首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Arsenic poses a major environmental and human health problem because of its carcinogenic nature and effect on the ecosystem. Therefore, a cost effective and socially acceptable technique is needed for its remediation. The effect of different combinations of compost amended with zeolite and/or iron oxide (up to 20% w/w) was tested on a contaminated soil with high arsenic levels (34470 mg kg(-1)). The bioavailability of arsenic was determined in terms of uptake by rye grass (Lolium perenne L.) under greenhouse experimental conditions. The results indicated that the arsenic concentrations in the rye grass was reduced to 2 mg kg(-1) dry weight by using 15% compost with 5% iron oxide and 15% compost with 5% zeolite. Less than 0.01% of the total arsenic content in the soil was being taken up by the plants. Both treatments were effective in establishing significantly higher plant growth on the contaminated soil compared to other treatments. The results from sequential extraction tests indicated that in all the compost-amended soils, there was a reduction in the soluble fraction (10-37%). Arsenic in soil was examined using Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectroscopy. The results indicated that arsenic was distributed mostly within the matrix of iron and oxygen in treated samples. Amongst various treatment mixtures tested, high percent of compost (15%) with zeolite (5%) and/or iron oxide (5%) is effective in reducing arsenic uptake by plants and establish re-vegetation on the contaminated soil.  相似文献   

2.
A 6.6 ha grassland, established on a former chemical waste site adjacent to a residential area, contains arsenic (As) in surface soil at concentrations 200 times higher than UK Soil Guideline Values. The site is not recognized as statutory contaminated land, partly on the assumption that mobility of the metalloid presents a negligible threat to human health, groundwater and ecological receptors. Evidence for this is evaluated, based on studies of the effect of organic (green waste compost) and inorganic (iron oxides, lime and phosphate) amendments on As fractionation, mobility, plant uptake and earthworm communities. Arsenic mobility in soil was low but significantly related to dissolved organic matter and phosphate, with immobilization associated with iron oxides. Plant uptake was low and there was little apparent impact on earthworms. The existing vegetation cover reduces re-entrainment of dust-blown particulates and pathways of As exposure via this route. Minimizing risks to receptors requires avoidance of soil exposure, and no compost or phosphate application.  相似文献   

3.
Three methods for predicting element mobility in soils have been applied to an iron-rich soil, contaminated with arsenic, cadmium and zinc. Soils were collected from 0 to 30 cm, 30 to 70 cm and 70 to 100 cm depths in the field and soil pore water was collected at different depths from an adjacent 100 cm deep trench. Sequential extraction and a column leaching test in the laboratory were compared to element concentrations in pore water sampled directly from the field. Arsenic showed low extractability, low leachability and occurred at low concentrations in pore water samples. Cadmium and zinc were more labile and present in higher concentrations in pore water, increasing with soil depth. Pore water sampling gave the best indication of short term element mobility when field conditions were taken into account, but further extraction and leaching procedures produced a fuller picture of element dynamics, revealing highly labile Cd deep in the soil profile.  相似文献   

4.
Availability, mobility, (phyto)toxicity and potential risk of contaminants is strongly affected by the manner of appearance of elements, the so-called speciation. Operational fractionation methods like sequential extractions have been applied for a long time to determine the solid phase speciation of heavy metals since direct determination of specific chemical compounds can not always be easily achieved. The three-step sequential extraction scheme recommended by the BCR and two extraction schemes based on the phosphorus-like protocol proposed by Manful (1992, Occurrence and Ecochemical Behaviours of Arsenic in a Goldsmelter Impacted Area in Ghana, PhD dissertation, at the RUG) were applied to four standard reference materials (SRM) and to a batch of samples from industrially contaminated sites, heavily contaminated with arsenic and heavy metals. The SRM 2710 (Montana soil) was found to be the most useful reference material for metal (Mn, Cu, Zn, As, Cd and Pb) fractionation using the BCR sequential extraction procedure. Two sequential extraction schemes were developed and compared for arsenic with the aim to establish a better fractionation and recovery rate than the BCR-scheme for this element in the SRM samples. The major part of arsenic was released from the heavily contaminated samples after NaOH-extraction. Inferior extraction variability and recovery in the heavily contaminated samples compared to SRMs could be mainly contributed to subsample heterogeneity.  相似文献   

