首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spatial, diel and tidal variability in the abundance of piscivorous fishes and their teleost prey, and the dietary composition of predatory fishes were investigated in beds of Heterozostera tasmanica within Port Phillip Bay, Australia, from September 1997 to February 1998. Predatory and prey fish assemblages were sampled from beds of H. tasmanica at three locations during each combination of diel (day and night) and tidal (high and low) cycles. Pelagic and benthic crustaceans represented >60% by abundance of the diets of all predatory fishes. Seven species, 54% of all predatory fishes, were piscivorous. These piscivores consumed individuals from seven families, 36.8% of the fish families being associated with seagrass. Western Australian salmon, Arripis truttacea (Arripidae) (n = 174) and yank flathead, Platycephalus speculator (Platycephalidae) (n = 46) were the most abundant piscivores. A. truttacea consumed larval/post-larval atherinids, gobiids and sillaginids. P. speculator consumed late-juvenile/adult atherinids, clinids and gobiids. While the abundances of piscivores varied between locations (P < 0.001) and diel periods (P = 0.028), the relative differences in piscivore abundance between sites and diel periods were not consistent between tides. The abundances of A. truttacea varied in a complex way amongst sites, diel period and tidal cycle, as shown by a three-way interaction between these factors (P = 0.026). Only during diurnal periods at St. Leonards was the abundance of A. truttacea significantly higher during high than low tides (P < 0.001). During the other diel periods at each site, the abundance of A. truttacea did not vary. P. speculator was significantly more abundant nocturnally (P = 0.017). The abundance of small (prey) fishes varied significantly amongst sites (P < 0.001). During the day, the abundance of small fishes did not vary between high and low tides (P = 0.185), but their nocturnal abundance was greater during low tide (P < 0.001). Atherinids (n = 1732) and sillaginids (n = 1623) were the most abundant families of small fishes. Atherinids were significantly more abundant nocturnally (P = 0.005) and during low tides (P = 0.029), and varied significantly amongst sites (P < 0.001). Sillaginids varied significantly only amongst sites (P < 0.001). Seagrass beds provide a foraging habitat for a diverse assemblage of predatory fishes, many of which are piscivorous. Anti-predator behaviour and amongst-location variability in abundances of piscivorous fishes may explain some of the diel and tidal, and broad-scale spatial patterns in small-fish abundances. Received: 23 July 1999 / Accepted: 18 January 2000  相似文献   

2.
Wave action is known to influence the abundance and distribution of intertidal organisms. Wave action will also determine the duration and suitability of various foraging windows (high-tide and low-tide, day and night) for predation and can also affect predator behaviour, both directly by impeding prey handling and indirectly by influencing prey abundance. It remains uncertain whether semi-terrestrial mobile predators such as crabs which can access intertidal prey during emersion when the effects of wave action are minimal, are influenced by exposure. Here, we assessed the effect of wave action on the abundance and population structure (size and gender) of the semi-terrestrial intertidal crab Pachygrapsus marmoratus on rocky shores in Portugal. The activity of P. marmoratus with the tidal cycle on sheltered and exposed shores was established using baited pots at high-tide to examine whether there was activity during intertidal immersion and by low-tide searches. Because prey abundance varies along a wave exposure gradient on most Portuguese shores and because morphology of crab chelipeds are known to be related to diet composition, we further tested the hypothesis that predator stomach contents reflected differences in prey abundance along the horizontal gradient in wave exposure and that this would be correlated with the crab cheliped morphology. Thus, we examined phenotypic variation in P. marmoratus chelipeds across shores of differing exposure to wave action. P. marmoratus was only active during low-tide. Patterns of abundance and population structure of crabs did not vary with exposure to wave action. Stomach contents, however, varied significantly between shores of differing exposure with a higher consumption of hard-shelled prey (mussels) on exposed locations, where this type of prey is more abundant, and a higher consumption of barnacles on sheltered shores. Multivariate geometric analysis of crab claws showed that claws were significantly larger on exposed shores. There was a significant correlation between animals with larger claws and the abundance of mussels in their stomach. Variation in cheliped size may have resulted from differing food availability on sheltered and exposed shores.  相似文献   

