首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用2016年夏季北仑区域的VOCs及臭氧在线监测结果,研究了北仑区域VOCs的浓度水平、组成及来源情况,同时还分析了区域的臭氧生成与VOCs之间的关系.结果表明:北仑的VOCs浓度整体水平与一些大城市相比较低,在VOCs组成中比例最高的为烷烃,臭氧生成潜势(OFP)贡献最高的为芳香烃;北仑的VOCs来源与北京和上海均有所不同,且北仑的机动车对VOCs的贡献特征值B/T为0.56,超过了临界值;北仑区域的臭氧生成主要是由本地的VOCs等的臭氧前驱体通过光化学反应生成.  相似文献   

2.
为了解天津市环境空气挥发性有机物(VOCs)污染特征及来源,基于2019年城区点位高时间分辨率在线监测数据,对天津市VOCs浓度水平、化学组成及来源进行分析.结果表明,2019年天津市VOCs年均浓度为48.9 μg·m-3,不同季节浓度水平依次为:冬季(66.9 μg·m-3)>秋季(47.9 μg·m-3)>夏季(...  相似文献   

3.
《环境科学与技术》2021,44(2):57-65
该研究选取深圳市工业区、城区、郊区等不同类型的5个典型地区在2017年8月(夏季)、10-11月(秋季)、12月(冬季)开展了挥发性有机物(VOCs)离线手工采样及监测,获得了113种VOCs物种的体积分数数据并分析了VOCs污染特征及臭氧生成潜势(OFP)。研究表明,观测期间深圳市VOCs平均体积分数为37.3×10~(-9),以含氧挥发性有机物(OVOCs)和烷烃为主要组分,共占总体积分数的57.2%。秋冬季体积分数约为夏季的2倍,日变化上烷烃、烯烃、芳香烃体积分数在中午达到谷值,较早晚平均值偏低46.7%~48.3%,但OVOCs日变化曲线较为平缓。观测期间VOCs的OFP平均为121.2×10~(-9),OVOCs、烯烃和芳香烃是主要贡献来源,分别占42.0%、33.0%和15.3%,1,3-丁二烯、丙醛、乙醛、甲苯是对OFP贡献最大的前4个物种,共占55.8%。工业排放对臭氧生成影响显著,工业区点位OFP较高(182.2×10~(-9)),城区次之(98.6×10~(-9)),郊区最低(68.9×10~(-9)),同时工业区甲苯/苯(T/B)比值较高(10.7),表明受溶剂使用源的影响较大。加强控制溶剂使用源、工业源和机动车的VOCs排放将有利于降低深圳市大气OFP,从而减少臭氧生成。  相似文献   

4.
《环境》2013,(4):65
2月27日至3月13日,揭阳市环保局组织开展了市区非法电镀加工行业专项整治行动,共出动执法人员140人次,查处非法小型电镀加工场19家。据悉,本次行动执法人员共分为3个小组,分别对磐东街道办事处的溪墘村、南河村的在产非法电镀加工场实行了现场拍摄、调查笔录以及责  相似文献   

5.
对天津市区夏季挥发性有机物(VOCs)进行连续在线观测,分析其夏季污染特征。结果表明:56种检出VOCs平均浓度为54.44μg/m3,其中烷烃(55.14%)苯系物(27.76%)烯烃(12.09%)炔烃(5.00%),各组分中乙烷、甲苯、异戊烷浓度在4μg/m3以上。天津市区VOCs日变化呈现单谷型,与滨海新区相比受交通影响更为明显,受天然源影响较小。用B/T值衡量机动车尾气贡献,天津市区受机动车影响更为明显。用E/E、E/C值反映天津市区光化学进程,O3浓度越高,光化学反应进程越长。  相似文献   

6.
我国工业源挥发性有机物综合整治建议   总被引:2,自引:0,他引:2  
国际经验表明,控制VOCs排放是减少灰霾和光化学烟雾的有效措施。占据40%以上人为源排放量的工业源VOCs以无组织排放为主,几乎涉及工业生产全过程,其排放量估算方法的确定和监控体系的建立都对现行以有组织排放管理为主的大气环境管理模式提出挑战。结合我国大气环境管理要求,提出工业源VOCs综合整治建议,促进我国大气环境管理模式的更新升级。  相似文献   

7.
广州大气挥发性有机物的臭氧生成潜势及来源研究   总被引:12,自引:1,他引:12  
2008年秋季在广州城区及其下风向沿海乡村地区采用活性炭吸附管采集大气挥发性有机化合物(VOC),应用二次热解吸-GC/MS联用技术测量56种VOC的大气浓度,研究在典型海陆风条件下VOC的组成特征和日变化规律,并采用臭氧最大增量及OH自由基反应活性两种方法估算了该地区各VOC的臭氧生成潜力,探讨了VOC优先控制物种及...  相似文献   

