首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We conducted a study of the relationship between changes in photosynthetic pigment content and water depth in Great Harbor near Woods Hole, Massachusetts, USA, on the green algae Ulva lactuca and Codium fragile and the red algae Porphyra umbilicalis and Chondrus crispus. A calibrated underwater photometer equipped with spectral band filters measured light attenuation by the water column. The depth required for a 10-fold diminution of photon flux was 3.6, 5.3, 6.0 and 6.0 m for red, blue, yellow and green light, respectively. Seaweeds were attached to vertically buoyed lines and left to adapt for 7 days; then, with their positions reversed, they were allowed to readapt for 7 days. All species showed greater photosynthetic pigment content with increased depth. Further, the ratio of phycobiliproteins and chlorophyll b to chlorophyll a increased with depth. Changes in pigment content were reversible and occurred in the absence of cell division. There was a net loss of pigments near the surface (high irradiance), and subsequent synthesis when seaweeds were transferred to a position deep in the water column (low irradiance). In contrast, seaweeds which were found in intertidal habitats changed only their pigment concentration, and not pigment ratio, a phenomena analogous to higher plant sun and shade adaptation. Therefore, seaweeds modify their photon-gathering photosynthetic antennae to ambient light fields in the water column by both intensity adaptation and complementary chromatic adaptation.  相似文献   

2.
Competitive interactions between germlings of Ascophyllum nodosum (L) Le Jolis and Fucus vesiculosus L. were studied both in the laboratory and on a shore of the Isle of Man, in the Irish Sea. Both intra- and interspecific competition were investigated by comparing the performance of algal germlings both in monocultures and mixed populations of the two species. The growth of germlings of both species reduced with increasing density. F. vesiculosus always grew faster than Ascophyllum and did best in mixed cultures, whereas Ascophyllum did least well when mixed with Fucus germlings. Clearly the adverse effects of F. vesiculosus on A. nodosum were greater than those of Ascophyllum cohorts. At the same total density, the survival and growth of Ascophyllum declined with an increasing proportion of Fucus germlings, implying that poor recruitment of A. nodosum results from strong competition with F. vesiculosus. However, under desiccation stress on the shore, F. vesiculosus enhanced the survival of A. nodosum at the early germling stage even though competition may occur again at the late stage. Thus, whether interactions between germlings take the form of competition or facilitation depends on the environmental conditions.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

3.
The species composition of macrofauna associated with floating seaweed rafts is highly variable and influenced by many factors like spatial and temporal variation, period since detachment and probably also the seaweed species. The presence of seaweed preferences was assessed by a combination of in situ seaweed samplings and multiple-choice aquarium experiments in a controlled environment, using the seaweed-associated grazing organisms Idotea baltica and Gammarus crinicornis. Results from the sampling data confirm that the seaweed composition influences macrofaunal species composition and abundance: samples dominated by Sargassum muticum displayed higher densities but lower diversities compared to samples dominated by Ascophyllum nodosum and Fucus vesiculosus. Seaweed preference was also apparent from the multiple-choice experiments, but did not exactly match the results of the community analysis: (1) I. baltica had high densities in seaweed samples (SWS) dominated by F. vesiculosus and A. nodosum, while in the experiments, this isopod was most frequently associated with Enteromorpha sp. and F. vesiculosus, and fed mostly on S. muticum, A. nodosum and Enteromorpha sp.; (2) G. crinicornis had high densities in SWS dominated by F. vesiculosus, while in the experiments, this amphipod was most frequently associated with S. muticum, but fed most on A. nodosum and F. vesiculosus. It is clear from the laboratory experiments that preference for habitat (shelter) and food can differ among seaweed species. However, food and habitat preferences are hard to assess because grazer preference may change if choices are increased or decreased, if different sizes of grazers are used, or if predators or other grazers are added to the experiments. The effects of seaweed composition may also be blurred due to the obligate opportunistic nature of a lot of the associated macrofaunal species.  相似文献   

