首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Coastal erosion poses serious threat to life and properties along Ghana??s coast. This is because major industries, urban settlements, recreational facilities, heritage and conservation sites are located few metres from the coast. In spite of this threat, management strategies, both past and present, remain an ??ad hoc?? and site specific. Limited attention has been given to large scale assessment and investigation to detect the rate of coastal recession and the size of land lost to the sea to inform integrated management plan and to formulate sustainable management strategies to deal with the problem. This paper provides large scale assessment of coastal recession in Ghana through field investigation, applied coastal geomorphology and GIS techniques to selected case study areas. The assessment covered 203?km out of the 540?km coastline of Ghana. Results of the assessment indicate that coastal erosion is very substantial and wide spread along the coast, but the rate of recession varies across the entire coastline. Significant amounts of losses of settlements have been experienced in some localities in the eastern coast (Keta and Ada) and the central coast (Accra, Shama and Sekondi-Takoradi). In some areas, coastal defences have been built to reduce the impacts, yet many areas are still very vulnerable. Interestingly, the paper identified that the high rates of retreat recorded in many areas have yet to cause major risks in some local communities because of the presence of a buffer of largely undeveloped land that has existed historically between the shoreline and the developments. However, recent increase in coastal tourism in Ghana has led to ??scramble?? for purchase of these buffer lands for development, which increase the risk. Ghana has the opportunity to use education and land use planning to keep the coastline clear of major developments and avoid the temptation of engaging in costly cycle of development-risk-defence experienced in many countries including the UK and the Netherlands. The paper recommends that Ghana should adopt the UK SMP, which has progressively moved away from the traditional re-active and parochial approaches of providing localised hard-engineered coastal defence work to solve what was perceived to be a local problem, to a more pro-active and holistic approach that take full account of coastal dynamics, interrelationships of coastal systems, knock-on effects, environment concerns and developments at the backshore.  相似文献   

2.
Coastal features in Ghana's Accra coast reflect both past and present processes that have been undergoing changes. These changes are influenced by a range of morphogenic factors such as geology and climatic conditions. These regimes have shaped the coastal geomorphic features through weathering processes that decompose and disintegrate the coastal rock. Sea level rise due to climate change is expected to increase coastal erosion and thus result in rapid changes in shoreline positions. Historic rate of sea level rise in Accra coast is about 2 mm/yr (Ibe & Quelennec, 1989) which is predicted to reach approximately 6 mm/yr in the next century since it conforms to the global change (Armah et al., 2005). This will result in flooding of vulnerable areas and enable waves to break closer inland. The effectiveness of the erosion process is aided considerably by the type of geology. Accra coastal zone has three types of rock in three identified geomorphic regions. They include unconsolidated and poorly consolidated rock along the western region, the Accraian series occupying the central region and the Dahomeyan series in the eastern region. The geology has thus influenced the extent to which the coastal features have changed and the type of cliff that is formed as a result of erosion within the regions. Generally, soft rock coastal features decay more rapidly than those of hard rock and tend to act as sediment sources. Human activities such as dam construction over the Densu River, engineering interventions to check the spread of erosion and sand mining has created sediment deficit which has exacerbated coastal erosion in Accra. Anthropogenic factors are estimated to account for 70-90% of coastal erosion problems in Accra.  相似文献   

3.
Coastal erosion may be caused by natural causes as well as human factors. Karasu town of the city of Sakarya in Turkey which is a touristic region on the Black Sea coast has been experienced a drastic coastal erosion. In recent years, this erosion reached the threatening dimensions for the structures in the settlement. According to the temporal analyses of Landsat satellite images, the maximum erosion on the coastline was detected 100 m between 1987–2013. The results of the study show that the harbour construct on the Karasu coast has the major impact on this event. The secondary factor is that the amount of the sediment carried by the Sakarya River was decreased in time due to different reasons. To prevent the coastal erosion, a series of offshore breakwaters were planned after the failed application of groins on the coastline. In this study, temporal changes of the coastline are investigated by the Landsat satellite data and land surveys, possible reasons of the erosion are discussed and the solutions are proposed regarding the coastal structures.  相似文献   

