首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The ability of many animals and insects to track a plume to its source is a particularly impressive feat when the fluid dynamics is considered. Inspired by this observation this research seeks to identify the information in a passive scalar plume suitable for developing robust and efficient plume tracing algorithms. The subject of this study is a scalar plume emanating from a point source in a turbulent boundary layer which has been modeled in a laboratory facility built specifically for this purpose. A coupled PIV-LIF technique is used to measure the velocity and scalar field in a time resolved fashion. This data set is analyzed and the convergence rates of five single-point statistics, suitable as kernels of plume tracing algorithms, are investigated. The experimental data shows that the scalar fluctuations over long downstream distances from the source are characterized by filamentary structures that lead to relatively slow convergence rates for any statistic that is based on mean concentrations. The scalar intermittency, however, converges rapidly toward its true value, in fact converging to a testable hypothesis for source location direction faster than the time scale of the larger scale plume meander.  相似文献   

2.
The statistics of the fluctuating concentration field within a plume is important in the analysis of atmospheric dispersion of toxic, inflammable and odorous gases. Previous work has tended to focus on concentration fluctuations in single plumes released in the surface layer or at ground level and there is a general lack of information about the mixing of two adjacent plumes and how the statistical properties of the concentration fluctuations are modified in these circumstances. In this work, data from wind tunnel experiments are used to analyse the variance, skewness, kurtosis, intermittency, probability density function and power spectrum of the concentration field during the mixing of two identical plumes and results are compared with those obtained for an equivalent single plume. The normalised variance, skewness and kurtosis on the centre-lines of the combined plume increase with distance downwind of the stack and, in the two-source configuration, takes lower values than those found in the single plumes. The results reflect the merging process at short range, which is least protracted for cases in which the sources are in-line or up to 30 \(^{\circ }\) off-line. At angles of 45 \(^{\circ }\) and more, the plumes are effectively side-by-side during the merging process and the interaction between the vortex pairs in each plume is strong. Vertical asymmetry is observed between the upper and the lower parts of the plumes, with the upper part having greater intermittency (i.e. the probability that no plume material is present) and a more pronounced tail to the concentration probability distribution. This asymmetry tends to diminish at greater distances from the source but occurs in both buoyant and neutral plumes and is believed to be associated with the ‘bending-over’ of the emission in the cross-flow and the vortex pair that this generates. The results allowed us to identify three phases in plume development. The first, very near the stack, is dominated by turbulence generated within the plume and characterised by concentration spectra with distinct peaks corresponding to scales comparable with those of the counter-rotating vortex pair. A second phase follows at somewhat greater distances downwind, in which there are significant contributions to the concentration fluctuations from both the turbulence internal to the plume and the external turbulence. The third phase is one in which the concentration fluctuations appear to be controlled by the external turbulence present in the ambient flow.  相似文献   

3.
The patterns of stimulus available to moths flying along pheromone plumes in a 3-m-long wind tunnel were characterized using a high frequency photoionization detector in conjunction with an inert tracer gas. Four contrasting flow regimes and source conditions were produced: odor released in pulses from a vertical and horizontal array of four sources, odor released continuously from a point source, and odor released continuously from a point source into an oscillatory wake. Although the four flow regimes produced plumes of intermittent and fluctuating concentration, there were considerable differences in the structure of the signal presented to the sensor. Pulses of tracer gas released at 10 Hz retained most of their longitudinal and lateral separation. The plume growing in the disturbed flow (`oscillatory'), was broader in its lateral extent than the plume growing in an undisturbed flow (`continuous'), and the concentrations in the former were lower at each downstream position. The signal recorded in the disturbed flow had higher intermittency, but the ratio between the peak concentration and the signal mean was lower than in the continuous plume. Time scales were typically longer in the tunnel than in a field setting, but length scales and the main features of intermittency and fluctuation were similar. Moths flying along plumes of pheromone in this and similar wind tunnels typically slow their velocity and narrow the lateral excursions of their flight track as they approach a pheromone source. Which features of the plumes measured in this study account for these behavioral reactions remains to be determined.  相似文献   