3.
Atlantic bluefin tuna (Thunnus thynnus) are highly migratory predators whose abundance, distribution, and somatic condition have changed over the past decades. Prey community composition and abundance have also varied in several foraging grounds. To better understand underlying food webs and regional energy sources, we performed stomach content and stable isotope analyses on mainly juvenile (60–150 cm curved fork length) bluefin tuna captured in foraging grounds in the western (Mid-Atlantic Bight) and eastern (Bay of Biscay) Atlantic Ocean. In the Mid-Atlantic Bight, bluefin tuna diet was mainly sand lance (Ammodytes spp., 29% prey weight), consistent with historic findings. In the Bay of Biscay, krill (Meganyctiphanes norvegica) and anchovy (Engraulis encrasicolus) made up 39% prey weight, with relative consumption of each reflecting annual changes in prey abundance. Consumption of anchovies apparently declined after the local collapse of this prey resource. In both regions, stable isotope analysis results showed that juvenile bluefin tuna fed at a lower trophic position than indicated by stomach content analysis. In the Mid-Atlantic Bight, stable isotope analyses suggested that >30% of the diet was prey from lower trophic levels that composed <10% of the prey weights based upon traditional stomach content analyses. Trophic position was similar to juvenile fish sampled in the NW Atlantic but lower than juveniles sampled in the Mediterranean Sea in previous studies. Our findings indicate that juvenile bluefin tuna targeted a relatively small range of prey species and regional foraging patterns remained consistent over time in the Mid-Atlantic Bight but changed in relation to local prey availability in the Bay of Biscay.  相似文献   

4.
To examine the potential trophic competition between myctophids and small epipelagic fishes in the nursery grounds in spring, we compared the stomach contents of dominant myctophids (Symbolophorus californiensis, Ceratoscopelus warmingii and Myctophum asperum; = 179) and juvenile epipelagic fishes (Japanese sardine, Sardinops melanostictus, Japanese anchovy, Engraulis japonicus, chub mackerel, Scomber japonicus, and spotted mackerel, S. australasicus; = 78) that were simultaneously collected at nighttime with a midwater trawl net around the Kuroshio-Oyashio transition zone in the western North Pacific. It was clear that the neritic copepod Paracalanus parvus s.l. was the most abundant species in NORPAC samples (0.335 mm mesh size) taken at the same stations. Diets of dominant myctophid fishes differed from those of the juvenile epipelagic fishes; Japanese sardine and anchovy mostly preyed upon P. parvus s.l. (23.6% of stomach contents in volume) and Corycaeus affinis (16.1%), respectively. Both chub and spotted mackerels mainly preyed upon the seasonal vertical migrant copepod, Neocalanus cristatus (15.9 and 14.7%, respectively). On the contrary, myctophid fishes probably do not specifically select the abundant neritic copepods. Namely, S. californiensis mostly preyed upon a diel vertical migrating copepod, Pleuromamma piseki (22.7 and 30.6% in stomach of juvenile and adult, respectively), while C. warmingii and M. asperum preyed on Doliolida (43.0% in stomach of juvenile C. warmingii), appendicularians (11.0% in stomach of juvenile M. asperum), and Ostracoda (6.3% in stomach of adult C. warmingii). Feeding habits of myctophid fishes seem adapted to their prey animals; low rate of digested material (less than 30% in volume) in stomachs of S. californiensis may be linked to the movement of P. piseki, hence S. californiensis can easily consume this copepod at night since they are more concentrated at night than daytime. High rate of digested material (over 40%) of M. asperum and adult C. warmingii suggest that they feed not only at night but also during the daytime in the midwater layer. Thus, myctophid fishes actually fed in the surface layer but less actively than the small epipelagic fishes. These results suggest that the potential for direct food competition between myctophids and small epipelagic fishes is low in the nursery ground, but there remains a possibility of indirect effects through their prey items, since the above gelatinous animals feed on common prey items as juveniles of Japanese sardine and anchovy.  相似文献   