4.
The practice of coastal zone management in Portugal is very recent. Key issues and considerations about natural shoreline dynamics, main policy instruments, and lessons learned from the EU Demonstration Programmes on Integrated Coastal Zone Management in Portugal will be outlined in this paper in an attempt to understand how the practice of ICZM and its prospects are. Coastal zone management problems and their associated side effects, as well as national and international evolution patterns will be drawn. Some means of achieving better coastal zone management practices and ways of addressing some of its forefront issues are also identified. Special attention will go to erosion problems. The pressure induced by urban development and economic activities on coastal areas is increasing. Poor sediment availability combined with years of neglected management and over-exploitation of resources have had a negative impact, and there are many areas showing evidence of coastal erosion. There is a need to improve policies and instruments of coastal planning and management. Coastal zone management plans are being developed for the nine sectors of the continental Portuguese coast, providing a full analysis of coastal systems and a delimitation of uses in relation to the carrying capacity of the shoreline.  相似文献   

5.
Traditionally the coastal zone of the easternmost (Russian) part of the Gulf of Finland has not been considered as an area of active litho- and morphodynamics, but a recent study has shown that the easternmost part of the coastal zone suffers from erosion. Within some coastal segments the shoreline recession rate reaches 2 ?C 2.5?m/year. As well as determining the hydrodynamic reasons for recent erosion acceleration, important geological and geomorphic features of coastal zone which influenced the lithodynamics were established. The Kurortny District of St.Petersburg is located along the northern coast of the Gulf of Finland to the west of the St. Petersburg Flood Protection Facility. It has special importance as a unique recreation zone of the North-West of Russia. Coastal erosion is one of the most serious problems of the area. The analysis of historical materials, archive aerial photographs and modern high-resolution satellite images have shown that advancing parts of coast are almost non-existant with most sections of the coast being eroded and further retreating. Field monitoring between 2004 and 2007 showed intense damage to sandy beaches during autumn and winter storms and progressive erosion of the dunes system. Among the most important natural reasons for the erosion processes are that the coastline is open to storm waves induced by westerly and south-westerly winds, the geological structure of coastal area (easily eroded Quaternary deposits) and a sediment deficit. In some areas sediment loss was the result of the submarine coastal slope morphology (a steep slope of a narrow submarine terrace within the area of sediment drift discharge), with erosion of an alongshore submarine sandy terrace and erosion runnels at the depth 8?C12?m. The situation becomes worse due to anthropogenic impact. The southern coastal zone dynamics are also very active. According to an aerial and satellite photos analysis from 1975?C1976 to 1989?C1990, sandy beaches to the west of Lebyazhye village were eroded up to 30?m, and near Bolshaya Izora village up to 70?m. The comparison of coastine GPSsurvey with old nautical and topographic charts published in the 1980s shows the considerable change.  相似文献   

6.
Anthropic pressure has caused severe variations of Mediterranean coastal areas currently hosting about 480 million people. The replacement of natural land covers with crops and urban environment coupled with the reduction of sediment supply to the coast, subsidence, Relative Sea Level Rise and the high frequency of storm events, have caused severe shoreline erosion. In this paper, we stress the key role of historical maps, topographic maps and free satellite images to forecast the rates of coastline changes and to recognize the main features of past landscapes as tools for risk reduction. This data was recorded into a Geographical Information System dedicated to coastal management that allows to compare different coastal zones and elaborate maps. The analysis was applied to the case study of Volturno Coastal Plain (VCP), extending from the town of Mondragone to Patria Lake (Campania Region, Southern Italy). Indeed, the intense territorial modification that occurred between the seventies and eighties, coupled with the exposure to coastal erosion, make the VCP a good test area. The spatial analysis algorithms allowed to outline the main features of past landscapes and how they changed from roman times to present while the coastal evolution (erosion, accretion) and possible future coastal trend was assessed with the Digital Shoreline Analysis System (DSAS) software. Starting from the Bourbon domain, the reclamation caused the first great territorial change (e.g. wetlands were transformed into agricultural lands, regimentation of surperficial water) but the negative effects of antrophic pressure, as the intense urbanization of the coastal belt, emerged in the seventies of the last century. The shoreline position was defined for 9 time intervals (from 1817 to 2012) as the ratio of the distance between two shorelines and the relative elapsed time. Moreover, for the 1957–1998 and 1998–2012 time windows, the shoreline trends were calculated with the weighted linear regression method. The first trend pointed out an intensive erosional phase (mean value: 5 m/yr) for a wide sector close to the Volturno River mouth, the eroded sediment nourished the beaches of other coastal sectors. This phase was related to the reduction of River sediment supply mainly due to the construction of the Ponte Annibale dam on the Volturno River. The second (1998–2012) showed an alternation of erosion and accretion sectors due to a sediment starved condition to deltaic zone and to a sequence of 52 sea protection works in the Gaeta Gulf. Furthermore, the regression values of more recent time interval, was assumed as a scenario to draw the probable shoreline position in 2022. The overlay of this shoreline on the Technical Maps of Campania Region at 1:5000 scale highlighted the urban area that could be exposed to damages.  相似文献   

