), 4.82 mg kg(-1) (0-46.50), 2.68 mg kg(-1) (0-46.50), 31.19 mg kg(-1) (0.19-252.0), and 0.36 mg kg(-1) (0-4.98), respectively. In orchard fields, the average contents of Cd, Cu, Pb, Zn, As, and Hg in surface soils (0-20 cm depth) were 0.11 mg kg(-1) (ranged from 0-0.49), 3.62 mg kg(-1) (0.03-45.30), 2.30 mg kg(-1) (0-27.80), 16.60 mg kg(-1) (0.33-105.50), 0.44 mg kg(-1) (0-4.14), and 0.05 mg kg(-1) (0.01-0.54), respectively. For polluted soils with over the warning content levels of heavy metals, fine red earth application, land reconsolidation and soil amelioration such as lime, phosphate, organic manure, and submerging were recommended. For the countermeasure areas, cultivation of non-edible crops such as garden trees, flowers, and fiber crops; land reformation; and heavy application of fine red earth (up to 30 cm) were strongly recommended. Land use techniques should be changed to be harmonious with the environment to increase yield and income. Soil function characteristics should be taken into account.  相似文献   

8.
在Pb污染土壤中施用磷肥是降低Pb有效性的有效方法.在低磷或高Pb胁迫下,植物根际的一系列变化将促进植物对磷的吸收或对Pb毒性的降低,但低磷胁迫下植物对土壤Pb有效性的影响研究不多.为探讨Pb污染低磷土壤上施用磷肥对Pb有效性、植物吸收Pb的影响及黑麦草(LoliumperenneL.)对土壤Pb有效性的影响,设置0、500和1000mg·kg-13个Pb用量和0、2729mg·kg-1两个普通过磷酸钙磷肥用量,种植黑麦草,0和1000mg·kg-1Pb下设置不种植植物的对照的盆栽试验,植物生长48d后收获,测定植物地上部和根系产量、长度、Pb浓度及土壤DTPA-Pb含量.结果表明,施用磷肥后植物产量和地上部长度增加、根冠比、根系长度和Pb浓度减小,500mg·kg-1Pb用量时,未施用磷肥和施用磷肥时植物产量分别为0.37和1.70g·pot-1,1000mg·kg-1Pb用量时这两个数值分别为0.24和1.50g·pot-1,500mg·kg-1Pb用量时,植物产量与未施Pb处理(产量为0.75g·pot-1)差异显著(p<0.05);施用磷肥后,地上部吸收的Pb的比例和植物体吸收的Pb数量均增加.1000mg·kg-1Pb用量下,植物产量、地上部长度均小于500mg·kg-1Pb用量处理时的水平,而土壤DTPA-Pb浓度、植物Pb浓度、Pb吸收量均大于500mg·kg-1Pb处理,表明2729mg·kg-1普通过磷酸钙用量并不能完全抵消1000mg·kg-1Pb对植物生长的抑制作用.施用磷肥降低了土壤DTPA-Pb含量,但500mg·kg-1Pb用量时降低效果不显著(p>0.05).0mg·kg-1Pb用量下,种植植物的处理土壤DTPA-Pb含量比未种植植物处理高54.3%;1000mg·kg-1Pb处理时,种植植物处理土壤DTPA-Pb含量比未种植植物平均低18.5%.以上结果表明,在0mg·kg-1Pb用量下,植物生长受到了一定程度的磷胁迫.在磷胁迫下,种植植物提高了土壤Pb有效性,而在1000mg·kg-1Pb用量下,不管是否施用磷肥,种植植物均降低了土壤Pb有效性.本研究结果表明,在低磷和高Pb胁迫下,施用水溶性磷肥可降低土壤Pb有效性,促进黑麦草生长,促进Pb向植物地上部转移;在低磷胁迫且无Pb污染条件下,黑麦草对土壤Pb的有效性表现为促进;在高Pb胁迫下,不管是否施用磷肥,黑麦草均可降低土壤Pb有效性.  相似文献   