4.
The diurnal variation in apical length growth rate of five benthic macroalgae from the Swedish West Coast (Fucus spiralis L., F. vesiculosus L., F. serratus L., Ascophyllum nodosum (L.) Le Jolis, and Chondrus crispus Stackhouse) was measured during 1.5 to 2.0-h intervals for 3 to 5 d in September 1984. All species showed a maximum in growth rate in the morning, followed by a continuous decline throughout the rest of the day (most pronounced in F. serratus, A. nodosum and C. crispus). By comparing the growth rates with the average irradiance during the same interval, saturation irradiances for length growth in natural daylight regime were estimated; 60 to 70 Wm-2 for F. spiralis and F. vesiculosus, 90 to 100 Wm-2 for A. nodosum, 30 to 40 Wm-2 for F. serratus and 10 to 20 Wm-2 for C. crispus. Average growth rates during the dark hours ranged from 33% of average day growth rates in A. nodosum to 63% in C. crispus, respectively.  相似文献   

5.
Three genetically distinct clones of Skeletonema costatum (Grev.) Cleve were grown at 20°C under high (274 E m-2 s-1) and low (27 E m-2 s-1) light conditions and their photoadaptive photosynthetic responses compared. When all three clones were grown under low light, pigment analyses and fluorescence excitation spectra demonstrated that the accessory pigments, chlorophyll c and fucoxanthin, became more important in light-harvesting compared to chlorophyll a. Photosynthetic unit sizes increased for Photosystems I and II in low light, but photosynthesis vs irradiance characteristics were not reliable predictors of photosynthetic unit features. Fluorescence excitation spectra and photosynthesis vs irradiance (P-I) relationships indicated that changes in energy transfer occurred independent of changes in pigment content. Large increases in accessory pigment content were not accompanied by large increases in excitation from these pigments. Changes in energy transfer properties were as important as changes in PSU size in governing the photoadaptive responses of S. costatum. When the three clones were grown under identical conditions, each had a separate and distinct pattern of photoadaptation. Significant differences among clones were found for pigment ratios, photosynthetic unit sizes for Photosystems I and II and efficiency of energy transfer between pigments. These strikingly different photoadaptive strategies among clones may partially account for the great ecological success of the diatom species. This is the first quantitative investigation of the importance of both chlorophyll c and fucoxanthin to the adaptive responses of diatoms to light intensity, and represents the most complete characterization of the photoadaptive responses of a single species of marine phytoplankter to differences in light environment.  相似文献   

6.
Morphological variation and vertical distribution of Fucus vesiculosus were quantified at several sites in the Finnish archipelago (Baltic Sea). F. vesiculosus samples were obtained from skerries at geographical distances of 1 km or more (large scale) and at intervals of ca 100 m around a single island (small scale). The results were examined in relation to wave exposure, calculated by Baardseth and effective fetch cartographic methods. Despite the fact that the exposure indices were calculated differently they correlated strongly. Vegetative morphological characteristics of F. vesiculosus illustrate the morphological differences both within and between exposure gradients. The tallest and widest F. vesiculosus plants were found at the sheltered end of the large-scale exposure gradient. Those from equally sheltered sites of the island were smaller in all respects. Thus, the trend from small narrow plants to large wide sheltered plants was expressed differently over the different geographical scales. Consequently localities with similar exposure indices may have morphologically different F. vesiculosus populations. Shores with similar cartographic exposure indices can be different in nature. Underwater topography and shore locations, either close to the mainland or at the outermost sites of the archipelago, affect the exposure. Although a sheltered shore is indicated, the sublittoral zone may be quite exposed to the movements of water. In contrast, in an open shore environment underwater rocks, boulders and shallow water areas can provide sheltered habitats. The depth range of the F. vesiculosus belt exhibited two distinctive patterns. At sheltered sites, around islands in the outermost reaches of the archipelago F. vesiculosus can grow to a maximum depth of 5 m. In exposed habitats the belt becomes narrower, reaching a maximum depth of 3 m. Closer to the mainland F. vesiculosus is found at exposed sites to a maximum depth of 5 m; the depth range at sheltered sites is narrower, only reaching depths of 2 m or less. In conclusion, the changes in plant morphology and in the vertical belt distribution are similar to each other along both gradients at the exposed ends of the wave action spectrum; however, the two gradients diverge at the sheltered ends of the spectrum. Received: 10 August 1998 / Accepted: 11 January 1999  相似文献   