7.
A study on the modern dynamics and shoreline changes from 1954 to 2014 of the Molise coast (central Adriatic Sea) has been carried out. Short to long-term shoreline changes and associated surface area variations have been assessed in GIS environment for the study coast, subdivided in nine coastal segments (S1-S9), by using 100-m regularly spaced transects. In addition, the possible influence of natural and anthropogenic factors, especially of climatic variability and engineered shoreline defense structures, has been investigated. The Molise coast has experienced notable long-term erosion (period 1054-2014) that caused an overall coastal land loss of approximately 940,000 m2. Erosion was, yet, limited to coastal segments S1 and S7, nearest to the mouths of major rivers, namely Trigno and Biferno, while the major part of the study coast has remained essentially stable or even advanced. Increased shoreline protection by defense structures has generally favoured shoreline stability and frequently generated shoreline advance, except for segments S1 and S7. Observed differences in shoreline change rates over time at the decadal to interannual scale, have not find a response in the analysis of available data on meteo-marine conditions of the Molise coast and climate variability indices, pointing out the need to improve knowledge on meteomarine conditions and on climatic variability forcing of the study area. From 2004 to 2014, the Molise shoreline remained essentially stable. Nonetheless, most recent shoreline changes (period 2011-2014) and modern shoreline dynamics indicate that erosion has become more widespread, involving at least part of segments S2-S3 and S8-S9, located south of the river mouth segments. The localized long-term shoreline retreat and most recent shoreline erosion appear to be primarily related to channel adjustments of the Biferno and Trigno rivers that occurred since the 1950s under the control of human interventions on the rivers, especially the construction respectively of a dam and a check dam along their lower courses, that trap of most of their solid load, affecting so adversely the sediment budget of the river mouths areas and adjacent beaches. Overall data acquired on the recent shoreline evolution and modern shoreline dynamics of the Molise coast and on related causal factors provide a good basic knowledge for regional coastal management purposes, and for further scientific purposes. Particularly, they suggest the opportunity to deepen a number of aspects such as the relationship between the coast and river catchments feeding it, the possible influences on the Molise shoreline dynamics of the neighbouring coasts, the efficiency/obsolescence of defense structures and the present-day vulnerability to coastal erosion of the Molise coast.  相似文献   

8.
Coastal zone is often vulnerable to natural hazards such as cyclones, storm surges, tsunamis, erosion, accretion, and coastal flooding; and man-made hazards like ports, jetties, seawalls, breakwaters, and groins. These disasters are frequently affecting the shorelines, beaches, and headlands that lead to loss of human life, properties, and natural ecosystems. To prevent further loss in the coastal zone and to conserve the existing natural resources, it is important to map and monitor vulnerable shorelines at frequent time intervals. The current study, conducted over the Northern TN (Tamil Nadu) coast of India, is highly dynamic due to its nature of coast and shoreline changes. The temporal remote sensing data and Survey of India (SOI) topographic maps over the period of 40 years (i.e., 1976–2016) were used to capture shorelines and then the erosion and accretion from the shorelines were assessed by performing the overlay analysis. These geospatial datasets of shorelines were incorporated into WebGIS platform, which was developed and demonstrated using open source software. This latest WebGIS technology allows users to store a large volume of geospatial datasets in the server and access through internet with a web browser that lead to manipulation, visualization, interaction, and dissemination. The results revealed that there were 61 layers, which include district-wise shorelines, erosion, and accretion for Tiruvallur, Chennai, and Kanchipuram. These geospatial datasets in WebGIS showed that the dynamism on the morphological structure of the shorelines, over the Northern TN lost 1,925 ha and gained 1,578 ha due to erosion and accretion, respectively. It is reported that in this study spatial reduction in the coastline may be attributed to natural and anthropogenic activities. However, this research will be useful for various stakeholders, including coastal management authorities to formulate policies and to regulate the coastal development activities.  相似文献   