9.
Six ponds of age 3 were selected 45 km north from Suzhou in the Tailake region, and research conducted on nitrogen and phosphorus cycling in P. vannanmei (Penaeus vannanme) ponds and M. nipponense (Macrobrachium nipponense) hatchery ponds under normal management. Two treatments each had three replications. The results confirmed that feed was the major path of nitrogen and phosphorus input, each accounted for 61.24% (193.81 kg ha(-1)) and 81.08% (45.20 kg ha(-1)) of the total nitrogen and phosphorus input for P. vannanme ponds; the values for M. nipponense ponds were 43.93% (86.31 kg ha(-1)) and 57.67% (14.61 kg ha(-1)), respectively. Water pumped into ponds contributed on average 83.57 kg ha(-1) nitrogen and 8.48 kg ha(-1) phosphorus for P. vannanmei ponds, and 87.48 kg ha(-1) nitrogen and 7.00 kg ha(-1) phosphorus for M. nipponense hatchery ponds. Shrimp harvest recovered 102.81 kg ha(-1) nitrogen (32.94% of the total nitrogen input) and 7.94 kg ha(-1) phosphorus (14.23% of the total phosphorus input) for P. vannanme ponds; and 43.94 kg ha(-1) nitrogen and 4.46 kg ha(-1) phosphorus for M. nipponense hatchery ponds. The sum of nitrogen losses through volatilization, denitrification and sedimentation was 173.62 and 122.39 kg ha(-1), 54.86% and 62.29% of the total nitrogen input for P. vannanme ponds and M. nipponense hatchery ponds, respectively. Sediment accumulated 41.46 and 14.63 kg ha(-1) phosphorus, 74.37% and 64.85% of the total phosphorus input for P. vannanm ponds and M. nipponense hatchery ponds. Draining and seeping caused 40.06 kg ha(-1) nitrogen (12.66% of total nitrogen input) and 6.36 kg ha(-1) phosphorus (11.40% of total phosphorus input) loss to the surrounding water from P. vannanme ponds in 114 days; 30.14 kg ha(-1) nitrogen (15.34% of the total input) and 4.45 kg ha(-1) phosphorus (17.57% of the total input) to channel water from M. nipponense hatchery ponds in 87 days, respectively. Countermeasures for sustainable pond management include improving feeds and feeding, sediment treatments, machine aerating, chemicals with no pollution, and integrated fish-shrimp cultivation. Management of water resources for pond and methods to reduce nitrogen and phosphorus loading into surrounding water from drainage are elucidated.  相似文献   

10.
Interrelations exist in the terrestrial ecosystems between the plant type and characteristics of nutrient uptake. Annual net nitrogen mineralization in soils of different plant communities in the high altitude zone of Spil mountain located in the Mediterranean phytogeographical region of Turkey was investigated throughout one year by field incubation method. Seasonal fluctuations resulting from field incubation were markedly higher in autumn and spring than summer. These are mainly associated with the changes in soil moisture being at minimum in the Mediterranean summer. A significant correlation was developed between the net Nitrate (kg NO3(-)-N ha week(-1)) production and soil water content (p<0.05; r = 0.316 in soil of 0-5 cm; r = 0.312 in soil of 5-15 cm). The results showed that the annual productivity of nitrogen mineralization shows different values depending on communities. Annual net ammonium (NH4(+)-N) production in the soils of each community was negatively estimated. However annual net nitrate (NO3(-)-N) production (0-15 cm) was higher in grassland (27.8 kg ha y(-1)) and shrub (25.0 kg ha y(-1)) than forest (12.4 kg ha y(-1)) community. While annual net N(min) values were close to each other in grassland (14.5 kg ha y(-1)) and shrub (14.1 kg ha y(-1)), but negative in forest community (-3.6 kg ha y(-1)). The reasons for these differences are discussed.  相似文献   