7.
 A survey of the distribution and maximum depth of a continuous Fucus vesiculosus belt was carried out in the Gulf of Finland in 1991. F. vesiculosus is widely distributed throughout the Gulf of Finland, including the vicinity of Vyborg Bay, Russia in the east. The maximum growth depth of F. vesiculosus in the Gulf of Finland reflects two different patterns according to the exposure to wave action. The most robust and continuous F. vesiculosus belt is observed on exposed shores, where the maximum growth depth is 5 to 6 m, with the optimum at 2 to 3 m. On moderately exposed shores the maximum growth depth is 3 m, with an optimum growth depth of <2 m. The maximum growth depth also varies geographically, with a decreasing trend towards the east. Maximum growth depth of F. vesiculosus correlates with light intensity. The compensation point for F. vesiculosus photosynthesis is about 25 μmol m−2 s−1, and photosynthesis is saturated at a light intensity of 300 μmol m−2 s−1. Vertical irradiance attenuation measurements in situ in summer revealed that for F. vesiculosus photosynthesis the quantity of light is optimal (200 to 300 μmol m−2 s−1) at <3 m depth. At depths >5 m the quantity of light is near or below the photosynthesis compensation point and insufficient for growth. These depth limits of light penetration coincide with measured growth depths of F. vesiculosus in the Gulf of Finland. Received: 7 May 1999 / Accepted: 18 November 1999  相似文献   

8.
The release of dissolved organic carbon (DOC) by Ascophyllum nodosum (L.) Le Jol. and Fucus vesiculusus L. during rehydration was investigated after desiccation under experimental conditions. During 30 min of rehydration of plants which had lost up to 70% of their water, A. nodosum released about 2 to 10 mg C/100 g dry weight, while F. vesiculosus released 10 to 50 times more. When dried to water losses exceeding 70%, plants of both species yielded similar amounts of DOC, approximating 2 g C/100 g dry weight. Considerable variance in the amounts of DOC released by individual plant of both species was observed over the whole range of water losses tested. Among the DOC released, the portion of carbohydrate-C was O to 5% with A. nodosum but 2 to 47% with F. vesiculosus. This difference was most pronounced when less than 100 mg C/100 g dry weight were released. A. nodosum regained a smaller percentage of its original weight than F. vesiculosus after 30 min of rehydration when more than 30% of fresh weight were lost during desiccation. Curves were obtained which enable the estimation of water losses in naturally desiccated specimens within 30 min.  相似文献   

9.
Photosynthesis in whole plants of the salt-marsh algae Fucus vesiculosus and Ulva lactuca was evaluated by 14C-uptake under a variety of light intensities at approximately mately monthly intervals during a 15-month study. Photosynthetic capacity in both species was closely related to seasonal irradiation patterns and changes in field biomass. Maximum photosynthesis occurred in the spring and summer months. Photosynthesis on a dry weight basis was higher in U. lactuca, while photosynthesis on a chlorophyll a basis was equal in both species. Photosynthetic capacity was inversely related to pigment content. Maximum chlorophyll a concentrations occurred during the winter. Frond profile studies in F. vesiculosus indicated that apices always exhibited greatest photosynthetic capacity. Uptake of 14C into ethanol-soluble and insoluble fractions was different in each species. F. vesiculosus showed greater activity in the ethanol-soluble fraction while U. lactuca exhibited greater activity in ethanol-insoluble fractions.This research was supported by Research Grant AG-375 from the National Science Foundation and, in part, by the State University of New York Research Foundation and the Energy Research and Development Administration (ERDA).  相似文献   

10.
Features of fucoid zonation (Fucus spiralis, F. vesiculosus, Ascophyllum and F. serratus) in a vertical range of 60 cm at Kristineberg (Gullmar Fjord, W. Coast of Sweden) are described. In contrast to identical species occupying areas with wider tidal ranges, these plants are smaller in size and inhabit narrow, overlapping zones. Investigation into the magnitude of pressure and gas composition in vesicles of F. vesiculosus and Ascophyllum nodosum revealed an average positive pressure equivalent to 1.7 and 7 cm of water for the 2 plants in succession. These small values compare favourably with the pressure head to which such vesicles are subjected at Kristineberg. O2-percentage amounts to 28.5% and 32.7% in vesicles of both plants in succession. O2-values increase in daytime and decrease at night or when plants are maintained in the dark. CO2-content in the two plants fluctuates between 0 to 2.6% and bears no correlation to the oxygen values. It is suggested that the pressure produced in the vesicles is due mainly to oxygen. Comparison of these results with those by other authors are made whenever possible.  相似文献   