4.
A variety of animals use olfactory appendages bearing arrays of chemosensory neurons to detect chemical signatures in the water or air around them. This study investigates how particular aspects of the design and behavior of such olfactory appendages on benthic aquatic animals affect the patterns of intercepted chemical signals in a turbulent odor plume. We use virtual olfactory `sensors' and `antennules' (arrays of sensors on olfactory appendages) to interrogate the concentration field from an experimental dataset of a scalar plume developing in a turbulent boundary layer. The aspects of the sensors that we vary are: (1) The spatial and temporal scales over which chemical signals arriving at the receptors of a sensor are averaged (e.g., by subsequent neural processing), and (2) the shape and orientation of a sensor with respect to ambient water flow. Our results indicate that changes in the spatial and temporal resolution of a sensor can dramatically alter its interception of the intermittency and variability of the scalar field in a plume. By comparing stationary antennules with those sweeping through the flow (as during antennule flicking by the spiny lobster, Panulirus argus), we show that flicking alters the frequency content of the scalar signal, and increases the likelihood that the antennule encounters peak events. Flicking also enables a long, slender (i.e., one-dimensional) antennule to intercept two-dimensional scalar patterns.  相似文献   

5.
Laminarization of flow in a two-dimensional dense gas plume was experimentally investigated in this study. The plume was created by releasing CO2 through a ground-level line source into a simulated turbulent boundary layer over an aerodynamically rough surface in a meteorological wind tunnel. The bulk Richardson number (Ri*), based on negative plume buoyancy, plume thickness, and friction velocity, was varied over a wide range so that the effects of stable stratification on plume laminarization could be observed. A variety of ambient wind speeds as well as three different sizes of roughness arrays were used so that possible effects of roughness Reynolds number (Re*) on plume laminarization could also be identified. Both flow visualization methods and quantitative measurements of velocity and intermittency of turbulence were used to provide quantitative assessments of plume laminarization.Flow visualization provided an overall picture of how the plume was affected by the negative buoyancy. With increasing Ri*, both the plume depth and the vertical mixing were significantly suppressed, while upstream propagation of the plume from the source was enhanced. The most important feature of the flow revealed by visualization was the laminarization of flow in the lower part of the plume, which appeared to be closely related to both Ri* and Re*.Measurements within the simulated dense gas plumes revealed the influence of the stable stratification on mean velocity and turbulence intensity profiles. Both the mean velocity and turbulence intensity were significantly reduced near the surface; and these reductions systematically depended on Ri*. The roughness Reynolds number also had considerable influence on the mean flow and turbulence structure of the dense gas plumes.An intermittency analysis technique was developed and applied to the digitized instantaneous velocity signals. It not only confirmed the general flow picture within the dense plume indicated by the flow visualization, but also clearly demonstrated the changes of flow regime with variations in Ri* and Re*. Most importantly, based on this intermittency analysis, simple criteria for characterizing different flow regimes are formulated; these may be useful in predicting when plume laminarization might occur.  相似文献   

6.
Farrell  Jay A.  Murlis  John  Long  Xuezhu  Li  Wei  Cardé  Ring T. 《Environmental Fluid Mechanics》2002,2(1-2):143-169
This article presents the theoretical motivation, implementation approach, and example validation results for a computationally efficient plume simulation model, designed to replicate both the short-term time signature and long-term exposure statistics of a chemical plume evolving in a turbulent flow. Within the resulting plume, the odor concentration is intermittent with rapidly changing spatial gradient. The model includes a wind field defined over the region of interest that is continuous, but which varies with location and time in both magnitude and direction. The plume shape takes a time varying sinuous form that is determined by the integrated effect of the wind field. Simulated and field data are compared. The motivation for the development of such a simulation model was the desire to evaluate various strategies for tracing odor plumes to their source, under identical conditions. The performance of such strategies depends in part on the instantaneous response of target receptors; therefore, the sequence of events is of considerable consequence and individual exemplar plume realizations are required. Due to the high number of required simulations, computational efficiency was critically important.  相似文献   

