首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
在室温条件下,分别选用聚合氯化铝(PAC)、聚合氯化铝铁(PAFC)及三氯化铁(FeCl3)对玉米深加工废水进行混凝实验。综合考虑各种混凝剂对磷、COD以及SS的去除效果,最终选取PAC作为混凝剂。采用PAC和聚丙烯酰胺(PAM)作为复合混凝剂,对其去除效果做进一步研究,并确定了最佳投加量及pH值。实验结果表明,在PAC投加量25mg/L,PAM投加量0.5 mg/L,pH为8条件下,混凝效果最佳。磷、COD、SS去除率可分别达到90.1%、53.3%和88.2%,对应的出水质量浓度分别为0.41、26.8和2 mg/L。  相似文献   

2.
制浆造纸废水生化出水的混凝处理研究   总被引:1,自引:0,他引:1  
研究了硫酸铝和三氯化铁对制浆造纸废水生化出水的处理效果.研究发现,不调节原水pH值,硫酸铝投加量为600 mg/L或三氯化铁投加量为300mg/L时,混凝后废水的COD<150 mg/L,色度<50倍,出水均符合现阶段排放标准.混凝剂比较发现,在最佳反应条件下,2种混凝剂的处理效果相当,但硫酸铝混凝的成本低于三氯化铁....  相似文献   

3.
混凝法深度处理废纸造纸废水实验研究   总被引:4,自引:2,他引:2  
按照烧杯实验方法,重点考察了pH值、混凝剂种类和投加量等因素对生化处理后废纸造纸废水混凝处理效果的影响。实验结果表明:PAC作为混凝剂,PAM作为助凝剂联合处理该废水时,能够取得较好的去浊率、SS、色度和COD去除率。混凝沉淀最佳运行条件为:废水pH为6.5,含铝量10%的PAC和2 g/L的PAM投加量分别为1 mL/L、0.5 mL/L,浊度从35 NTU降低到1 NTU,去除率达97.1%,SS从30 mg/L降低到7 mg/L,去除率达76.7%,色度从64倍降低到18倍,去除率达71.9%,COD从95 mg/L降低到44.8 mg/L,去除率可达52.8%,取得了较好的去除效果,达到国家造纸废水新排放标准限值。  相似文献   

4.
氧化-混凝法处理碱性高砷废水的实验研究   总被引:2,自引:0,他引:2  
对碱性高砷废水的处理进行了研究 ,针对常规混凝法除砷的缺点提出了氧化 混凝工艺。结果表明 ,用氧化 混凝工艺除砷效果显著 ,废水经处理后砷含量低于 0 5mg/L ,符合国家排放标准。氧化 混凝除砷的最佳工艺条件为 :pH值为 6— 7,H2 O2 用量为 2 5 % ,氧化时间为 10min ,Fe2 (SO4) 3 用量为 2 5g/L ,PAM用量为 11 2 5mg/L。  相似文献   

5.
为降低分流制雨水中悬浮颗粒物及其他污染物浓度,减轻城市景观河道的水体富营养化程度,对取自泵站的雨水进行混凝沉淀工艺优化实验。以PAC为混凝剂,采用Zeta电位仪、激光粒度仪和iPDA在线监测技术对混凝过程进行监测,考察了混凝剂投加量和水力搅拌速度对絮体形成和分流制雨水处理效果的影响,结果表明,混凝剂投加量和混合水力搅拌速度直接影响絮体Zeta电位和聚沉特性;混合搅拌速度控制混凝反应速率,絮凝速度梯度影响絮体形成粒径。FI曲线特征参数对控制混凝工艺具有指导意义。PAC投加量为35 mg/L,混合阶段搅拌速度800 r/min,搅拌30 s,絮凝阶段采用150、108和60 r/min的转速各自搅拌5 min,沉后水中剩余颗粒总数最少,浊度、COD和总磷去除效果最佳。  相似文献   