8.
为研究石家庄市挥发性有机物(VOCs)的化学特征和污染来源,于2017年3月至2018年1月取3个国控点进行环境VOCs的罐采样及分析,并结合臭氧(O3)及气象数据进行相关性分析,采用正交矩阵因子模型(PMF)开展溯源解析;为确定夏季O3的污染周期,利用小波分析研究其时序特征.结果表明,石家庄市采样期间VOCs浓度为(137.23±64.62)μg·m-3,以卤代烷烃(31.77%)、芳香烃(30.97%)和含氧VOCs(OVOCs,23.76%)为主.采样期间VOCs的季节变化为:冬季(187.7μg·m-3)>秋季(146.8μg·m-3)>春季(133.24μg·m-3)>夏季(107.1μg·m-3),空间特征呈自西向东逐渐增加的格局.监测期内O3与VOCs、NO2呈显著负相关,与温度、日照时数、风速和能见度呈正相关.在夏季O3≤160μg·m...  相似文献   

9.
库盈盈  任万辉  苏枞枞  于兴娜 《环境科学》2021,42(11):5201-5209
采用德国AMA-GC 5000在线气相色谱仪对沈阳市的工业区、交通区和文教混合区这3个不同功能区进行大气挥发性有机物(VOCs)观测,分析沈阳市不同功能区大气VOCs的分布特征,并利用最大增量反应活性(MIR)估算了大气VOCs的臭氧生成潜势(OFP).结果表明,沈阳市大气VOCs平均总浓度为(82.19±54.99)μg·m-3,其中,采暖期浓度高于非采暖期,且工业区浓度较交通区和文教混合区明显偏高.VOCs浓度日变化曲线中,受早晚交通高峰影响为主的交通区和文教混合区呈双峰特征,工业区受工厂不定时运作排放影响存在多峰.交通区和文教混合区VOCs组分占比表现为:烷烃>芳香烃>烯烃>炔烃,但工业区炔烃占比高于烯烃,由B/T和E/A比值反映交通区和文教混合区受机动车尾气排放和燃料燃烧共同影响,工业区还受石油化工影响产生新鲜气团较多,且采暖期较非采暖期老化气团多.沈阳市大气VOCs的OFP贡献均值为232.89μg·m-3,烯烃组分对各功能区贡献均占第一,且工业区的芳香烃组分因浓度高贡献也较大.  相似文献   

10.
聚焦某石化企业芳烃、烯烃及炼油生产区域,针对芳烃连续重整、芳烃制氢、烯烃催化裂解和炼油常减压蒸馏4套活性VOCs组分较多的生产装置,开展了装置VOCs排放特征研究。使用苏玛罐对装置无组织逸散环节VOCs废气进行采集,并通过气相色谱-质谱联用仪(GC-MS)对106种VOCs组分进行定性定量分析,采用VOCs最大增量反应活性(MIR)来计算各装置VOCs排放对大气中O3生成的贡献。结果表明:烷烃是4套装置的VOCs特征组分,质量分数为42.17%~93.57%。烯烃裂解装置卤代烃质量分数为30.08%,常减压蒸馏装置芳香烃质量分数为27.83%;丙烷、乙烷、1,2-二氯乙烷和正庚烷是石化行业企业VOCs排放特征物种;4套装置臭氧生成贡献OFP为0.49~30.05 mg/m3,其顺序为炼油常减压蒸馏装置(30.05 mg/m3)>芳烃制氢装置(4.21 mg/m3)>芳烃连续重整装置(2.57 mg/m3)>烯烃裂解装置(0.49 mg/m3  相似文献   

11.
2018年夏季和秋季对连云港城区不同功能区开展大气VOCs采样,利用预浓缩系统和气相色谱质谱联用技术分析定量了107种VOCs物种,并利用最大增量反应活性(MIR)估算了大气VOCs的臭氧生成潜势(OFP).结果表明,连云港市城区大气VOCs平均体积分数为(22. 1±13. 1)×10-9,C2~C4的烷烃和烯烃、丙酮及乙酸乙酯是主要的VOCs物种,占TVOCs含量的59. 8%~75. 8%.不同功能区VOCs浓度排序为工业区[(28. 4±13. 5)×10-9]>风景区[(21. 7±4. 4)×10-9]>交通居民混合区[(20. 8±7. 2)×10-9].秋季VOCs浓度显著高于夏季,秋季工业区浓度最高(35. 4×10-9),夏季风景区VOCs浓度最高(21. 5×10-9).烷烃、含氧硫化合物和卤代烃是最主要的VOCs组分,分别占TVOCs浓度的35. 3%、26. 9%和15. 6%,受工业排放影响工业区含氧硫化合物含量显著...  相似文献   