5.
Mesocosm experiments coupled with dilution grazing experiments were carried out during the phytoplankton spring bloom 2009. The interactions between phytoplankton, microzooplankton and copepods were investigated using natural plankton communities obtained from Helgoland Roads (54°11.3′N; 7°54.0′E), North Sea. In the absence of mesozooplankton grazers, the microzooplankton rapidly responded to different prey availabilities; this was most pronounced for ciliates such as strombidiids and strobilids. The occurrence of ciliates was strongly dependent on specific prey and abrupt losses in their relative importance with the disappearance of their prey were observed. Thecate and athecate dinoflagellates had a broader food spectrum and slower reaction times compared with ciliates. In general, high microzooplankton potential grazing impacts with an average consumption of 120% of the phytoplankton production (P p ) were measured. Thus, the decline in phytoplankton biomass could be mainly attributed to an intense grazing by microzooplankton. Copepods were less important phytoplankton grazers consuming on average only 47% of P p . Microzooplankton in turn contributed a substantial part to the copepods’ diets especially with decreasing quality of phytoplankton food due to nutrient limitation over the course of the bloom. Copepod grazing rates exceeded microzooplankton growth, suggesting their strong top-down control potential on microzooplankton in the field. Selective grazing by microzooplankton was an important factor for stabilising a bloom of less-preferred diatom species in our mesocosms with specific species (Thalassiosira spp., Rhizosolenia spp. and Chaetoceros spp.) dominating the bloom. This study demonstrates the importance of microzooplankton grazers for structuring and controlling phytoplankton spring blooms in temperate waters and the important role of copepods as top-down regulators of microzooplankton.  相似文献   

6.
The effects of blooms of the cyanobacterium Trichodesmium spp. on penaeid prawn larvae were examined using in situ and laboratory rearing experiments and plankton surveys in Albatross Bay, Gulf of Carpentaria, Australia. The in situ experiments demonstrated that, during a bloom of Trichodesmium spp., larvae of the prawn Penaeus merguiensis did not develop beyond the first protozoea stage, and survival was low compared with times when diatoms were dominant in the same study area. Laboratory experiments confirmed the in situ results. None of the prawn larvae fed Trichodesmium sp. in laboratory experiments developed beyond the first protozoeal stage. In contrast, 94% of prawn larvae fed the green flagellate Tetraselmis suecica successfully developed to the second protozoea stage. Electron microscopy of larvae gut-contents revealed that Trichodesmium spp. were ingested by larvae but were of no nutritional value, resulting in starvation. A 7 yr plankton survey, from 1985 to 1992, showed that minimum abundance of prawn larvae occurs during the annual summer blooms of Trichodesmium spp. and that maximum abundance of prawn larvae generally occurs just after the bloom. There was a negative correlation between the abundance of larvae and the abundance of Trichodesmium at individual sites, one offshore and one inshore, indicating that the blooms affect the survival of larvae. We conclude that variations in both timing and magnitude of Trichodesmium blooms are important determinants of prawn larvae abundance in Albatross Bay. Received: 28 April 1997 / Accepted: 2 April 1998  相似文献   

7.
Prey selection was investigated in wild, resident common bottlenose dolphins, Tursiops truncatus, during the summer months in Sarasota Bay, Florida, USA. Stomach content analyses of 15 dolphins with extensive sighting histories and well-documented distributions were used to determine prey use. Prey availability was assessed by purse seine surveys. We compared the relative abundances of prey available to estimates of prey use at closely matching spatial and temporal scales. G-tests determined that dolphins in this study significantly selected for prey at the species, family, and soniferous/non-soniferous prey levels (G adj  = 753.98–1,775.93, df = 1–21, p ≤ 0.01). While comprising only 6.3% of the total available prey, soniferous fishes accounted for 51.9% of the total prey consumed. Manly’s standardized forage ratios and 95% Bonferroni confidence intervals determined significant positive selection for soniferous prey and against non-soniferous prey (βS = 0.9461 vs. βNS = 0.0539). Dolphins selected against Gerridae, Clupeidae, and Sparidae (β ≤ 0.0014), as well as against all the species within those families (β ≤ 0.0190). It is likely that passive listening for soniferous prey provides an ecological or energetic advantage to cetaceans utilizing this specific foraging technique.  相似文献   