7.
The application of computational fluid dynamics (CFD), particularly Large Eddy Simulation, for the modelling of buoyant turbulent plumes, has been demonstrated to be very accurate, but computationally expensive. Here a more basic, and therefore more generally practicable, approach is presented. Commercial CFD software is used to model such plumes using Reynolds-Averaged Navier-Stokes (RANS) turbulence models. A careful comparison is made between the numerical predictions and well-established results regarding the bulk properties of plumes. During this process, we are able to observe the well-known approximate Gaussian nature of the plume and achieve quantitative agreement with empirical plume spread coefficients. The use of numerical modelling allows for the investigation of the flow field and turbulence in those regions of the plume of most interest—the plume edge and near source regions. A comprehensive sensitivity study is conducted to identify the limits of applicability of this modelling approach. It is shown that the standard modelling approach of Morton, Taylor and Turner, which introduced the well-known entrainment assumption, pertains in a region well above the source region. At the plume edge, the levels of turbulence are contrasted with the value of the entrainment parameter. Finally, the effects of forcing the plumes with additional momentum at the source are considered, including the case of a pure jet. We show how these forced plumes eventually lose their momentum excess and tend to the behaviour of a pure, buoyant plume.  相似文献   

8.
Atmospheric air pollution turbulent fluxes can be assumed to be proportional to the mean concentration gradient. This assumption, along with the equation of continuity, leads to the advection-diffusion equation. Moreover, large eddies are able to mix scalar quantities in a manner that is counter to the local gradient. We present a general solution of a two-dimension steady state advection-diffusion equation, considering non-local turbulence closure using the General Integral Laplace Transform Technique. We show some examples of applications of the new solution with different vertical diffusion parameterisations.  相似文献   

9.
Eddy-resolving techniques have become a powerful tool to investigate shallow flows at both laboratory and field scale. In this paper several examples are given where high-resolution 3D numerical simulation are used to investigate the spatial development of mixing interfaces (MIs) forming in shallow environments like open channels with idealized and natural bathymetry where the bed friction plays a major role in the spatial development of the MI and associated large-scale turbulence. The focus is on the coherent structures forming within the MI and in its vicinity that control the momentum and mass exchange and heat transfer between the two sides of the MI. Examples include: (1) a MI developing in a flat-bed open channel downstream of a splitter wall separating two parallel fully-turbulent streams of different velocities, (2) a MI developing in a flat-bed open channel downstream of a 60 \(^{\circ }\) wedge separating two non-parallel fully turbulent streams of different velocities, (3) a MI developing downstream of a river confluence for cases with a large and, respectively, a small difference between the mean velocities of the two streams. Stratification effects due to unequal densities of the two incoming streams are also discussed, (4) a MI developing between a main rectangular straight channel and a series of shallow embayments present at one of the channel banks. Besides using available experimental data to demonstrate that eddy resolving techniques can accurately predict the structure of the MI and its development, the paper discusses new insights into the physics of these flows obtained based on the simulations. The paper also provides an overview of the main numerical approaches that can be used to simulate the unsteady dynamics of the large scale turbulence in flows containing shallow MIs.  相似文献   

10.
We introduce a new approach to diffusion-source estimation for quick identification of the unknown source, based on Taylor’s diffusion theory for turbulent transport of passive scalar from a fixed point source. In order to evaluate the method, we used planar laser-induced fluorescence to measure the concentration field of fluorescent dye in water flowing in a channel. We considered two kinds of datasets: basis data and observed data. The former is used to determine the basis functions characterizing the streamwise dependence of variances for three statistics: the mean concentration, root-mean-square (RMS) of fluctuations in the concentration, and RMS of the temporal gradient of the fluctuating concentration. Consistent with Taylor’s theory, we found that the lateral distribution of each statistic was basically Gaussian, and their standard deviations increased as a function of the square root of the distance from the emitted point. Based on these facts, a basis function can be formulated and expected to be valid for estimation of unknown sources. Source estimation was performed with the observed data, which corresponded to limited available information about the concentration from an unknown point source. We confirmed a good prediction accuracy of the proposed method with an averaged bias as small as the turbulent integral scale. Better precision was achieved by employing several statistics simultaneously. In this case, the standard deviation of the estimated source position was assessed at 14 % of the mean distance between the source and measurement points, after 100 source-estimate trials with different datasets. The methodology tested in this paper is expected to be applicable more general and complex environmental diffusion issues involving anisotropic turbulent dispersion, and space–time variable mainstream systems; but its versatility in such systems is currently under investigation.  相似文献   