5.
An iron-rich water treatment residue (WTR) consisting mainly of ferrihydrite was used for immobilization of arsenic and chromium in a soil contaminated by wood preservatives. A leaching batch experiment was conducted using two soils, a highly contaminated soil (1033 mg kg−1 As and 371 mg kg−1 Cr) and slightly contaminated soil (225 mg kg−1 As and 27 mg kg−1 Cr). Compared to an untreated reference soil, amendment with 5% WTR reduced leaching in the highly contaminated soil by 91% for Cr and 98% for As. No aging effect was observed after 103 d. In a small field experiment, soil was mixed with 2.5% WTR in situ. Pore water was extracted during 3 years from the amended soil and a control site. Pore water arsenic concentrations in the amended soil were more than two orders of magnitude lower than in the control for the upper samplers. An increased release of arsenic was observed during winter in both fields, mostly in the deepest samplers. This is likely due to the formation of a pseudo-gley because of precipitation surplus. Stabilization of arsenic and chromium contaminated soil using WTR is a promising method but the transformation of ferrihydrite in soil proves a concern in case of waterlogged soils. Still the amendment minimized the leaching of arsenic, even in cases of seasonal releases.  相似文献   

6.
The fractionation and speciation of As in a contaminated soil were investigated, and a remediation strategy was tested. Regarding speciation, we found that As(V) prevails over As(III) whereas more than 40% of total arsenic is in organic form. The fractionation of As was investigated with two sequential extraction methods: a low mobility was found. Then we tested the possibility of using phosphoric acid to extract As from the soil and cleaning the washing effluents by sorption onto montmorillonite. The efficiency of the extraction and of the adsorption onto the clay were also investigated for Cr, Cu, Fe, Mn, Ni, Pb and Zn, whose total concentrations and fractionation in the soil are reported here. The extraction percentages for As and metals ranged from 30 to 65%; the residual proportions in the soil are presumably in very unreactive forms. Montmorillonite showed a good uptake capacity towards the investigated pollutants.  相似文献   

7.
Pteris vittata plants were grown on twenty-one UK soils contaminated with arsenic (As) from a wide range of natural and anthropogenic sources. Arsenic concentration was measured in fern fronds, soil and soil pore water collected with Rhizon samplers. Isotopically exchangeable soil arsenate was determined by equilibration with 73AsV. Removal of As from the 21 soils by three sequential crops of P. vittata ranged between 0.1 and 13% of total soil As. Ferns grown on a soil subjected to long-term sewage sludge application showed reduced uptake of As because of high available phosphate concentrations. A combined solubility-uptake model was parameterised to enable prediction of phytoremediation success from estimates of soil As, ‘As-lability’ and soil pH. The model was used to demonstrate the remediation potential of P. vittata under different soil conditions and with contrasting assumptions regarding re-supply of the labile As pool from unavailable forms.  相似文献   

8.
Shih CJ  Lin CF 《Chemosphere》2003,53(7):691-703
A preliminary survey of an arsenic contaminated site from an abandoned copper smelting facility and feasibility study of using solidification/stabilization (S/S) process to treat the contaminant waste were undertaken. It was found that the waste, located in the three-flue gas discharge tunnels, contained 2-40% arsenic. The pH of the contaminated waste is extremely low (ranging from 1.8 to 3.6). The X-ray diffraction evidence indicates that the arsenic particles present in the flue gas mainly exist as As(III), or As(2)O(3). The total amount of arsenic contaminated waste is estimated to be 700 ton in the studied area. About 50% of the particle sizes are less than 2 mm. Arsenic is easily extracted from wastes with a variety of leaching solutions. In order to meet the arsenic leaching standard of the toxicity characteristic leaching procedure (TCLP), an extremely high cement dosage is required in the S/S process (cement/waste weight ratio>6). The waste with lower particle size having higher specific surface area exhibits somewhat positive effect on the S/S performance. The use of fly ash from municipal waste incinerators, in conjunction with the reduced amount of cement, is able to meet the TCLP arsenic and lead standards. The use of lime alone could meet the TCLP arsenic standard, but lead leaching concentrations exceeded leaching Pb standard. The results of semi-dynamic leaching tests of some solidified samples indicate higher accumulated arsenic leaching concentrations after only a few leachant renewals.  相似文献   