8.
The composition and abundance of bladedwelling meiofauna was determined over a 15 mo period (1983–1984) from a Thalassia testudinum Banks ex König meadow near Egmont Key, Florida, USA. Harpacticoid copepods, copepod nauplii, and nematodes were the most abundant meiofaunal taxa on T. testudinum blades. Temporal patterns in species composition and population life-history stages were determined for harpacticoid copepods, the numerically predominant taxon. Sixteen species or species complexes of harpacticoid copepods were identified. Harpacticus sp., the most abundant harpacticoid, comprised 47.8% of the total copepods collected, and was present throughout the study. Copepodites dominated the population structures of the blade-dwelling harpacticoid species on most collection dates. Ovigerous females and/or copepodites were always present, indicating continuous reproductive activity. Results suggest that epiphytic algae influence meiofaunal abundance on seagrass blades, as densities of most meiofaunal taxa at Egmont Key were positively associated with percent cover of epiphytic algae throughout the study. The majority of significant correlations between meiofaunal density and cover of epiphytic algae involved filamentous algae, although encrusting algae dominated the epiphytic community. It appears that resources provided by epiphytic algae to seagrass meiofauna (additional food, habitat, and/or shelter from predation) may be associated with algal morphology.  相似文献   

9.
Despite intensive sampling efforts in coral reefs, densities and species richness of anguilliform fishes (eels) are difficult to quantify because these fishes evade classical sampling methods such as underwater visual census and rotenone poisoning. An alternative method revealed that in New Caledonia, eels are far more abundant and diverse than previously suspected. We analysed the stomach contents of two species of sea snakes that feed on eels (Laticauda laticaudata and L. saintgironsi). This technique is feasible because the snakes return to land to digest their prey, and (since they swallow their prey whole) undigested food items are identifiable. The snakes’ diet consisted almost entirely (99.6%) of eels and included 14 species previously unrecorded from the area. Very large populations of snakes occur in the study area (e.g. at least 1,500 individuals on a small coral islet). The snakes capture approximately 36,000 eels (972 kg) per year, suggesting that eels and snakes play key roles in the functioning of this reef ecosystem.  相似文献   

10.
Most of the current knowledge on Mediterranean gorgonians is restricted to investigations of those populations found within shallow sublittoral waters, and only limited data are available for populations located below scuba depth. To overcome this lack of information, the occurrence and abundance of the gorgonians Eunicella singularis, Paramuricea clavata, and Leptogorgia sarmentosa were investigated in northwestern Mediterranean benthic communities over a wide geographical (60 km of coastline) and bathymetrical (0–70 m deep) extent using a remotely operated vehicle (ROV). The greatest occurrence and abundances of E. singularis and P. clavata were concentrated in areas that are directly exposed to strong near-bottom currents. E. singularis was the most common and abundant species and displayed great plasticity and amplitude in its environmental preferences. Conversely, P. clavata showed a very patchy distribution that was associated with vertical rocky walls. Only isolated colonies of L. sarmentosa were observed in the study area. Hot spots of abundance of E. singularis and P. clavata were identified below a depth of 40 m, which demonstrates the importance of studying the distribution of benthic species over a wide geographical and bathymetrical extent.  相似文献   

11.
The spatiotemporal distributions of major phytoplankton taxa were quantified to estimate the relative contribution of different microalgal groups to biomass and bloom dynamics in the eutrophic Neuse River Estuary, North Carolina, USA. Biweekly water samples and ambient physical and chemical data were examined at sites along a salinity gradient from January 1994 through December 1996. Chemosystematic photopigments (chlorophylls and carotenoids) were identified and quantified using high-performance liquid chromatography (HPLC). A recently-developed factor-analysis procedure (CHEMTAX) was used to partition the algal group-specific chlorophyll a (chl a) concentrations based on photopigment concentrations. Results were spatially and temporally integrated to determine the ecosystem-level dynamics of phytoplankton community-constituents. Seasonal patterns of phytoplankton community-composition changes were observed over the 3 yr. Dinoflagellates reached maximum abundance in the late winter to early spring (January to March), followed by a spring diatom bloom (May to July). Cyanobacteria were more prevalent during summer months and made a large contribution to phytoplankton biomass, possibly in response to nutrient-enriched freshwater discharge. Cryptomonad blooms were not associated with a particular season, and varied from year to year. Chlorophyte abundance was low, but occasional blooms occurred during spring and summer. Over the 3 yr period, the total contribution of each algal group, in terms of chl a, was evenly balanced, with each contributing nearly 20% of the total chl a. Cryptomonad, chlorophyte, and cyanobacterial dynamics did not exhibit regular seasonal bloom patterns. High dissolved inorganic-nitrogen loading during the summer months promoted major blooms of cryptomonads, chlorophytes, and cyanobacteria. Received: 12 September 1997 / Accepted: 12 December 1997  相似文献   