11.
This report describes the results of a multidisciplinary study of turbulent chemical plume tracking of blue crabs and autonomous agents. The study consists of a coordinated investigation of animal behavior, fluid mechanics, strategy simulations, and chemical sensing. The objective is to provide a comprehensive understanding of chemical plume tracking in a single biological system and to prescribe strategies that are effective for autonomous agents. The consensus of the study is that spatial variation in the plume, measured by sampling at multiple locations simultaneously, yields information that is useful for plume tracking. Behavioral investigations reveal that blue crabs demonstrate the ability to detect the chemical plume and use lateral movements to avoid losing contact with the odor. Blue crabs move rapidly towards the source, strongly suggesting that temporal comparisons of odor properties are not employed during navigation. Analysis of the concentration fields reveals that a spatial correlation between spanwise-separated sensors indicates the relative direction of the plume centerline over short time periods provided the sensor spacing is scaled appropriately relative to the plume. Similarly, simulations of tracking strategies reveal an optimal separation for the sensors at a distance roughly equal to the plume width; both smaller and larger sensor spans degrade tracking performance. The simulations further reveal an optimal sensor size above which the fine details of the concentration distribution are obscured and below which there is insufficient contact with the odor to enable effective navigation. Finally, analysis of the chemical signal shows that the frequency dependent correlation function between two (or more) sensors indicates the relative position of the source.  相似文献   

12.
We carried out a field study of the plume discharged by a near-shore wastewater outfall near the Akashi Strait, Japan. Using an Acoustic Doppler Current Profiler and a tow-body CTD, we measured the near-surface salinity and temperature fields in the region throughout an M2 tidal cycle. We filtered the data in T–S space to remove water masses other than the wastewater, and then used the adiabatic mixing assumption to calculate the concentration of wastewater in the far field of this plume. Averaging the T–S fields of repeated surveys over a time period during which the tidal regime did not change substantially, allowed comparison of the time-averaged plume with the analytical solution for a plume diffusing in both the horizontal and vertical dimensions. The resulting vertical turbulent diffusion coefficients agreed well with those resulting from Thorpe scales determined via a vertically-profiling CTD, as well as with the canonical value for open channel flow of D z = 0.067hu *. The corresponding horizontal turbulent diffusion coefficients, however, were two orders of magnitude larger than those typically observed in straight channels, and an order of magnitude larger than those observed in meandering rivers. This is likely a result of enhanced horizontal mixing due to barotropic eddies generated by the interaction of strong tidal flow with headlands and levees, as well as due to the time-varying nature of tidal flow, and baroclinic spreading of the buoyant wastewater plume.  相似文献   

13.
Sediment-laden turbulent flows are commonly encountered in natural and engineered environments. It is well known that turbulence generates fluctuations to the particle motion, resulting in modulation of the particle settling velocity. A novel stochastic particle tracking model is developed to predict the particle settling out and deposition from a sediment-laden jet. Particle velocity fluctuations in the jet flow are modelled from a Lagrangian velocity autocorrelation function that incorporates the physical mechanism leading to a reduction of settling velocity. The model is first applied to study the settling velocity modulation in a homogeneous turbulence field. Consistent with basic experiments using grid-generated turbulence and computational fluid dynamics (CFD) calculations, the model predicts that the apparent settling velocity can be reduced by as much as 30 % of the stillwater settling velocity. Using analytical solution for the jet mean flow and semi-empirical RMS turbulent velocity fluctuation and dissipation rate profiles derived from CFD predictions, model predictions of the sediment deposition and cross-sectional concentration profiles of horizontal sediment-laden jets are in excellent agreement with data. Unlike CFD calculations of sediment fall out and deposition from a jet flow, the present method does not require any a priori adjustment of particle settling velocity.  相似文献   