9.
Sea-level rise as a result of climate change increases inundation and erosion, which are affected by a complex interplay of physical environmental parameters at the coast. China’s coast is vulnerable to accelerated sea-level rise and associated coastal flooding because of physical and socio-economical factors such as its low topography, highly developed economy, and highly dense population. To identify vulnerable sections of the coast, this paper presents a national assessment of the vulnerability of the Chinese coast using 8 physical variables: sea-level rise, coastal geomorphology, elevation, slope, shoreline erosion, land use, mean tide range, and mean wave height. A coastal vulnerability index was calculated by integrating the differentially weighted rank values of the 8 variables, based on which the coastline is segmented into 4 classes. The results show that 3% of the 18,000-km-long Chinese coast is very highly vulnerable, 29% is highly vulnerable, 58% is moderately vulnerable, and 10% is in the low-vulnerable class. Findings further reveal that large amounts of land and population will be vulnerable to inundation by coastal flooding from sea level rise and storm surge. Finally, some suggestions are presented for decision makers and other concerned stakeholders to develop appropriate coastal zone management and mitigation measures.  相似文献   

10.
To improve the present national and local sustainable planning capability for the coastal zone a GI application for the Italian Coastal Susceptibility Assessment was planned within an institutional agreement between ENEA and the Land Defence Service of the Italian Ministry of Environment. Taking into account previous European actions a suitable methodology to assess, in a quantitative way, the susceptibility of beaches to be eroded has been set up. The methodology balances the coastline trend as evaluated for a defined time period with the present coastal areas morphology and land use, this in order to derive a value that expresses the evolutionary process in terms of probability of the loss of goods within the ‘Homogeneous Coastal Tracts’. The trend in the movement of the sea-land line has been used asgeo-indicator of a complex dynamic balance that refers both to marine and inland systems, and a vector GI application was built and locally applied in southern Italian coastal areas. The present shoreline position and some other information describing the intrinsic beach morphologies, and having significance for the coastal erosion hazard assessment, have been derived from the national 1∶10.000 ortho-images of the National Cartographic Reference System provided by the Italian Ministry of Environment. The illustrated GI application— CoSTAT—keeps the nominal scale of all data collected or produced. In this analysis the coastal dune presence is analysed as factor limiting coastal erosion susceptibility. Applying a matrix calculation a quantitative evaluation of erosion susceptibility degree was achieved and plans were made to develop new information for a suitable use of Italian coastal areas. The work describes the methodology, the conceptual frame-work and the results of a local application.  相似文献   