9.
Acid washing and stabilization of an artificial arsenic-contaminated soil.   总被引:16,自引:0,他引:16  
An acid-washing process was studied on a laboratory scale to extract the bulk of arsenic(V) from a highly contaminated Kuroboku soil (Andosol) so as to minimize the risk of arsenic to human health and the environment. The sorption and desorption behavior of arsenic in the soil suggested the possibility of arsenic leaching under acidic conditions. Artificially contaminated Kuroboku soil (2830 mg As/kg soil) was washed with different concentrations of hydrogen fluoride, phosphoric acid, sulfuric acid, hydrogen chloride, nitric acid, perchloric acid, hydrogen bromide, acetic acid, hydrogen peroxide, 3:1 hydrogen chloride-nitric acid, or 2:1 nitric acid-perchloric acid. Phosphoric acid proved to be most promising as an extractant, attaining 99.9% arsenic extraction at 9.4% acid concentration in 6 h. Sulfuric acid also attained high percentage extraction. The arsenic extraction by these acids reached equilibrium within 2 h. Elovich-type equation best described most of the kinetic data for dissolution of soil components as well as for extraction of arsenic. Dissolution of the soil components could be minimized by ceasing acid washing in 2 h. The acid-washed soil was further stabilized by the addition of lanthanum, cerium, and iron(III) salts or their oxides or hydroxides which form insoluble complex with arsenic. Both salts and oxides of lanthanum and cerium were effective in immobilizing arsenic in the soil attaining less than 0.01 mg/l As in the leaching test.  相似文献   

10.
The dynamics of arsenic in four paddy fields in the Bengal delta   总被引:4,自引:0,他引:4  
Irrigation with arsenic contaminated groundwater in the Bengal Delta may lead to As accumulation in the soil and rice grain. The dynamics of As concentration and speciation in paddy fields during dry season (boro) rice cultivation were investigated at 4 sites in Bangladesh and West Bengal, India. Three sites which were irrigated with high As groundwater had elevated As concentrations in the soils, showing a significant gradient from the irrigation inlet across the field. Arsenic concentration and speciation in soil pore water varied temporally and spatially; higher As concentrations were associated with an increasing percentage of arsenite, indicating a reductive mobilization. Concentrations of As in rice grain varied by 2-7 fold within individual fields and were poorly related with the soil As concentration. A field site employing alternating flooded-dry irrigation produced the lowest range of grain As concentration, suggesting a lower soil As availability caused by periodic aerobic conditions.  相似文献   

11.
Arsenic concentrations of 73 soil samples collected in the semi-arid Zimapán Valley range from 4 to 14 700 mg As kg(-1). Soil arsenic concentrations decrease with distance from mines and tailings and slag heaps and exceed 400 mg kg(-1) only within 500 m of these arsenic sources. Soil arsenic concentrations correlate positively with Cu, Pb, and Zn concentrations, suggesting a strong association with ore minerals known to exist in the region. Some As was associated with Fe and Mn oxyhydroxides, this association is less for contaminated than for uncontaminated samples. Very little As was found in the mobile water-soluble or exchangeable fractions. The soils are not arsenic contaminated at depths greater than 100 cm below the surface. Although much of the arsenic in the soils is associated with relatively immobile solid phases, this represents a long-term source of arsenic to the environment.  相似文献   