12.
Fishes were trawled from Albatross Bay, on the west coast of Cape York, north Queensland (12°45S; 141°30E) during 4 yr, from August 1986 to April 1989. Penaeids were the first or second most important prey item by dry weight in 14 of the 34 penaeid-eating fish species, and in 12 of the species by frequency of occurrence. Eighteen species of Penaeidae were identified in fish stomachs. The five commercially important species comprised over 70% by dry weight of all the penaeids eaten by all the fishes;Metapenaeus ensis, Penaeus semisulcatus andP. merguiensis comprised 22, 28 and 11%, respectively. Commercially unimportant penaeids comprised 85% by numbers of all penaeids eaten. Larger fishes ate larger penaeids, mainly commercially important species, while smaller fishes ate smaller penaeids, mainly commercially unimportant species. All penaeid-eating fishes also ate some teleost prey and many were primarily piscivorous. Most penaeid-eating fish species took more benthic prey than bentho-pelagic and pelagic prey combined. The fishes with the strongest predation impact on commercially important penaeids wereCaranx bucculentus and four species of elasmobranchs. The highest impact on commercially unimportant penaeids was made by several species of smaller but abundant fishes. An overall annual estimate of 2950 t yr–1 of commercially important penaeids is eaten by all fishes, a much higher figure than the average 870 t yr–1 taken by the fishery. This study highlights the need for accurate measurement of the abundance of penaeid predators as well as analyses of their diets when assessing the impact of predators on prawn stocks.  相似文献   

13.
Globally, many commercial bivalve populations have declined in recent decades. In addition to overharvesting and habitat loss, the increasing frequency and intensity of harmful algal blooms (HABs) are likely to contribute to bivalve losses, particularly in cases where blooms negatively impact larval stages. This paper reports on the lethal effects of clonal cultures and blooms of Cochlodinium polykrikoides from the US Atlantic coast on the larvae of three species of commercially and ecologically valuable bivalves: the Eastern oyster (Crassostrea virginica), the bay scallop (Argopecten irradians), and the Northern quahog (hard clam; Mercenaria mercenaria). Both cultures and blooms of C. polykrikoides were highly toxic to all three species of bivalve larvae causing 80–100% mortality during 24- to 72-h exposures at concentrations of 1–2 × 103 cells ml−1. Toxicity was dependent on cell densities, growth stage of C. polykrikoides (i.e. cultures in exponential stage growth were more toxic than later stages), exposure time of larvae to cells (i.e. longer exposure caused higher mortality), the age of larvae (i.e. younger larvae were more sensitive), and the relative abundance of C. polykrikoides (i.e. the presence of other microalgae decreased toxicity). Free radical-scavenging enzymes (peroxidase and catalase) and the removal of C. polykrikoides cells (i.e. culture filtrate) significantly increased larval survival suggesting toxicity is maximized by contact with live cells and may involve labile toxins bound by these compounds including e.g. reactive oxygen species. The toxicity of C. polykrikoides to bivalve larvae was generally more severe than other HAB species (e.g. Karenia brevis, Karlodinium veneficum, Alexandrium tamarense, Prorocentrum minimum). Since the bivalves in this study spawn in the months when C. polykrikoides blooms on the east coast of North America, these results suggest that these blooms may have detrimental effects on efforts to restore these already diminished populations.  相似文献   

14.
Marine toxins generated by harmful algal blooms can be transferred through the marine food web and ultimately cause massive deaths of piscivorous predators. However, very few studies have explored the processes of accumulation and biotransformation of paralytic shellfish toxins (PSTs) within fishes. White seabream (Diplodus sargus) were orally challenged with contaminated cockles (Cerastoderma edule) containing N-sulfocarbamoyl and decarbamoyl toxins and non-contaminated cockles afterwards. Specific PSTs that occurred in low abundance in cockles (B1 7.6% and dcSTX 1.6% molar fraction) were the only toxins detected in fish viscera possibly resulting from selective elimination and transformation of the various PSTs. Concentration of toxins progressively increased in fish viscera throughout the uptake period. Toxins were then rapidly depurated (B1 0.905 day−1, dcSTX 0.467 day−1) when diet was changed to non-toxic cockles. Results indicate conversion of a precursor toxin into B1 which in turn might be converted into dcSTX at a lower extent. Low accumulation efficiency of 1.7 and 5.0% was calculated to B1 and dcSTX, respectively. This study contributes to a better understanding of dynamics of PSTs in fish and the fate of these compounds in the marine food web.  相似文献   