14.
Free-surface flows over patchy vegetation are common in aquatic environments. In this study, the hydrodynamics of free-surface flow in a rectangular channel with a bed of rigid vegetation-like cylinders occupying half of the channel bed was investigated and interpreted by means of laboratory experiments and numerical simulations. The channel configurations have low width-to-depth aspect ratio (1.235 and 2.153). Experimental results show that the adjustment length for the flow to be fully developed through the vegetation patch in the present study is shorter than observed for large-aspect-ratio channels in other studies. Outside the lateral edge of the vegetation patch, negative velocity gradient (\(\partial \overline{u}/\partial z < 0\)) and a local velocity maximum are observed in the vertical profile of the longitudinal velocity in the near-bed region, corresponding to the negative Reynolds stress (\(- \overline{{u^{\prime}w^{\prime}}} < 0\)) at the same location. Assuming coherent vortices to be the dominant factor influencing the mean flow field, an improved Spalart–Allmaras turbulence model is developed. The model improvement is based on an enhanced turbulence length scale accounting for coherent vortices due to the effect of the porous vegetation canopy and channel bed. This particular flow characteristic is more profound in the case of high vegetation density due to the stronger momentum exchange of horizontal coherent vortices. Numerical simulations confirmed the local maximum velocity and negative gradient in the velocity profile due to the presence of vegetation and bed friction. This in turn supports the physical interpretation of the flow processes in the partly obstructed channel with vegetation patch. In addition, the vertical profile of the longitudinal velocity can also be explained by the vertical behavior of the horizontal coherent vortices based on a theoretical argument.  相似文献   

15.
The hydrodynamics of flows through a finite length semi-rigid vegetation patch (VP) were investigated experimentally and numerically. Detailed measurements have been carried out to determine the spatial variation of velocity and turbulence profiles within the VP. The measurement results show that an intrusion region exists in which the peak Reynolds stress remains near the bed. The velocity profile is invariant within the downstream part of the VP while the Reynolds stress profile requires a longer distance to attain the spatially invariant state. Higher vegetation density leads to a shorter adjustment length of the transition region, and a higher turbulence level within the VP. The vegetation density used in the present study permits the passing through of water and causes the peak Reynolds stress and turbulence kinetic energy each the maximum at the downstream end of the patch. A 3D Reynolds-averaged Navier–Stokes model incorporating the Spalart–Allmaras turbulence closure was employed subsequently to replicate the flow development within the VP. The model reproduced transitional flow characteristics well and the results are in good agreement with the experimental data. Additional numerical experiments show that the adjustment length can be scaled by the water depth, mean velocity and maximum shear stress. Empirical equations of the adjustment lengths for mean velocity and Reynolds stress were derived with coefficients quantified from the numerical simulation results.  相似文献   

16.
Duan  G.  Jackson  J. G.  Ngan  K. 《Environmental Fluid Mechanics》2019,19(4):911-939

The scalar dynamics within a unit-aspect-ratio street canyon are studied using large-eddy simulation. The key processes of ventilation and mixing are analysed with the canyon-averaged concentration, mean tracer age and variance. The results are sensitive to the source location and can be classified according to the streamline geometry. The canyon-averaged concentrations for the corner vortices, vortex sea and central vortex do not converge to the same value at large times, though the mean decay rates do. The variance measured with respect to the canyon average shows two distinct decay regimes: the early regime reflects large-scale straining and enhanced diffusion across streamlines, while the late regime is associated with escape from the canyon, i.e., ventilation. Analytical predictions for the variance-decay or mixing time scales are verified for the early regime. It is argued that the presence of an open boundary at the roof level suppresses rapid mixing of the scalar field and is responsible for differences with respect to scalar dynamics within closed domains.

  相似文献   

17.
Laboratory experiments have been carried out to investigate the effects of a sloping wall headland on the flow characteristics and the associated concentration distributions from a point source around the headland. A semi-conical headland with a slope of 1:2 was set up in a flow basin, 4.8 m long and 3.8 m wide. In this paper, the experimental results of a steady shallow-water current are reported. Three dimensional flow velocities in the basin were measured using Sontek-ADV instrument. The dye concentration levels in the basin were measured by two fluorometers. The experimental results showed a large-scale re-circulation region behind the semi-conical headland. The peak turbulence energy, at about 53% of the local kinetic flow energy, coincides with the region of high velocity gradient. Significant vertical flows were observed around the area near the downhill slope of the headland, with a maximum ratio of vertical to horizontal velocities being about 22%. Such relatively significant vertical scouring velocities, coupled with strong turbulence energy and high horizontal velocity gradients in the same region, could cause severe bed erosion. The experimental results have also been compared with the predicted results of a depth-averaged numerical model. The predicted eddy structure and the concentration distribution in the re-circulation area were found to compare favourably with the experimental results. However, the discrepancies in the flow velocities and the concentration levels near the headland were apparent. It was observed that the dye concentration continued to spread in the cross-stream direction after passing the headland, whereas only a limited extent of the lateral spreading was predicted by the numerical model further downstream of the headland.  相似文献   