11.
Rates of shoreline change along the coast of Bangladesh   总被引:1,自引:0,他引:1  
Bangladesh, at the confluence of the sediment-laden Ganges and Brahmaputra Rivers, supports an enormous and rapidly growing population (>140 million in 2011), across low-lying alluvial and delta plains that have accumulated over the past few thousand years. It has been identified as one of the most vulnerable places in the world to the impacts of climate change and sea-level rise. Although abundant sediment supply has resulted in accretion on some parts of the coast of Bangladesh, others are experiencing rapid erosion. We report a systematic assessment of rates of shoreline change over a 20-year period from 1989 to 2009, using Landsat satellite images with pixel resolution of 30 m on the ground. A Band ratio approach, using Band-5 divided by Band-2, discriminated the water line on images that were largely cloud-free, adequately registered, and at comparable tidal stages. Rates of shoreline change were calculated for >16,000 transects generated at 50 m intervals along the entire mainland coastline (>1,100 km) and major islands, using the End Point Rate (EPR) method in the Digital Shoreline Analysis System (DSAS) extension in ArcGIS®. Erosion characterises most of the seaward margin of the Sundarbans in western Bangladesh. Retreat rates of up to 20 m/yr are typical, with little evidence that local devastation of the mangrove fringe by Cyclone Sidr in November 2007 had resulted in uncharacteristic long-term rates of retreat where it made landfall. Erosion exceeded accretion in the Barguna Patuakhali coastal zone, most of which eroded at up to 20 m/yr, but with truncation of the southern tip of the Patharghata Upazila at up to 100 m/yr. In Bhola, erosion at rates of up to 120 m/yr were observed along much of the coast, but in the Noakhali Feni coastal zone, similar rates of erosion were balanced by rapid accretion of the main promontory by more than 600 m/yr. Rates of change were more subdued in the Chittagong and Cox’s Bazar coastal zones of southeast Bangladesh. Islands in the Meghna estuary were especially dynamic; Hatiya Island accreted along some of its shoreline by 50 km2 between 1989 and 2009, but lost 65 km2 through erosion elsewhere, resulting in the island moving south. Similar trends were observed on adjacent islands. The overall area changed relatively little across the entire coastline over the 20-year period with accretion of up to 315 km2, countered by erosion of about 307 km2.  相似文献   

12.
Abstract

There are three major factors affecting the coastal environment in Taiwan: tidal current, long-shore current and land subsidence. in Taiwan, most industrial areas are located on the southwestern coast. Most of the pollutants from the factories are discharged directly to the ocean, harbours or rivers. the pollutants in harbours or rivers will eventually be delivered to coastal waters. There, the tidal current is the major force dispersing the pollutants nearshore. the polluted water extends to an area about 5 km on both sides from the discharge source, and within about 3–4 km off-shore. in this study, Hsien-Da Harbour in southwestern Taiwan is cited to explain the effects of tidal current on the coastal environment. the long-shore current induced by breaking waves is the major force shaping the coastal morphology. Along the western coast of Taiwan, the long-shore current mainly flows northward along the southern section, and southward along the northern section. in the last one hundred years, in general, the coast has been eroded along the northern and southern sections of western coast, and some reclaimed lands were formed in the middle section. Recently, erosion in some coastal zones is quite serious because of excess groundwater extraction, especially along the southwestern coast. Groundwater extraction might also induce land subsidence. There are some areas near the coast which suffer serious land subsidence problems.  相似文献   

13.
Detailed analysis of the land cover of the Estonian coastal zone is presented based on Estonian laws on coastal zone management, the CORINE Land Cover (CLC) system, the status of protected areas, and administrative division data of Estonia. By law the coastal zone is defined as a 200-m wide zone landward from the mean sea level line. The length of the Estonian coastline (including the islands) is 3794 km. The 200-m zone of the Estonian coast is very diverse. Out of the 34 CORINE land cover types represented in Estonia 30 are found in the coastal zone. Three dominating land cover types in the coastal zone of Estonia are inland marshes, coniferous forest and semi-natural grassland. Their total share is 47%; the other 27 land cover types represented here cover 53% of the coastal zone. The Estonian coastal zone is generally in a good natural condition. The proportion of artificial surfaces throughout the zone is merely 4.7%, while agricultural landscapes cover only ca. 10%. Land cover data for the coastal zone are also presented by county. Of the 200-m coastal zone 24% is under protection, which is more than twice the value for Estonia as a whole (11%). Legislative protection of the coastal zone is presently satisfactory. The use of the CORINE Land Cover system enables comparisons with other European regions since CLC data have been compiled for most of Europe.  相似文献   

14.
There are three major factors affecting the coastal environment in Taiwan: tidal current, long-shore current and land subsidence. in Taiwan, most industrial areas are located on the southwestern coast. Most of the pollutants from the factories are discharged directly to the ocean, harbours or rivers. the pollutants in harbours or rivers will eventually be delivered to coastal waters. There, the tidal current is the major force dispersing the pollutants nearshore. the polluted water extends to an area about 5 km on both sides from the discharge source, and within about 3-4 km off-shore. in this study, Hsien-Da Harbour in southwestern Taiwan is cited to explain the effects of tidal current on the coastal environment. the long-shore current induced by breaking waves is the major force shaping the coastal morphology. Along the western coast of Taiwan, the long-shore current mainly flows northward along the southern section, and southward along the northern section. in the last one hundred years, in general, the coast has been eroded along the northern and southern sections of western coast, and some reclaimed lands were formed in the middle section. Recently, erosion in some coastal zones is quite serious because of excess groundwater extraction, especially along the southwestern coast. Groundwater extraction might also induce land subsidence. There are some areas near the coast which suffer serious land subsidence problems.  相似文献   