11.
Multiple cropping (i.e. intercropping or mixed cropping) plays an important role in agriculture because of the effective utilization of resources, significantly enhancing crop productivity compared with that of monocultured crops. The study was planed to assess the effect of various concentrations (00, 30, 60, 90 kg ha(-1)) of phosphorous on the biochemical composition of grains of Hordeum vulgare L. (NDB-1050) in mixed cropping system with Chickpea. Phosphorous is an essential ingredient for plants to convert atmospheric N (N2) into an ammonium (NH4) as a useable form. The available nitrogen content was found more in the year 2006 (131 kg ha(-1)) than year 2005 (105 kg ha(-1)). The results of available nitrogen content were showed that the mixed cropping system enhances N fixation process because phosphorous also influences nodule development through its basic functions in plants as an energy source. Reducing, non reducing and total sugar content of H. vulgare L. were influenced by changes in the phosphorous doses. Maximum protein (13.43%) was obtained at 60 kg P2O5 ha(-1) during the year 2006. Lysine, tryptophan and methionine content were found maximum in year 2006, respectively. Total mineral content of grains of plant (0.99 g 100g(-1)) was found maximum by the application of 60 kg P2O5 ha(-1). It is possible that there was an increase in the soil N made available by the leguminous chickpea species, and this could be another reason why there was an increase in Hordeum vulgare L. shoot mass per plant with intercropping with chickpea.  相似文献   

12.
主要研究了珠江口红树林硫的累积和循环特点,并探讨其对土壤中硫累积的影响.结果表明,珠江口五个红树群落硫的贮存量平均为170.42kg/hm2;在群落硫元素的生物循环中,年存留量平均为17.601kg/hm2,年归还量平均为35.603kg/hm2,年吸收量平均为53.204kg/hm2,周转期为3-8a,富集率均大于1.选定浅海沉积物的平均含硫量作为林下土壤成土母质的本底含硫量,估算红树植物生长后土壤含硫量的变化,并与群落硫的年归还量作比较.红树林对其林下土壤硫的累积作用有两方面,一是对海水硫的生物选择吸收与归还,二是为海水中的SO4(2-)为黄铁矿提供有机还原剂和嫌气微生物的能源,尤以后者的作用更重要.  相似文献   

13.
通过室内模拟试验,探讨不同水分条件下灌淤土施用不同氮肥后硝态氮随时间的变化规律,并在田间条件下,测定不同氮肥形态和数量对土壤硝态氮含量的影响。灌淤土施氮后土壤硝态氮含量变化与土壤含水量及氮肥种类有关。施肥9d后,土壤中的硝态氮迅速增加;土壤水分低于田间持水量的50%或水分过饱和都明显影响灌淤土的硝化作用;施用大颗粒尿素产生的硝态氮最少,淋失或流失的几率小。灌淤土土体中硝态氮的残留与施氮种类及数量有直接关系。施肥使土壤表层硝态氮显著增加,施用大颗粒尿素尤为突出,但施大颗粒尿素后,60cm土体中残留的硝态氮总量最少。随着施氮量增加,表层土体中硝态氮含量增加。合理的施肥水平一般不会造成硝态氮的大量累积,而过量施氮则导致硝态氮明显积累,对通气透水性好的灌淤土,容易造成硝态氮淋失。  相似文献   