18.
We develop a stochastic model for the time-evolution of scalar concentrations and temporal gradients in concentration experienced by observers moving within inhomogeneous plumes that are dispersing within turbulent flows. In this model, scalar concentrations and their gradients evolve jointly as a Markovian process. Underlying the model formulation is a natural generalisation of Thomson’s well mixed condition [Thomson DJ (1987) J Fluid Mech 180:529–556]. As a consequence model outputs are necessarily compatible with statistical properties of scalars observed in experiment that are used here as model input. We then use the model to examine how insects aloft within the atmospheric boundary-layer can locate odour sources by modulating their flight patterns in response to odour cues. Mechanisms underlying odour-mediated flights have been studied extensively at laboratory-scale but an understanding of these flights over landscape scales is still lacking. Insect flights are simulated by combining the stochastic model with a simple model of insect olfactory response. These simulations show the strong influence of wind speed on the distributions of the times taken by insects to locate the source. In accordance with experimental observations [Baker TC, Vickers NJ (1997) In: Insect pheromone research: new directions, pp 248–264; Mafra-Neto A, Cardé RT (1994) Nature 369:142–144], flight patterns are predicted to become straighter and shorter, and source location is predicted to become more likely as the mean wind speed increases. The most probable arrival time to the source decreases with the mean wind speed. It is shown that scale-free movement patterns arising from olfactory-driven foraging stem directly from the power-law distribution of concentration excursion times above/below a threshold level and are robust with respect to variations in Reynolds number. Flight lengths are well represented by a power law distribution in agreement with the observed patterns of foraging bumblebees [Heinrich B (1979) Oecologia 40(3):235–245].  相似文献   

19.
The results of large-eddy simulations of flow and transient solute transport over a backward facing step and through a 180° bend are presented. The simulations are validated successfully in terms of hydrodynamics and tracer transport with experimental velocity data and measured residence time distribution curves confirming the accuracy of the method. The hydrodynamics are characterised by flow separation and subsequent recirculation in vertical and horizontal directions and the solute dispersion process is a direct response to the significant unsteadiness and turbulence in the flow. The turbulence in the system is analysed and quantified in terms of power density spectra and covariance of velocity fluctuations. The injection of an instantaneous passive tracer and its dispersion through the system is simulated. Large-eddy simulations enable the resolution of the instantaneous flow field and it is demonstrated that the instabilities of intermittent large-scale structures play a distinguished role in the solute transport. The advection and diffusion of the scalar is governed by the severe unsteadiness of the flow and this is visualised and quantified. The analysis of the scalar mass transport budget quantifies the mechanisms controlling the turbulent mixing and reveals that the mass flux is dominated by advection.  相似文献   

20.
In contrast with recent advances on the dynamics of the flow at a forest edge, few studies have considered its role on scalar transport and, in particular, on CO2 transfer. The present study addresses the influence of the abrupt roughness change on forest atmosphere CO2 exchange and contrasts the concentration and flux fields against those of a uniform forested surface. We use an atmospheric boundary layer two-equation closure model that accounts for the flow dynamics and vertical divergence of CO2 sources/sinks within a plant canopy. This paper characterizes the spatial variation of CO2 fluxes as a function of both sources/sinks distribution and the vertical structure of the canopy. Results suggest that the ground source plays a major role in the formation of wave-like vertical CO2 flux behavior downwind of a forest edge, despite the fact that the contribution of foliage sources/sinks changes monotonously. Such a variation is caused by scalar advection in the trunk space and reveals itself as a decrease or increase in vertical fluxes over the forest relative to carbon dioxide exchange of the underlying forest. The effect was more pronounced in model forests where the leaf area is concentrated in the upper part of the canopy. These results can be useful both for interpretation of existing measurements of net ecosystem exchange of CO2 (NEE) from flux towers in limited fetch conditions and in planning future CO2 transport experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号