12.
该文分析了长寿区环境空气中臭氧污染的特征,探讨了气温、湿度、风速等气象条件对环境空气中臭氧浓度的影响,通过绘制EKMA曲线指出臭氧生成的主导因素。文章设置4个挥发性有机物(VOCs)监测点分析了长寿区环境空气中的VOCs含量,结果表明:含氧挥发性有机物以及芳香烃类是长寿区挥发性有机物中的主要成分,分别占总和的32.28%和25.52%,其中芳香烃对臭氧生成的贡献最大。结合PMF模型对VOCs以及臭氧进行了源解析研究,结果表明:工业排放和交通排放是长寿区环境空气中VOCs的主要来源,分别占据VOCs排放总量的56%和18%,对臭氧生成的贡献率分别为46%和25%,在此基础上提出了臭氧污染防治措施。  相似文献   

13.
天津市常用绿化树种挥发性有机物排放潜力估算   总被引:1,自引:0,他引:1       下载免费PDF全文
BVOCs(植被释放的挥发性有机物)对PM2.5等大气颗粒物的形成有重要贡献,树种BVOCs排放潜力的研究有助于城市绿化树种的科学选择.对天津市城市绿地常见绿化树种BVOCs样品进行采集与鉴定,基于Guenther提出的模型估算了天津市32种常见绿化树种BVOCs的排放量,并对估算过程中的不确定性因素进行分析.结果表明:构树、毛白杨、旱柳和绦柳的BVOCs排放量(以C计)最高,分别为2 179.438、2 147.394、2 116.537、2 045.722 g/(株·a).从科属的角度来看,杨柳科植物BVOCs排放量最高,豆科、桑科和松科BVOCs排放量位居其次.采用聚类分析方法将32种绿化树种的异戊二烯、单萜烯排放潜力进行分类,其中毛白杨、构树、旱柳和绦柳属于高排放异戊二烯的树种;油松和苹果属于高排放单萜烯的树种.从科属水平而言,豆科和杨柳科植物具有较强的异戊二烯排放潜力.松科和部分蔷薇科的乔木具有较强的单萜烯排放潜力.从叶片类型的角度上,阔叶树主要以排放异戊二烯为主,针叶树主要以排放单萜烯为主,且异戊二烯的排放潜力要大于单萜烯的排放潜力.植物OVOCs(其他VOCs)排放潜力与异戊二烯和单萜烯的排放潜力相比显著较弱.天津市外来树种与本地树种BVOCs排放潜力无显著性差异(P>0.05).研究显示,天津市常用绿化树种的单株排放潜力差异明显,因此可优选臭椿、洋白蜡和紫叶李等排放潜力相对较低的树种用作城市绿化.   相似文献   

14.
自5月至8月底,省环保局将在全省范围内开展环境安全隐患百日督查专项行动,切实防范各类环境事故,确保奥运会期间环境安全。  相似文献   

15.
南京工业区挥发性有机物来源解析及其对臭氧贡献评估   总被引:1,自引:0,他引:1  
在南京工业区连续测量了2014年5月1日~7月31日和2015年6月1日~7月16日夏季两个高臭氧期的大气中的挥发性有机化合物(VOCs).结合正交矩阵分解(PMF)模型和箱模式(OBM)分析VOCs来源对局部O3生成的贡献.2014年和2015年夏季VOCs浓度平均分别为(36.47±33.44)×10-9和(34.69±34.08)×10-9.PMF模型确定了7种源类别,其中包括汽车尾气、液化石油气(LPG)排放、生物源排放、家具制造业、化工业、化学涂料行业、化学材料工业排放源.在OBM模拟中评估O3与前体物的关系.南京工业区是VOCs控制区,VOCs具有正RIR值,NO的RIR值为负值.烯烃(1.20~1.79)和芳香烃(1.42~1.48)呈现较高的RIR值,控制这两类物种是控制O3浓度最有效的途径.烯烃排放量减少80%时烯烃RIR值达到最高.汽车尾气(1.01~1.11)、液化石油气(0.74~0.82)、生物源排放量(0.34~0.42)和家具制造业(0.32~0.49)是O3形成贡献最大的四大类VOCs来源;减少汽车尾气,生物排放,LPG和家具制造业排放应成为减少局地O3生成最有效策略.  相似文献   