6.
针对焦化废水二级生化处理出水COD、色度和浊度无法达标的问题,实验研究了异相Fenton试剂催化氧化法和混凝沉淀法以及二者联合深度处理焦化废水的效果,分别探讨了H2O2、FeOOH投加量、初始pH,混凝剂投加量及种类对COD去除的影响,确定了最佳运行条件,采用GC-MS分析了联合工艺对废水中有机物的去除规律。异相Fenton试剂催化氧化静态实验研究表明,当H2O2(10%)投加量为2 mL/300 mL,FeOOH投加量为3 g/L,初始pH为4~6之间,处理效果最佳;混凝沉淀实验中最佳的混凝剂为聚丙烯酰胺阳离子,最佳投加量为8 mg/L。异相Fenton试剂催化氧化-混凝沉淀联合工艺深度处理焦化废水,出水COD基本在90 mg/L左右,浊度为0.8NTU左右,色度为40度以下,满足国家污水综合排放二级标准(GB8978-1996)。GC-MS分析显示,联合工艺能有效减少废水中有机物的种类和浓度,并将废水中长链大分子化合物和杂环化合物分解为短链的小分子化合物,构成联合工艺出水COD的主要是小分子有机物,尤其是卤代烷烃含量较高。  相似文献   

7.
对碱性高砷废水的处理进行了研究,针对常规混凝法除砷的缺点提出了氧化一混凝工艺。结果表明,用氧化混凝土工艺除砷效果显著,废水经处理后砷含量低于0.5mg/L,符合国家排放标准,氧化-混凝除砷的最佳工艺条件为:pH值为6-7,H2O2用量为2.5%,氧化时间为10min,Fe2(SO4)3用量为2.5g/L,PAM用量为11.25mg/L。  相似文献   

8.
水厂废水的综合处理与回用是我国供水行业的新趋势和节水目标所在,采用强化混凝技术进行水厂排泥废水的深度处理。通过混凝剂筛选实验和有机物表征确定最佳混凝剂为高效聚合铝(HPAC),适宜投加量为650 mg/L。当混凝剂HPAC投加量为650 mg/L时,对COD、TOC、浊度和色度的去除率分别为82.5%、89.8%、95%和92.5%,相应的出水值分别为58 mg/L、8.46 mg/L、2.35 NTU、13度,COD满足《污水综合排放标准》(GB 8978-1996)的要求(COD≤100 mg/L),同时实验结果显示聚合氯化铝(PAC)、HPAC、三氯化铁(FeCl3)主要去除分子量处于>1 300 Da范围的有机物,对分子量处于744~1 300 Da之间的有机物去除有限。  相似文献   

9.
以克浅十污水处理站原水为研究对象,采用混凝沉淀工艺,探讨优选出的复配混凝剂投加量、助凝剂投加量及静置时间对原水中浊度和总铁去除效果的影响.应用Box-Behnken中心组合实验和响应面分析法,建立混凝剂对处理原水的二次多项式数学模型,确定了混凝沉淀去除原水浊度和总铁的优化工艺参数分别为:复配混凝剂投加量为152.15 mg/L、143.84 mg/L,助凝剂投加量为4.14 mg/L、4.32 mg/L,静置时间为11.77 min、11.22 min.在此工艺条件下回归方程得到的浊度和总铁的去除率预测值与实验值接近,且拟合性良好,误差介于3%~5%之间.通过均值内插法,对比浊度和总铁的多元二次回归方程,推导得出的2组最佳工艺条件均能满足浊度和总铁的去除要求.  相似文献   