12.
This paper presents the effect of pH and redox potential on the potential mobility of arsenic (As) from a contaminated mineral processing waste. The selected waste contained about 0.47 g kg(-1) of As and 66.2 g kg(-1) of iron (Fe). The characteristic of the waste was identified by acid digestion, X-ray diffraction and sequential extraction procedures. Less than 2% of the total As was acid extractable with the remaining 98% associated with Fe-oxyhydroxides and oxides. Batch leaching tests at different pH conditions showed a strong pH dependence on arsenic and iron leaching. Arsenic leaching followed a "V" shaped profiles with significant leaching in the acidic and alkaline pH region. Acid extractable phases dissolved at acidic pH, while desorption of arsenic due to increase in pH resulted in high arsenic concentration at alkaline pH. Under aerobic conditions and pH 7, As solubility was low, probably due to its precipitation on Fe-oxyhydroxides. Maximum As solubilization occurred at pH 11 (3.59 mg l(-1)). Similarity in the As and Fe leaching profiles suggested that the release of As was related to the dissolution of Fe in the low pH region. In general, redox potential did not play a significant role in arsenic or iron solubilization. It was thus concluded that for this solid waste, desorption was the predominant mechanism in arsenic leaching. A simple thermodynamic model based on arsenic and iron redox reactions was developed to identify the more sensitive redox couple.  相似文献   

13.
水溶性巯基壳聚糖对污染土壤吸附态汞的解吸作用研究   总被引:1,自引:0,他引:1  
用两种巯基化试剂半胱氨酸(Cys)和硫代乙醇酸(Thi)与壳聚糖(CTS)反应,制备了两种水溶性巯基壳聚糖,即Cys-CTS和Thi-CTS,对比研究了这两种巯基壳聚糖与CTS对被染毒土壤中吸附态汞的提取能力.结果表明,Thi-CTS在pH=3、质量浓度为0.5g/L、用量为20 mL的条件下.对汞的提取率为59.44%,相同条件下CTS和cys-CTS对汞的最高提取率只有31.81%和10.15%.  相似文献   

14.
Arsenic can be highly toxic to mammals but there is relatively little information on its transfer to and uptake by free-living small mammals. The aim of this study was to determine whether intake and accumulation of arsenic by wild rodents living in arsenic-contaminated habitats reflected environmental levels of contamination and varied between species, sexes and age classes. Arsenic concentrations were measured in soil, litter, wood mice (Apodemus sylvaticus) and bank voles (Clethrionomys glareolus) from six sites which varied in the extent to which they were contaminated. Arsenic residues on the most contaminated sites were three and two orders of magnitude above background in soil and litter, respectively. Arsenic concentrations in the stomach contents, liver, kidney and whole body of small mammals reflected inter-site differences in environmental contamination. Wood mice and bank voles on the same sites had similar concentrations of arsenic in their stomach contents and accumulated comparable residues in the liver, kidney and whole body. Female bank voles, but not wood mice, had significantly higher stomach content and liver arsenic concentrations than males. Arsenic concentration in the stomach contents and body tissues did not vary with age class. The bioaccumulation factor (ratio of arsenic concentration in whole body to that in the diet) in wood mice was not significantly different to that in bank voles and was 0.69 for the two species combined, indicating that arsenic was not bioconcentrated in these rodents. Overall, this study has demonstrated that adult and juvenile wood mice and bank voles are exposed to and accumulate similar amounts of arsenic on arsenic-contaminated mine sites and that the extent of accumulation depends upon the level of habitat contamination.  相似文献   

15.
Tang XY  Zhu YG  Shan XQ  McLaren R  Duan J 《Chemosphere》2007,66(7):1183-1190
Ingestion of contaminated soil has been recognized as an important exposure pathway of arsenic for humans, especially for children through outdoor hand-to-mouth activities. An improved sequential extraction procedure was employed in an attempt to reveal the relationship between bioaccessibility and fractionation of As in five soils from China. Arsenic bioaccessibility in acidic ( approximately pH 4.5) soils reached approximately stable levels after a sharp decline within one week of ageing. In contrast, As bioaccessibility in higher pH (>6.0) soils was found to be significantly higher and took two weeks of ageing to reach stable levels. The artificially added As was more labile than indigenous As. The main proportions of added As were found in the specifically sorbed and amorphous and poorly-crystalline hydrous Fe/Al oxide-bound fractions. Correlation analysis shows that the non-specifically and specifically sorbed As are likely to constitute the main proportion of bioaccessible soil As. The soil content of amorphous and crystalline Fe/Al oxides and soil pH appear to be the key factors controlling, not only the time needed to reach a steady state, but also the magnitude of the bioaccessibility of As added to the soils.  相似文献   