11.
Chl a and C-normalized pigment ratios were studied in two dinophytes (Prorocentrum minimum and Karlodinium micrum), three haptophytes (Chrysochromulina leadbeateri, Prymnesium parvum cf. patelliferum, Phaeocystis globosa), two prasinophytes (Pseudoscourfieldia marina, Bathycoccus prasinos) and the raphidophyte Heterosigma akashiwo, in low (LL, 35 μmol photons m−2 s−1) and high light (HL, 500 μmol photons m−2 s−1). Pigment ratios in LL and HL were compared against a general rule of photoacclimation: LL versus HL ratios ≥1 are typical for light-harvesting pigments (LHP) and <1 for photoprotective carotenoids. Peridinin, prasinoxanthin, gyroxanthin-diester and 19′-butanoyloxy-fucoxanthin were stable chemotaxonomic markers with less than 25% variation between LL versus HL Chl a–normalized ratios. As expected, Chls exhibited LL/HL to Chl a ratios >1 with some exceptions such as Chl c 3 in P. globosa and MV Chl c 3 in C. leadbeateri. LL/HL to Chl a ratios of photosynthetic carotenoids were close to 1, except Hex-fuco in P. globosa (four-fold higher Chl a ratio in HL vs LL). Although pigment ratios in P. globosa clearly responded to the light conditions the diadinoxanthin-diatoxanthin cycle remained almost unaltered at HL. Total averaged pigment and LHP to C ratios were significantly higher in LL versus HL, reflecting the photoacclimation status of the studied species. By contrast, the same Chl a-normalized ratios were weakly affected by the light intensity due to co-variation with Chl a. Based on our data, we suggest that the interpretation of PPC and LHP are highly dependent on biomass normalization (Chl a vs. C).  相似文献   

12.
Decreases in cell-nitrogen quota resulted in changes in the carbon-based quantum yield of photosynthesis, the chlorophyll a-specific absorption coefficient, and in vivo fluorescence in the marine diatom Chaetoceros gracilis in laboratory experiments performed in 1983 and 1984. The three parameters were independently determined for the two spectral regions dominated by either chlorophyll a or fucoxanthin absorption. As cell-nitrogen quota decreased, the quantum yield for both pigments decreased; the specific absorption coefficient for chlorophyll a and the in vivo chlorophyll a fluorescence excited by each pigment increased. The observed increase in the in vivo fluorescence per chlorophyll a could be partially attributed to the increased specific absorption coefficient for chlorophyll a; the remainder of the fluorescence increase was related to a decline in photosystem activity. Energy transfer efficiency between light-harvesting pigments appeared to be maintained as cell-nitrogen quota decreased. The decrease in a fluorescence index [(F DCMU-F O)/F DCMU] with nitrogen starvation suggested a decrease in Photosystem II activity. These results imply that decreases in reaction center and/or electron-transport system activity were responsible for the decline in rates of photosynthesis under conditions of notrogen deficiency.  相似文献   

13.
Grazing rates of the isopod Idotea baltica on Fucus evanescens and F. vesiculosus (Phaeophyta) were quantified in laboratory feeding preference experiments. Fucus species were offered alone (no-choice) or simultaneously (choice). In three of four no-choice experiments and in all four choice experiments, I. baltica significantly preferred F. vesiculosus to F. evanescens. F. evanescens recently immigrated into Kiel Fjord and has increased in abundance since 1990. One possible reason for the competitive success of this species may be that, compared to F. vesiculosus, it is less preferred by I. baltica, the most abundant mesograzer at the study site.  相似文献   

14.
In the Baltic Sea, the broadly distributed brown alga Fucus vesiculosus coexists in sympatry over part of its range (south west Gulf of Bothnia) with the Baltic endemic F. radicans sp. nov, while further north in colder and lower-salinity areas of the Baltic F. radicans occurs alone (north west Gulf of Bothnia). F. radicans appears to have arisen via rapid speciation from F. vesiculosus within the recent history of the Baltic (ca. 7500 BP). Possible functional divergence between the two species was investigated by comparing stress-responsive gene expression in a common-garden experiment. The experiment used two allopatric populations of Fucus vesiculosus from the Skagerrak (North Sea) and Central Baltic, as well as F. radicans from the same Central Baltic site. The two species in sympatry displayed divergent heat shock responses, while F. vesiculosus populations from allopatric sites did not. F. radicans was more sensitive to heat shock at 25°C, either alone or together with high irradiance and desiccation, than Baltic or Skagerrak F. vesiculosus. The results indicate that rapid functional divergence in the inducible heat shock response has occurred between sympatric species on a timescale of thousands of years.  相似文献   