15.
According to estimates from the Danish Meteorological Institute global warming until 2080 may cause a relative sea-level rise in Danish waters of 33–46 cm. In the present paper the possible impact of a sea-level rise of this magnitude on coastal habitat types is discussed for three case studies, based on previous investigations of vegetation, topography and soil of localities at the Baltic coast of Denmark. The case studies include the following types of localities and habitats: (1) an off-shore barrier complex: sandy beach, sand dune, geolittoral, brackish, low-tidal meadow, reed bed; (2) a protected bay: geolittoral, brackish meadow, coastal grassland; (3) a dune area: mobile and fixed dune communities, and adjoining sea wall: coastal grassland. In the geolittoral meadow and coastal grassland habitats the sea-level rise is expected to cause a horizontal displacement of vegetation zones and a reduction in area, depending on accretion rate (sedimentation, peat formation), local topography and inland land-use. In the beach and sand dune habitats the sea-level rise is expected to cause a change in groundwater level, influencing slack vegetation, and a change in the erosion/accretion pattern, resulting in landward rebuilding of the mobile dune as well as in a more or less diffuse inland sand drift, causing destabilization of fixed dune vegetation.  相似文献   

16.
Coastal erosion is a serious environmental problem that has caused the loss of private infrastructure and national assets along Ghana’s coast. Several hard engineering measures have thus been used to protect some communities and vital state assets when they became threatened. Regardless of this problem, sediment mining activities are increasingly practiced along most of Ghana’s coast, further exacerbating coastal erosion intensity and degrading coastal ecosystems. This paper provides an overview of the activities of coastal sediment miners along four administrative Districts in the Central Region of Ghana and identifies how issues arising from the practice are managed at the local community level as well as by state environmental regulators. The study uses a mixed-method approach, involving individual and group interviews, administration of a set of structured questionnaire and field observations, to identify coastal sediment mining and emerging management issues. Overall, three main categories of coastal sediment mining activities were identified in the area. Results indicate that coastal sediment mining is widely practiced by both commercial contractors and community members, giving rise to the high perception among residents that it is the reason for the degradation of the coastline in the studied areas. The study also established that state environmental regulators have weak inter-agency cooperation leading to poor enforcement of environmental laws and non-prosecution of offending individuals. The paper suggests that since each identified sediment mining activity has its own peculiar issues and mode of operation, coastal managers should address each category independently in order to derive lasting impacts in curtailing the practice.  相似文献   

17.
In this research, Landsat TM images were used to extract the land use information for Borneo’s coastal zones (0 to 35 km) during three time periods (1990, 2000, and 2010). Then, in combination with the DEM and shoreline types, the developmental differences under the influences of the geographical boundaries of the Borneo coastal zones were examined from such perspectives as the spatial distribution characteristics of the land development, sea-land gradient variation characteristics, and comparative analyses of the different regions. The results indicated that the geographic boundaries, as well as the different countries, had great influences on the development of the coastal zones. The regions with the most active development in Borneo’s coastal zones were mainly located in the estuary bay, onshore with land on both sides, and the near-shore alluvial plain with DEM?<?50 m. The northwestern coast zone showed relatively flat topography, and was close to an important international waterway. Therefore, the development in this area was found to be more intense than in the southeastern coastal zone, and which was characterized by a long developmental history. On one side of the geographical boundary, the development was also found to differ among the different countries. Malaysia was observed to be dominated by industrial plantations. Meanwhile, the industrial plantations, agriculture, and aquaculture in Indonesia were significantly increased, which was closely linked with the national economic policies. Furthermore, the development of Borneo’s coastal zones has led to vegetation degradation towards a constant inland development, plantation enlargements, agricultural development, and cleared and burnt areas, which have resulted in the land use transfer of 22,000 km2 of forest land within the 0 to 35 km range.  相似文献   