16.
上海市大气挥发性有机物化学消耗与臭氧生成的关系   总被引:3,自引:8,他引:3  
王红丽 《环境科学》2015,36(9):3159-3167
本研究基于夏季上海3个不同功能站点臭氧(O3)及其前体物的观测结果,分析了上海不同地区O3及其前体物的污染特征及空间差异;采用参数化的方法估算了VOCs的大气化学消耗水平.结果表明,观测期间上海市区VOCs浓度约为20×10-9,高于西部郊区的17×10-9;两个地区VOCs最大增量反应活性(以O3/VOCs计)的平均值比较接近,约为5.0mol·mol-1.但是,市区VOCs的大气消耗水平(4.0×10-9)不足西部郊区VOCs消耗水平(8.3×10-9)的一半,这是西部郊区O3污染更重的重要原因;东部沿海郊区O3浓度的变化主要是由于区域输送.不同地区VOCs消耗水平与O3生成浓度的比值接近,说明不同地区VOCs消耗生成O3的效率接近;烯烃和芳香烃是最主要的VOCs消耗物种,二者对VOCs消耗量的总贡献高达90%.VOCs的消耗水平在正午达到最大,夜间消耗水平最低,日分布曲线与O3生成的日变化曲线相似,但O3峰值出现时间略晚于VOCs消耗水平峰值出现的时间.  相似文献   

17.
以浙江省4类制药工艺8家大型制药企业排放的挥发性有机物(VOCs)为基础,通过国际公认的臭氧产生潜力和健康风险评价指标对制药行业排放VOCs所产生的环境与健康危害进行了初步的评估.结果表明,制药行业排放VOCs的臭氧产生最大潜力介于16.1~79.2 mL.m-3之间,主要贡献物为乙酸乙酯、丙酮、甲苯、二甲苯等9种物质,其中4种为VOCs排放特征中的主要污染物.另外,VOCs产生的健康危害主要是苯、环氧乙烷、甲醛及二氯甲烷这4种致癌物造成,占非致癌风险评估值的69%以上,占致癌风险值的100%.此外,通过对排放特征、臭氧产生潜力及健康风险评价比较发现,在制定VOCs排放标准时,特别是控制因子的筛选中不能忽视VOCs所产生的环境与健康危害.  相似文献   

18.
对成都市2011—2012年期间大气中的VOCs在不同季节、不同功能区及不同高度的浓度和组成进行了SUMMA钢罐采样法监测与实验室分析,并讨论其臭氧生成潜势.结果表明:采样期间成都市大气中VOCs的季节变化为:秋季(106.0μg·m-3)夏季(74.5μg·m-3)春季(54.1μg·m-3)冬季(45.8μg·m-3).烷烃、酯类、醇类日变化规律呈单峰型,峰值在8:00出现,与交通流量的变化有关;烯烃和芳香烃的日变化规律则呈双峰型.烷烃、烯烃、芳香烃、醇类在不同功能区的浓度顺序为:交通居民混合区工业区风景区,而醛酮类则为:工业区交通居民混合区风景区.在垂直方向上,距地面78 m处TVOCs浓度最高,这可能与当时采样期间大气为逆温层结有关,其中,烷烃、芳香烃为主要组分.不同VOCs的平均臭氧生成潜势(OFP)及其贡献率排序为:芳香烃(75.5%)烯烃(23.8%)烷烃(0.8%);不同功能区的OFP排序为:交通居民混合区工业区风景区.  相似文献   

19.
基于黄冈市城区大气挥发性有机物(VOCs)离线采样数据和常规空气污染物、气象在线监测数据,分析了黄冈市大气VOC组分和体积分数特征,并利用正交矩阵因子分解(PMF)模型和耦合MCM机制的光化学反应箱式模型(PBM-MCM)分别分析了臭氧(O3)污染高发期VOCs的来源及臭氧生成敏感性.结果表明,φ(TVOCs)平均值为(21.57±3.13)×10-9,且呈现出冬春高、夏秋低的季节性特征,其中烷烃(49.9%)和烯烃(16.4%)的占比最大.PMF解析结果显示黄冈市大气VOCs主要来源为:燃料燃烧源(27.8%)、机动车排放源(19.9%)、溶剂使用源(15.7%)、工业卤代烃排放源(12.1%)、化工企业排放源(10.5%)、自然源(7.8%)和柴油车排放源(6.2%).在人为源中,溶剂使用、燃料燃烧和化工企业排放的VOCs对大气环境中O3生成的贡献较大,贡献了O3生成的60.9%,故对O3污染防控应优先管控这3种人为源.通过相对增量反应性(RIR)和经验动力学方法(EKMA)曲线分析,观测期间黄冈市O3生成处于VOCs控制区,且间/对-二甲苯、乙烯、1-丁烯和甲苯等VOCs对O3生成比较敏感,应重点削减以上VOCs的排放.  相似文献   

20.
阐述了挥发性有机物定义,对比国内外挥发性有机物监测情况,分析了昆明监测现状及发展需要,提出昆明开展该项目监测的必要性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号