10.
硫酸钛混凝去除无机砷(Ⅲ)的效能   总被引:1,自引:0,他引:1  
使用硫酸钛作为混凝剂,研究了混凝去除As(Ⅲ)过程中溶液pH值、混凝剂投加量、砷的初始浓度以及阴离子对除砷效果的影响.硫酸钛的水解沉淀物颗粒等电点为pH =5;当pH =6时,水解沉淀物的粒径最大.在pH =5 ~8范围内,As(Ⅲ)的去除率高且基本稳定;而沉淀物颗粒Zeta电位降低较大.说明水解沉淀物Zeta电位对As(Ⅲ)的去除影响不大.混凝剂投加量为2.5 ~10 mg/L时,As (Ⅲ)的去除率随投加量的增加而显著增加;混凝剂投加量大于15 mg/L时,As(Ⅲ)去除率随混凝剂投加量的增加变化趋于平缓.水中阴离子(硅酸根和磷酸根离子)的存在会降低混凝对As (Ⅲ)的去除效率.  相似文献   

11.
低浓度含砷污酸处理工艺的比较研究   总被引:1,自引:0,他引:1  
郭莉  崔洁  陈东  杜冬云 《环境工程学报》2013,7(3):1005-1009
比较研究了石灰中和法和石灰-铁盐法对硫化后含低浓度砷(20~50 mg/L)污酸的处理效果。结果表明,单纯采用石灰法,废水难以达标排放;而两段石灰-铁盐(氯化铁)法满足达标排放的同时,一段及二段沉淀物的浸出液中砷、镉、铜、铅和锌含量均低于危险废物鉴别标准要求(GB 5085.3-2007);其最优工艺参数为一段终了pH=2,反应时间为2 h,二段终了pH=8、Fe/As=8、反应时间为60 min、氧化剂投加量(Ca(ClO)2/As)为6∶1;正交实验结果中各参数对铁盐除砷效果影响顺序为终了pH>反应时间>Fe/As>氧化剂投加量。  相似文献   

12.
以城市污水处理厂原水为实验水样,研究了液体FeCl3混凝剂中亚铁含量对其混凝效果的影响。结果表明,液体FeCl3混凝剂中亚铁的含量与其对污水中总磷和COD的去除效果呈非线性相关性,当FeCl3中亚铁含量为25%时,16.0 mg/L的投加量即可使上清液COD降至195 mg/L,去除率达56.7%,总磷降至1.7 mg/L,去除率达70.7%;当FeCl3中亚铁含量继续降低至0.4%时,COD、总磷的去除率仅提高1.1%和1.3%。因此从性价比来讲,FeCl3混凝剂用于污水厂原水混凝时,可适当放宽产品质量标准中亚铁含量限值的规定,有利于降低氯化铁混凝剂的生产成本。  相似文献   

13.
采用微电解-混凝处理抛光液废水,考察了铁水比、进水pH值、铁炭比、振荡时间对微电解处理效果的影响.通过单因素实验与正交实验找出了影响较大的因素,进水pH、铁水比、振荡时间都对去除率影响较大.最佳微电解条件为铁水比为0.375,进水pH为3,铁炭比为1∶1,振荡时间为150 min.同时,当混凝剂硫酸亚铁的投加量为160 mg/L、三氯化铁的投加量为20 mg/L时,COD去除率可达到83.8%,金属铜离子去除率可达到96%.  相似文献   

14.
采用混凝沉淀法对酒精废水进行深度处理实验及放大应用研究。结果表明,混凝剂种类、投加量、pH值及沉降时间对处理效果都起着重要作用。通过正交实验确定最优化组合,即聚合硫酸铝投加量为60mg/L,pH为8.0左右,沉降时间为90min条件下,废水COD去除率达41.91%;浊度去除率达46.15%;NH3-N去除率达49.61%。混凝沉淀法处理酒精废水可有效减轻后续膜处理工艺负荷,有助于提高回用水质。  相似文献   