15.
Worldwide blooms of the green alga Trichosolen have been reported on damaged coral reefs following catastrophic events. However, the global distribution of Trichosolen and the factors triggering such blooms remained elusive because of a paucity of occurrence records. This study presents a presence-only niche modelling approach to map the potential distribution and delineate bloom risk areas as well as to identify environmental response optima for non-blooming occurrences and blooms. The modelled suitability map revealed a pantropical to subtropical distribution, while high suitability values delineated bloom risk areas including important tropical reef systems where Trichosolen has not yet been reported from. While both blooms and non-bloom occurrences show a strong preference for high temperatures, blooms responded better to broader nutrient ranges than non-blooms, suggesting the importance of sudden nutrient inputs during catastrophic events in the formation of blooms.  相似文献   

16.
Tang  Mei  Dou  Xiaomin  Wang  Chunyan  Tian  Zhe  Yang  Min  Zhang  Yu 《Environmental geochemistry and health》2017,39(6):1595-1605

The occurrence of antibiotic-resistant bacteria and antibiotic resistance genes (ARGs) has been intensively investigated for wastewater treatment systems treating single class of antibiotic in recent years. However, the impacts of alternately occurring antibiotics in antibiotic production wastewater on the behavior of ARGs in biological treatment systems were not well understood yet. Herein, techniques including high-capacity quantitative PCR and quantitative PCR (qPCR) were used to investigate the behavior of ARGs in an anaerobic–aerobic full-scale system. The system alternately treated three kinds of antibiotic production wastewater including ribostamycin, spiramycin and paromomycin, which referred to stages 1, 2 and 3. The aminoglycoside ARGs (52.1–79.3%) determined using high-capacity quantitative PCR were the most abundant species in all sludge samples of the three stages. The total relative abundances of macrolide–lincosamide–streptogramin (MLS) resistance genes and aminoglycoside resistance genes measured using qPCR were significantly higher (P < 0.05) in aerobic sludge than in sewage sludge. However, the comparison of ARGs acquired from three alternate stages revealed that MLS genes and the aminoglycoside ARGs did not vary significantly (P > 0.05) in both aerobic and anaerobic sludge samples. In aerobic sludge, one acetyltransferase gene (aacA4) and the other three nucleotidyltransferase genes (aadB, aadA and aadE) exhibited positive correlations with intI1 (r 2 = 0.83–0.94; P < 0.05), implying the significance of horizontal transfer in their proliferation. These results and facts will be helpful to understand the abundance and distribution of ARGs from antibiotic production wastewater treatment systems.

  相似文献   

17.
The biochemical composition of the sediment organic matter, and bacterial and meiofaunal dynamics, were monitored over an annual cycle in aPosidonia oceanica bed of the NW Mediterranean to test the response of the meiofauna assemblage to fluctuations in food availability. Primary production cycles of the seagrass and its epiphytes were responsible for relatively high (compared to other Mediterranean systems) standing stocks of organic carbon in sediments (from 1.98 to 6.16 mg Cg–1 sediment dry weight). The biopolymeric fraction of the organic matter (measured as lipids, carbohydrates, and proteins) accounted for only a small fraction (18%) of the total sedimentary organic carbon. About 25% of the biopolymeric fraction was of microphytobenthic origin. Sedimentary organic carbon was mostly refractory (56 to 84%) and probably largely not utilizable for benthic consumers. The biopolymeric fraction of the organic matter was characterized by high carbohydrate concentrations (from 0.27 to 5.31 mg g–1 sediment dry weight in the top 2 cm) and a very low protein content (from 0.07 to 0.80 mg g–1 sediment dry weight), which may be a limiting factor for heterotrophic metabolism in seagrass sediments. RNA and DNA concentrations of the Sediments varied significantly during the year. High RNA and DNA values occurred during the microphytobenthic bloom and in correspondence with peaks of bacterial abundance. Bacteria accounted for a small fraction of the total organic carbon (0.65%) and of the biopolymeric organic carbon (4.64%), whilst microphytobenthos accounted for 3.79% of total organic carbon and for 25.08% of the biopolymeric carbon. Bacterial abundance (from 0.8 to 5.8 × 108 g–1 sediment dry weight) responded significantly to seasonal changes of organic matter content and composition and was significantly correlated with carbohydrate concentrations. Bacteria might be, in the seagrass system, an important N storage for higher trophic levels as il accounted for 25% of the easily soluble protein. pool and contributed significantly to the total DNA pool (on average 12%). Total meiofaunal density ranged from 236 to 1858 ind. 10 cm–2 and was significantly related, with a time lag, to changes in bacterial standing stocks indicating that microbes might represent an important resource. Bacterial abundance and biomass were also significantly related to nematode abundance. These results indicate that bacteria may play a key role in the benthic trophic  相似文献   