14.
硅肥施用对重金属污染土壤甘蔗镉吸收的影响研究初探   总被引:2,自引:0,他引:2  
长期采用受铁矿尾矿水污染的河水进行灌溉的农田,其土壤存在一定重金属镉污染,且土壤酸化严重,有效硅活性低。甘蔗是需硅量较大的植物,因此在甘蔗种植过程中施用碱性硅肥既可补充硅营养又可通过硅肥控制镉的吸收。本试验通过硅肥不同施用量及基肥、基肥+追肥的施用方式的比较,结果表明:在甘蔗种植中一次性施用硅肥1500 kg·hm-2,可以使土壤中活性较高的弱酸提取态镉占镉总量的比例从38.45%下降到32.51%,而甘蔗不能利用的残渣态镉的占比从11.19%提高到14.78%;硅肥分为基肥与追肥两次施用的方式,其对土壤镉的形态的影响也存在相似的规律,且变化趋势更加显著,弱酸提取态镉占比从40.93%下降到35.47%,降幅更加显著;同样残渣态镉则随着硅肥施用量的增加而增加,其占比从16.26%增加到22.66%;施用硅肥能有效降低甘蔗汁中镉的含量,从一次性作为基肥施用的结果来看,每公顷施用375~1500 kg硅肥,其蔗汁中镉含量随施肥量增加而下降,从168.54μg·L-1降至57.87μg·L-1,降幅为28.26%~60.30%;蔗渣中镉含量也有相似的变化趋势,从468.36μg·kg-1降至377.77μg·kg-1,降幅为7.86%~19.34%;采用基肥+追肥施用硅肥,无论是蔗汁还是蔗渣,其镉的含量同样随硅肥施用量的增加而下降,蔗汁镉含量的降幅更大,最高可降81.18%,从而达到降低甘蔗汁及蔗渣中镉含量水平的目的。  相似文献   

15.
不同农作制对四川紫色丘陵区地表径流氮、磷流失的影响   总被引:7,自引:0,他引:7  
以小麦(Triticum aestivum)-玉米(Zea mays)轮作制为基础,通过在仁寿县建立18个径流小区监测试验,对4种不同农作制与4种施肥水平下各小区径流水样中的氮、磷含量进行了分析.探讨了四川紫色丘陵区坡耕地氮、磷流失系数及其影响因素.结果表明,氮流失总量随施氮量而增加,在增量施肥+横坡种植方式下最大,为0.326 kg·hm~(-2);氮流失总量和流失系数在优化施肥+横坡种植+秸秆覆盖+植物篱方式下最小,其流失总量为0.270kg·hm~(-2),流失系数为0.009%0磷流失总量和流失系数在不同处理方式下总体上虽较为接近,但增量施肥+横坡种植方式下磷的流失总量最大,为0.020kg·hm~(-2);而优化施肥+横坡种植+秸秆覆盖+植物篱最小,为0.015kg·hm~(-2).研究表明,优化施肥、横坡种植、秸秆覆盖和植物篱拦蓄地表径流作用明显,是遏制耕地氮、磷流失的有效途径.  相似文献   

16.
Selected insecticides, Chloropyrifos, Dichlorovos, Methyl parathion, Phorate and Methomyl, at concentrations ranging from 0 to 10 kg ha(-1) were tested for their non-target effects towards activity of phosphatases in two soils. In soil samples receiving 2.5 kg ha(-1) of the insecticides Dichlorovos, Phorate and Methomyl and also in soil samples receiving 5.0 kg ha(-1) of the insecticides, Chloropyrifos and Methyl parathion, the activity of phosphatase was significantly more at 20 days period of incubation and decreased progressively with increasing period of incubation.  相似文献   

17.
In this study, influence of slope position (south-facing vs. north-facing), species type and sampling time on fine (0-2 mm), small (2-5 mm) and coarse (5-10 mm) root biomass and carbon storage of oriental spruce (Picea orientalis) and oriental beech (Fagus orientalis) were investigated. Mean total root biomass of oriental spruce was 20160 kg ha(-1) in south-facing slopes and 17140 kg ha(-1) in north-facing slopes. Mean total belowground C storage of oriental spruce was 7861 kg ha(-1) in south-facing slopes and 6840 kg ha(-1) in north-facing slopes. Similarly, biomass and C storage of oriental beech were 17190 and 6690 kg ha(-1) in south-facing slopes, and 13260 and 5200 kg ha(-1) in north-facing slopes, respectively. Oriental spruce had significantly higher fine root biomass than did oriental beech in south-facing slopes. Fine root biomass was significantly higher in fall than in spring in south-facing slopes.  相似文献   