15.
针对神经节苷脂生产废水蛋白质含量高的特点,研究了等电点沉淀或混凝沉降预处理、厌氧好氧生物处理、化学沉淀和类Fenton氧化后处理组合工艺处理神经节苷脂生产废水的技术。结果表明,神经节苷脂生产废水的等电点在pH=2.2左右,通过等电点沉淀可去除30%以上的COD,但等电点时蛋白质的沉淀速度非常慢;用聚合硫酸铁对神经节苷脂生产废水进行混凝预处理的最适工艺条件是:pH=7~7.5,聚合硫酸铁用量=500~750 mg/L。在优化条件下,混凝预处理可以使神经节苷脂生产废水的COD从27 000 mg/L左右降到13 000 mg/L左右。混凝预处理后的神经节苷脂生产废水经48 h厌氧和84 h好氧生物处理,COD值进一步下降到600 mg/L左右。然后向每升生化出水中加入2~3 mmol Fe3+,通过化学沉淀作用除去其中的磷酸盐,过量的Fe3+作为后续类Fenton氧化的催化剂。当H2O2(30%)用量为2~3 mL/L时,最终出水的COD值可以达到国家一级排放标准。  相似文献   

16.
混凝-微气泡气浮法处理含藻废水的研究   总被引:3,自引:1,他引:2  
采用日本菊池环保株式会社生产的新型TCRI-17微气泡气浮装置混凝气浮处理北京某富营养化景观水体的含藻废水,其结果表明,当混凝剂用量分别为PAC 40 mg/L和PAM 2 mg/L,混凝2 min, 气浮2 min时,SS和COD去除率分别达到98.4%和85.7%。与混凝沉降相比,可减少PAC用量1/3,且节省处理时间。由于微小气泡停留时间长,气浮效率高,且有增加水中溶解氧的作用,可促进水体的净化,具有较强的技术优势。  相似文献   

17.
陶瓷印花废水处理的混凝剂及工艺条件   总被引:1,自引:1,他引:0  
采用混凝剂聚合氯化铝(PAC)、聚丙烯酰胺(PAM)、聚合硫酸铁(PFS)对陶瓷印花废水进行混凝沉降处理,监测水样的吸光度、浊度、悬浮物,以脱色率、浊度去除率、悬浮物去除率评价混凝处理的效果。结果表明:PAC是陶瓷印花废水沉降处理的理想混凝剂;水样的吸光度、浊度、悬浮物随混凝剂用量增大和沉降时间延长而呈降低趋势,而脱色率、浊度去除率、悬浮物去除率随混凝剂和沉降时间的增大呈增大的趋势;PAC投加量为20mg/L,沉降时间约为24h,水样脱色率达到90.0%,而当PAC投加量达到100mg/L,沉降时间约为4h,陶瓷印花水的脱色率可达到96.0%。证明了药剂用量的增加与沉降时间的延长对混凝过程具有增效作用。  相似文献   

18.
Effective arsenic removal from highly laden industrial wastewater is an important but challenging task. Here, a combined coprecipitation/nano-adsorption process, with ferric chloride and calcium chloride as coprecipitation agents and polymer-based nanocomposite as selective adsorbent, has been validated for arsenic removal from tungsten-smelting wastewater. On the basis of operating optimization, a binary FeCl3 (520 mg/L)–CaCl2 (300 mg/L) coprecipitation agent could remove more than 93 % arsenic from the wastewater. The resulting precipitate has proved environmental safety based on leaching toxicity test. Fixed-bed column packed with zirconium or ferric-oxide-loaded nanocomposite was employed for further elimination of arsenic in coprecipitated effluent, resulting in a significant decrease of arsenic (from 0.96 to less than 0.5 mg/L). The working capacity of zirconium-loaded nanocomposite was 220 bed volumes per run, much higher than that of ferric-loaded nanocomposite (40 bed volumes per run). The exhausted zirconium-loaded nanocomposite could be efficiently in situ regenerated with a binary NaOH–NaCl solution for reuse without any significant capacity loss. The results validated the combinational coprecipitation/nano-adsorption process to be a potential alternative for effective arsenic removal from highly laden industrial effluent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号