18.
Coastal zones experience increased rates of coastal erosion, due to rising sea levels, increased storm surge frequencies, reduced sediment delivery and anthropogenic transformations. Yet, coastal zones host ecosystems that provide associated services which, therefore, may be lost due to coastal erosion. In this paper we assess to what extent past and future coastal erosion patterns lead to losses in land cover types and associated ecosystem service values. Hence, historical (based on CORINE land cover information) and projected (based on Dynamic and Interactive Vulnerability Assessment - DIVA - simulations) coastal erosion patterns are used in combination with a benefits transfer approach. DIVA projections are based on regionalized IPCC scenarios. Relative to the period 1975–2050, a case study is provided for selected European coastal country member states. For historical (1975–2006) coastal erosion trends, we observe territory losses in coastal agricultural, water body and forest & semi-natural areas – total coastal erosion equaling over 4,500 km2. Corresponding coastal ecosystem service values decrease from about €22.3 billion per year in 1975 to about €21.6 billion per year in 2006. For future (2006–2050) coastal erosion projections, total territory losses equal between ~3,700 km2 and ~5,800 km2 – coastal wetland areas being affected most severely. Corresponding coastal ecosystem service values decrease to between €20.1 and €19.4 billion per year by 2050. Hence, we argue that the response strategy of EU member states to deal with coastal erosion and climate change impacts should be based on the economic as well as the ecological importance of their coastal zones.  相似文献   

19.
Many of the world’s coasts appear vulnerable to the impacts of climate change and sea-level rise. This paper assesses the application of a coastal sensitivity index (CSI) to the Illawarra coast, a relatively well-studied shoreline in southeast Australia. Nine variables, namely (a) rock type, (b) coastal slope (c) geomorphology (d) barrier type (e) shoreline exposure (f) shoreline change (g) relative sea-level rise (h) mean wave height and (j) mean tide range, were adopted in calculation of the CSI (the square root of the product of the ranked variables divided by the number of variables). Two new variables, shoreline exposure and barrier type, were trialled in this analysis and the extent to which these increased the discriminatory power of the index was assessed. Four iterations of the CSI were undertaken using different combinations of ranked variables for each of 105 cells in a grid template, and the index values derived were displayed based on quartiles, indicating sections of coast with very high, high, moderate and low sensitivity. Increasing the number of variables increased the discriminatory power of the index, but the broad pattern and the rank order were very similar for each of the iterations. Rocky and cliffed sections of coast are least sensitive whereas sandy beaches backed by low plains or dunes record the highest sensitivity. It is difficult to determine shoreline change on this coast, because individual storms result in substantial erosion of beaches, but there are prolonged subsequent periods of accretion and foredune rebuilding. Consequently this variable is not a good indicator of shoreline sensitivity and the index is unlikely to provide a clear basis for forecasting future recession of beaches. The results of this study provide a framework for coastal managers and planners to prioritize efforts to enhance the resilience or consider adaptation measures in the coastal zone within a study region. Sensitivity of the coast if considered in conjunction with other social factors may be an input into broader assessments of the overall vulnerability of coasts and their communities.  相似文献   

20.
The Dutch province of Zeeland is situated in the southern part of the Delta region. The geographical location of the province and its history of inundation, land reclamation and dam-building, clearly illustrate the importance that water always has had and still has in The Netherlands. Coastal defence projects are of utmost importance for The Netherlands and the Delta Project is the crown project. The importance of this project does not only regard the protection against the sea; the Delta dams also contribute considerably to the regional infrastructure. They are a important contribution to the abolishment of the former isolation of the region. They control inland navigation and form important boundaries for water management. They separate salt, brackish and fresh water as well as waters with or without tidal-influence and they also influence the ecological systems in and along the waters. Through physical planning, including the coastal policy of today, land and water can be further integrated. This paper discusses the role of the Province in area planning, related to the division of labour between the various public authorities in The Netherlands: state, provinces and municipalities. Coastal and water policy at the provincial level have been largely integrated with relevant other interests. It may be concluded that regional planning and coastal policy are beginning to adopt a new view towards dealing with water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号