16.
The application of extracting aqueous solutions with cyclodextrins in several soil remediation technologies has been increasingly studied but little is known about their removal capacities toward the inorganic species. Herein, the effectiveness of cyclodextrins (CDs) in extracting arsenic, copper, and iron from a mining soil is presented. In a preliminary test of four types of CD aqueous solutions, only the addition of carboxylmethyl-beta-cyclodextrin CMCD (a cyclodextrin derivative) led to a significant enhancement in arsenic removal. An increase in the concentration of copper and iron in the leachates was also observed with CMCD. Kinetic study of arsenic release was carried out at two temperatures (20 and 35 degrees C). The arsenic concentration in the leachates increases with increasing cyclodextrin concentration. At an 80 mM CMCD concentration, arsenic, copper, and iron released in filtrates were about 20-, 1,000-, and 4,000-fold greater, respectively, than that obtained using deionized water. In the soil system, the CMCD capacity removal was found to be higher for cations than for arsenic. Because the tetrachlorophenol can co-occur with arsenic and copper in several contaminated sites, its solubilization by CMCD was also investigated. Extraction experiments were performed to extract 2,3,4,6 tetrachlorophenol (TeCP) in spiked soil with CMCD. The results of batch experiments have shown that CMCD could significantly increase the TeCP extraction from soil. CD sorption on soils as quantified by a fluorescence technique was low, indicating no significant loss of CD during the leaching experiments. The use of CMCD as a flushing agent to enhance the removal of both inorganic and organic pollutants from mixed-contaminated soils appears as a promising remediation method.  相似文献   

17.
An in vivo swine assay was utilised for the determination of arsenic (As) bioavailability in contaminated soils. Arsenic bioavailability was assessed using pharmacokinetic analysis encompassing area under the blood plasma-As concentration time curve following zero correction and dose normalisation. In contaminated soil studies, As uptake into systemic circulation was compared to an arsenate oral dose and expressed as relative As bioavailability. Arsenic bioavailability ranged from 6.9+/-5.0% to 74.7+/-11.2% in 12 contaminated soils collected from former railway corridors, dip sites, mine sites and naturally elevated gossan soils. Arsenic bioavailability was generally low in the gossan soils and highest in the railway soils, ranging from 12.1+/-8.5% to 16.4+/-9.1% and 11.2+/-4.7% to 74.7+/-11.2%, respectively. Comparison of in vivo and in vitro (Simplified Bioaccessibility Extraction Test [SBET]) data from the 12 contaminated soils and bioavailability data collected from an As spiked soil study demonstrated that As bioavailability and As bioaccessibility were linearly correlated (in vivo As bioavailability (mgkg(-1))=14.19+0.93.SBET As bioaccessibility (mgkg(-1)); r(2)=0.92). The correlation between the two methods indicates that As bioavailability (in vivo) may be estimated using the less expensive, rapid in vitro chemical extraction method (SBET) to predict As exposure in human health risk assessment.  相似文献   

18.
Schmidt AC  Kutschera K  Mattusch J  Otto M 《Chemosphere》2008,73(11):1781-1787
Phenylated arsenic compounds occur as highly toxic contaminants in former military areas where they were formed as degradation products of chemical warfare agents. Some phenylarsenic compounds such as roxarsone and aminophenylarsonic acids were applied as food additive and veterinary drugs in stock-breeding and therefore pose an environmental risk in agricultural used sites. Very few data exist in the literature concerning uptake and effects of phenylarsenic compounds in plants growing on contaminated soils. In this study, the accumulation, extractability, and metabolization of five different phenylarsenic compounds, phenylarsonic acid, p- and o-aminophenylarsonic acid, phenylarsine oxide, and 3-nitro-4-hydroxyphenylarsonic acid called roxarsone, by the terrestrial plant Tropaeolum majus were investigated. Ion chromatography coupled to inductively coupled plasma mass spectrometry was used to differentiate these arsenic compounds, and inductively coupled plasma atomic emission spectroscopy was used for total arsenic quantification. All compounds considered were taken up by the roots and transferred to stalks, leaves, and flowers. The strongest accumulation was observed for unsubstituted phenylarsonic acid followed by its trivalent analogue phenylarsine oxide that was mostly oxidized in soil whereas the amino- or nitro- and hydroxy-substituted phenylarsonic acids were accumulated to a smaller degree.The highest extraction yield of 90% for ground leaf material was achieved by 0.1 M phosphate buffer, pH 7.7, in a two-step extraction with a total extraction time of 24 h. The extraction of higher amounts of arsenic (50–70% of total arsenic present in leaves depending on arsenic species application) from non-ground intact leaves with deionized water in comparison with the buffer (20–40% of total arsenic) is ascribed to osmotic effects. The arsenic species analysis revealed a cleavage of the amino groups from the phenyl ring for plants treated with aminophenylarsonic acids. A further important metabolic effect consisted in the production of inorganic arsenate and arsenite from the phenylated arsonic acid groups.  相似文献   