15.
A continuously recording, flow-through oxygen electrode system for the measurement of oxygen exchange is described and applied to an investigation of photosynthetic rates in the marine algae Fucus vesiculosus L. and Laminaria digitata (Huds.) Lam. The photosynthetic rate (mg O2.g dry weight-1.h-1) at 15°C and 21.5 mW.cm-2 (usually just saturating) ranges in F. vesiculosus from 1.20 in basal portions of the thallus to 9.27 at the apices and in L. digitata from 1.19 mg O2 at the thallus base to 3.97 mg O2 at distances of several centimetres behind the upper thallus margin. This variation is reduced when the photosynthetic rate is expressed in terms of fresh weight or surface area.This research was carried out while one of us (R.J.K.) was an Alexander von Humboldt fellow at the University of Kiel, and is part of the programme Sonderforschungsbereich 95, Wechselwirkung Meer-Meeresboden, Universität Kiel.  相似文献   

16.
Photoadaption in marine phytoplankton: Response of the photosynthetic unit   总被引:3,自引:0,他引:3  
Some species of phytoplankton adapt to low light intensities by increasing the size of the photosynthetic unit (PSU), which is the ratio of light-harvesting pigments to P700 (reaction-center chlorophyll of Photosystem I). PSU size was determined for 7 species of marine phytoplankton grown at 2 light intensities: high (300 E m-2 s-1) and low (4 E m-2 s-1); PSU size was also determined for 3 species grown at only high light intensity. PSU size varied among species grown at high light from 380 for Dunaliella euchlora to 915 for Chaetoceros danicus. For most species grown at low light intensity, PSU size increased, while the percentage increase varied among species from 13 to 130%. No change in PSU size was observed for D. euchlora. Photosynthetic efficiency per chlorophyll a (determined from the initial slope of a curve relating photosynthetic rate to light intensity) varied inversely with PSU size. In contrast, photosynthetic efficiency per P700 was enhanced at larger PSU sizes. Therefore, phytoplankton species with intrinsically large PSU sizes probably respond more readily to the rapid fluctuations in light intensity that such organisms experience in the mixed layer.Contribution No. 1180 from the Department of Oceanography, University of Washington, Seattle, Washington, USA  相似文献   

17.
Photosynthesis in whole plants of the intertidal alga Ascophyllum nodosum ecad scorpiodes was evaluated by measuring 14C-uptake under a variety of light intensities and approximately monthly intervals during a 15 month study. Photosynthetic rates were determined in terms of dry weight, pigment content and uptake into ethanolsoluble and insoluble fractions. The specimens, naturally acclimated to in situ light intensities and temperatures, exhibited photosynthetic responses to light intensity which differed with time of year. Maximum photosynthetic potential occurred during the spring months and minimum potential occurred during late summer and winter months. Variations in photosynthetic potential were closely related to seasonal changes in field biomass. Both photosynthetic potential and biomass were inversely related to growth patterns of the salt-marsh phanerogam Spartina alternilora.This research was supported by Research Grant AG-375 from the National Science Foundation and, in part, by the State University of New York Research Foundation and the Energy Research and Development Administration (ERDA).  相似文献   

18.
Populations near the geographic distribution limits of the species are considered to live under suboptimal conditions, and hence, slight environmental changes can be critical for their survival. The potential sensitivity to disturbances of the long-living macroalga Ascophyllum nodosum was analyzed by the determination of growth, recruitment, mortality, and production of biomass of a population near its southern distribution limit. Recruitment, survival and growth rates of <2 years old individuals were determined in a new population growing in experimentally denudated squares. Demographic data for >2 years old individuals were obtained from individuals in the original population after estimating their age from the number of gas bladders in the thallus. Growth and survival were described as continuous nonlinear functions of age applied to the population and were further used to make demography-based production estimates. Recruitment of A. nodosum in denudated substrates seemed to require a previous cover of other macroalgae (as Fucus vesiculosus) as the only cohort detected during the 26-month period of the study was observed after F. vesiculosus individuals started to increase. The low production estimates (2,033 g m?2 for a 10 year period) and poor recruitment may indicate a slow recuperation of this population to denudation. However, the large variability observed in the estimated growth curves of different populations along this southern distribution area suggests a large influence of local conditions that may help to overcome environmental changes at regional scales.  相似文献   