18.
Increases in the deposition of anthropogenic nitrogen (N) have been linked to several terrestrial ecological changes, including soil biogeochemistry, plant stress susceptibility, and community diversity. Recognizing the need to identify sensitive indicators of biotic response to N deposition, we empirically estimated the N critical load for changes in alpine plant community composition and compared this with the estimated critical load for soil indicators of ecological change. We also measured the degree to which alpine vegetation may serve as a sink for anthropogenic N and how much plant sequestration is related to changes in species composition. We addressed these research goals by adding 20, 40, or 60 kg N x ha(-1) x yr(-1), along with an ambient control (6 kg N x ha(-1) x yr(-1) total deposition), to a species-rich alpine dry meadow for an eight-year period. Change in plant species composition associated with the treatments occurred within three years of the initiation of the experiment and were significant at all levels of N addition. Using individual species abundance changes and ordination scores, we estimated the N critical loads (total deposition) for (1) change in individual species to be 4 kg N x ha(-1) yr(-1) and (2) for overall community change to be 10 kg N x ha(-1) x yr(-1). In contrast, increases in NO3- leaching, soil solution inorganic NO3-, and net N nitrification occurred at levels above 20 kg N x ha(-1) x yr(-1). Increases in total aboveground biomass were modest and transient, occurring in only one of the three years measured. Vegetative uptake of N increased significantly, primarily as a result of increasing tissue N concentrations and biomass increases in subdominant species. Aboveground vegetative uptake of N accounted for <40% of the N added. The results of this experiment indicate that changes in vegetation composition will precede detectable changes in more traditionally used soil indicators of ecosystem responses to N deposition and that changes in species composition are probably ongoing in alpine dry meadows of the Front Range of the Colorado Rocky Mountains. Feedbacks to soil N cycling associated with changes in litter quality and species composition may result in only short-term increases in vegetation N pools.  相似文献   

19.
氮促进亚种间杂交稻的分蘖和对磷、钾的吸收,钾也能促进氮、磷的吸收,但对分蘖似有抑制的趋势。稻株各生育期氮、磷、钾含量以分蘗盛期最高。随后迅速下降,至幼穗形成期下降速率减缓。齐穗后,累积在茎、叶的氮、磷大部分向穗部转移,而钾则很少运送到穗部。每生产100kg稻谷约需吸收1.71kg N、0.77kg P_2O_5、2.30kg K_2O,三者比例为1:0.45:1.35。氮、钾配合施用的增产效果大于单施氮或钾的效果;在施用量为82.5kg N ha~(-1)和75.0kg K_2O ha~(-1)的基础上,增施氮肥或钾肥,其增产效果相近,表明在施用适量氮肥的前提下,亚种间杂交稻对钾的反应甚为敏感。  相似文献   

20.
This is the first study in the Delhi region that assesses the critical load capacity of soil systems with respect to the atmospheric deposition and air quality, from July to October in 2012. Trend analysis of NO2 and SO2 in Delhi, using the Central Pollution Control Board (CPCB) data, showed interesting patterns matching with the trends in vehicular load in the city. This was followed by the calculation of the critical load of atmospheric acidity for sulphur and nitrogen in order to check the vulnerability of the soil systems in Delhi. Here, the steady state mass balance approach was majorly applied and the study conducted in the Agra region was taken as reference. The calculated values of critical loads of sulphur (225–275?eq/ha/yr) and nitrogen (298–303?eq/ha/yr), for the soil system in Delhi, were calculated with respect to three plant species, namely Anjan grass, Hibiscus and Black siris. The present loads of sulphur (PL(S)?=?26.40?eq/ha/yr) and nitrogen (PL(N)?=?36.51?eq/ha/yr) were found to be much lower than their respective critical loads. From the results, it can be concluded that the present loads of atmospheric acidic deposition in Delhi region do not pose any danger of acidification of soil system because it is countered by buffering capacity of soil generated dust. However, considering the pace at which the city is growing, it is likely that in coming decades, the present load will increase and thus the values evaluated in this study are likely to serve as an important reference for future assessment of the pollution scenario in the city.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号