19.
《Chemosphere》2009,74(11):1781-1787
Phenylated arsenic compounds occur as highly toxic contaminants in former military areas where they were formed as degradation products of chemical warfare agents. Some phenylarsenic compounds such as roxarsone and aminophenylarsonic acids were applied as food additive and veterinary drugs in stock-breeding and therefore pose an environmental risk in agricultural used sites. Very few data exist in the literature concerning uptake and effects of phenylarsenic compounds in plants growing on contaminated soils. In this study, the accumulation, extractability, and metabolization of five different phenylarsenic compounds, phenylarsonic acid, p- and o-aminophenylarsonic acid, phenylarsine oxide, and 3-nitro-4-hydroxyphenylarsonic acid called roxarsone, by the terrestrial plant Tropaeolum majus were investigated. Ion chromatography coupled to inductively coupled plasma mass spectrometry was used to differentiate these arsenic compounds, and inductively coupled plasma atomic emission spectroscopy was used for total arsenic quantification. All compounds considered were taken up by the roots and transferred to stalks, leaves, and flowers. The strongest accumulation was observed for unsubstituted phenylarsonic acid followed by its trivalent analogue phenylarsine oxide that was mostly oxidized in soil whereas the amino- or nitro- and hydroxy-substituted phenylarsonic acids were accumulated to a smaller degree.The highest extraction yield of 90% for ground leaf material was achieved by 0.1 M phosphate buffer, pH 7.7, in a two-step extraction with a total extraction time of 24 h. The extraction of higher amounts of arsenic (50–70% of total arsenic present in leaves depending on arsenic species application) from non-ground intact leaves with deionized water in comparison with the buffer (20–40% of total arsenic) is ascribed to osmotic effects. The arsenic species analysis revealed a cleavage of the amino groups from the phenyl ring for plants treated with aminophenylarsonic acids. A further important metabolic effect consisted in the production of inorganic arsenate and arsenite from the phenylated arsonic acid groups.  相似文献   

20.
Lim TT  Goh KH 《Chemosphere》2005,58(1):91-101
Two batches of fine soil fraction of an acidic soil were deliberately contaminated with selenite (Se(IV)) and selenate (Se(VI)), respectively, and aged for more than 220 days. Speciation analysis using continuous flow-through hydride generation atomic absorption spectrometry (HGAAS) indicated that the species were predominant in their respective aged soils. A selective sequential extraction scheme was employed to fractionate the Se retained in the soils into six fractions of varying retentions. Abilities of various chemical reagents in extracting the Se in the two soil batches were then evaluated. The reagents investigated were sodium salts such as sodium chloride (NaCl), sodium sulfate (Na2SO4), sodium carbonate (Na2CO3), and sodium phosphate (Na3PO4), and two oxidants, namely, hydrogen peroxide (H2O2) and potassium permanganate (KMnO4). It was found that NaCl, Na2SO4, and Na2CO3 could only extract the exchangeable fraction of Se, while Na3PO4 could extract the exchangeable and strongly-bound fractions. Selenate was extracted more than Se(IV) by the salts. The kinetics of Se(IV) extraction by Na3PO4 could be best described by the Elovich model, while the Ritchie second-order model was the most appropriate to describe Se(VI) extraction. Efficiencies of the oxidants in Se(IV) extraction highly depended on their applied dosages. Both H2O2 and KMnO4 were able to extract greater than 93% of total Se, and therefore were significantly more effective than the salts in Se(IV) extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号