19.
Photoadaptations of zooxanthellae living within the deep water coral Leptoseris fragilis taken from the Gulf of Aqaba (Red Sea) were studied. Specimens-collected in summer 1988 between 110 and 120 m depth —were transplanted to 70 and 160 m. At each depth individuals were exposed in their natural growth position (oral side facing the surface) or in a reverse growth position (oral side facing the bottom). After 1 yr of exposure the corals were collected and the zooxanthellae were isolated. As a function of the availability of light with depth and growth position several algal parameters showed changes which are related to photoadaptations. The relatively low density of zooxanthellae of 0.15x106 cellsxcm-2 at a natural growth depth of 116 m decreased to 0.0034x106 cellsxcm-2 (2%) at 160 m in specimens growing with a natural orientation. In corals with a downward-facing oral surface at the same depth (160 m) only degenerated algae could be observed. With respect to depth dependence the volume of the algae decreased from 728 m3 at 116 m to 406 m3 at a depth of 160 m and the content of pigments increased. The augmentation of peridinin per cell was low (two times at 160 m compared to 116 m). Chlorophyll a and in particular chlorophyll c 2 concentrations per cell were enhanced. Compared to natural amounts at 116 m, chl a was five times and chl c 2 eight times higher at 160 m. At all depths the chl c 2 content per cell was higher than for chl a. The formation of chl a/chl c 2 complexes as light harvestor is discussed. Light harvesting, with chl c 2 prevailing may be explained as a special type of chromatic adaptation of L. fragilis in a double sense: (1) in the habitat light short wavelengths predominate. This light can be directly absorbed with pigments such as chl a and chl c 2. (2) Host pigments absorb visible violet light and transform these wavelengths, less suitable for photosynthesis, into longer ones by means of autofluorescence. The emitted longer wavelengths fit the absorption maxima of the algal pigments. Thus the host supports photosynthesis of his symbionts. Corals exposed at 160 m depth with a downward facing oral surface were alive after 1 yr and the host wavelength transforming pigment system was still present, but zooxanthellae were absent or degenerated. The light field at 160 m seems therefore to be critical: the combined photoadaptations of host and symbionts, allowing photosynthesis under barren light conditions, seem to be exhausted. In L. fragilis the photoadaptive strategies of host and symbionts cooperate harmoniously. In addition, the adaptations are interlocked with the particular light situation of the habitat with respect to light quantity and quality. The cooperation of physical and organismic parameters examplifies how evolution and, in particular, coevolution has led to optimal fitness.  相似文献   

20.
The Macrocystis pyrifera (L.) C. Ag. frond is here described in terms of chlorophyll a, fucoxanthin, chlorophyll c and photosynthetic rate. Pigment concentrations increased back from the apical meristem reaching a maximum after 2 to 3 m. Pigment concentrations were then generally constant throughout most of the length of the frond, finally decreasing again in the oldest parts of the frond with the exception of the sporophylls. Pigment ratios remained relatively constant throughout. Maximum net photosynthetic rates on a given frond showed a decrease with tissue age on both an area basis (1040 down to 463 nmol O2 cm-2 h-1) and on a chlorophyll a basis, which was shown as half-saturation constants (quantum irradiance) which dropped on an area basis from 85 mol m-2 sec-1 at 4.5 m above the holdfast to 26 mol m-2 sec-1 at 15.5 m. Young sporophytes transplanted from the sea floor to the surface (12 m) tended to decrease pigment content, while those transplanted to the bottom tended to increase all pigments, but especially fucoxanthin. Photosynthetic rates, however, changed little on a unit area basis. The results of these data are considered in the light of recent work on photosynthetic units, tissue age effects and general adaptations of the M. pyrifera frond to its light environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号