18.
The predation impact of the two chaetognaths Eukrohnia hamata and Sagitta gazellae on mesozooplankton standing stock were investigated in three depth layers during two 24 h stations occupied in the vicinity of Marion Island in late austral summer (April/May) 1986. The zooplankton community at both stations was dominated by small copepods (Oithona spp., Microcalanus spp.), which accounted for >95% of total zooplankton abundance. Chaetognaths comprised <2% of total zooplankton abundance. E. hamata constituted >95% of the total chaetognath stock. The general trend in both species was decreasing abundance with increasing depth, which appeared to be correlated to the distribution of copepods (r 2 = 0.45; P <0.05). Gut-content analysis showed that copepods (mainly Oithona spp., Calanus spp. and Rhincalanus gigas) and ostracods were the main prey of both species, accounting for 87 and 61% of the total number of prey in E. hamata and S.␣gazellae stomachs, respectively. In the guts of S.␣gazellae, pteropods (Limacina spp.) and chaetognaths were also well represented. The mean number of prey items (NPC) for E. hamata ranged from 0.02 to 0.06 prey individual−1 which corresponds to an individual feeding rate (Fr) of between 0.05 and 0.12 prey d−1. For S.␣gazellae, the NPC values were higher, varying between 0.04␣and 0.20 prey individual−1, or between 0.15 and 0.76 prey d−1. The daily predation impact of the two chaetognaths was estimated at between 0.3 and 1.2% of the copepod standing stock or between 7 and 16% of the daily copepod production. Predation by S. gazellae on chaetognaths accounted for up to 1.6% of the chaetognath standing stock per day. Received: 26 November 1996 / Accepted: 31 October 1997  相似文献   

19.
This study aims to describe the variability of albacore (Thunnus alalunga) diet in the Northeast Atlantic and Mediterranean Sea and to identify possible relationships between this variability and the features of different feeding areas, the behavior, and the energetic needs of albacore. Stomach contents from albacore caught in five zones of the Bay of Biscay and surrounding waters (n = 654) and three zones of the Mediterranean Sea (n = 152) were analyzed in terms of diet composition and stomach fullness. Carbon and nitrogen stable isotope and C/N ratios were measured for white muscle and liver from albacore in the Bay of Biscay (n = 41) and Mediterranean Sea (n = 60). Our results showed a spatial, seasonal, inter-annual, and size-related variability in the diet of albacore. Albacore diet varied by location in the Mediterranean Sea, with a particularly high proportion of cephalopods, and low δ15N values in the Tyrrhenian Sea. In the Northeast Atlantic, albacore consumed a higher proportion of crustaceans and a lower proportion of fishes in the most offshore sampling zone than inshore. The digestion states of the major prey reflected a diurnal feeding activity, indicative of feeding in deeper waters offshore, whereas on the continental slope, feeding probably occurred in surface waters at night. Important seasonal and inter-annual diet variability was observed in the southeast of the Bay of Biscay, where preferred albacore prey appeared to be anchovy (Engraulis encrasicolus). Stomach fullness was inversely related to body size, probably reflecting higher energetic needs for smaller individuals. Albacore from the Bay of Biscay had significantly lower δ13C and higher δ15N values compared with albacore from the Mediterranean Sea, indicative of regional baseline shifts, and trophic position and muscle lipid stores in albacore increased with body size.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号