首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
There is a need to explore, in an integrated and statistical manner, how the number of species, relative abundance, species composition and life-cycle stages of elasmobranchs in nearshore waters vary among habitat types and during the year. Therefore, four sites in a large marine embayment, each representing a different habitat type, were sampled at regular intervals. These sites were: (1) unvegetated, with no vegetation within at least 200 m; (2) unvegetated, immediately adjacent to sparse mangroves; (3) unvegetated, immediately adjacent to dense mangroves; and (4) vegetated, with seagrass (Posidonia australis) throughout and in the vicinity. Gill netting caught 10 shark species (5 families), 5 ray species (4 families) and 12 teleost species (10 families). Carcharhinus cautus, which contributed approximately 60% to the numbers of elasmobranchs caught, completed its life cycle in nearshore, shallow waters. Negaprion acutidens, Carcharhinus brevipinna, Carcharhinus limbatus and Rhizoprionodon acutus used these waters as a nursery area. C. cautus was caught mainly in the unvegetated sites, particularly in those near mangroves. N. acutidens was caught entirely in unvegetated sites, while R. acutus, C. brevipinna and Chiloscyllium punctatum were caught predominantly or exclusively in seagrass. The mean number of species and mean catch rate of elasmobranchs were greatest for the seagrass site and least for the unvegetated site with no vegetation within at least 200 m and were significantly less for the latter site than for the unvegetated site immediately adjacent to dense mangroves (P<0.05). The numbers of species and catch rates of elasmobranchs were significantly greater in summer and autumn than in winter (P<0.05) and, in the case of number of species, also than in spring (P<0.05). We conclude that the spatial and food resources in the nearshore, shallow waters of Shark Bay are partitioned among elasmobranch species, thus reducing the potential for competition among these species for the resources in those waters.Communicated by G.F. Humphrey, Sydney  相似文献   

2.
This study should clarify the importance of morphology and stability of the mandibular gnathobases for the diet of Antarctic copepod species. The gnathobase morphology of the dominant copepod species Calanoides acutus, Calanus propinquus, Ctenocalanus citer, Rhincalanus gigas, Metridia gerlachei, Stephos longipes, Microcalanus pygmaeus and Paraeuchaeta antarctica from the Southern Ocean was investigated in detail by means of a scanning electron microscope. The mandibular gnathobases of C. acutus, C. propinquus and C. citer have relatively short and compact teeth. These species feed mainly on diatoms and are able to crack the silicious diatom frustules with their mandibular gnathobases by directed pressure. In contrast the teeth of the mandibular gnathobases of P. antarctica are very long and pointed. The nutrition of this species consists predominantly of other smaller copepod species. The motile prey can be held by skewering, using the gnathobases, and then eventually minced. The mandibular gnathobases of P. antarctica have notably more small bristles than those of the other investigated copepod species. These bristles are probably associated with receptors and could serve to locate the prey. The morphology of the gnathobases of R. gigas and M. gerlachei is between that of P. antarctica on the one side and that of C. acutus, C. propinquus and C. citer on the other. Based on the morphology of its gnathobases the copepod species S. longipes, which has to date been found to feed primarily on phytoplankton, mainly ice algae, must also be considered a zooplankton feeder. The investigation showed that M. pygmaeus has gnathobases with surprisingly long and pointed teeth, indicating that this species very probably feeds both on phyto- and on zooplankton organisms. While the mandibular gnathobases of the males of C. propinquus, R. gigas, M. gerlachei and S. longipes have the same morphology as the females of the respective species, in the other four investigated copepod species the males have reduced (C. acutus, C. citer and M. pygmaeus) or completely missing mandibular gnathobases (P. antarctica). The teeth of the gnathobases of all studied species with the exception of M. gerlachei consist of a different material than the remaining parts of the gnathobases. This material seems to be silicate, which probably enhances the stability of the gnathobase teeth.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

3.
W. White  N. Hall  I. Potter 《Marine Biology》2002,141(6):1153-1164
The lengths-at-age of individuals of the nervous shark Carcharhinus cautus in Shark Bay, Western Australia, have been determined and used to explore the types of situation when it might be advisable to shift from employing a von Bertalanffy equation to a more complex equation for describing the growth of this species and of elasmobranchs in general. The reproductive biology of C. cautus was also examined in order to construct curves for describing growth throughout life from conception as well as from parturition. The presence, in November and early December, of fresh bite marks on the sides of mature females and of a very high proportion of spent individuals among mature males indicate that C. cautus copulates in late October/early November. Ovulation and conception occur in late November/early December and parturition takes place approximately 11 months later. Since mature non-pregnant females contain vitellogenic ova for 12-13 months, i.e. from November or December to the following December, and mature pregnant females contain embryos for 11 months, i.e. from December to October, C. cautus has a biennial reproductive cycle. By parturition, the females and males of C. cautus had reached ~28% and 32% of their lengths at their maximum observed ages, respectively. The maximum recorded total lengths and ages of females and males of C. cautus were 133 cm and 16 years and 111 cm and 12 years, respectively. Females and males reached maturity at ~101 and ~91 cm, respectively, and at least 50% of females and males had become mature by the end of their sixth and fourth years of life after parturition, respectively. The three-parameter, von Bertalanffy growth curves provided reasonably good fits to the lengths-at-age of females and males of C. cautus during just postnatal life and throughout the whole of pre- and postnatal life. While the four-parameter, Schnute growth curve significantly improved the fit to these data for both females and males from conception and for females from parturition, it was recognised that the likelihood ratio test is very sensitive when, as in these cases, there are a large number of data points. A number of interrelated factors were thus taken into account when discussing circumstances when it might be appropriate to switch from using a von Bertalanffy growth curve to the more complex Schnute growth curve.  相似文献   

4.
Biodiversity of sharks in the tropical Indo-Pacific is high, but species-specific information to assist sustainable resource exploitation is scarce. The null hypothesis of population genetic homogeneity was tested for scalloped hammerhead shark (Sphyrna lewini, n = 237) and the milk shark (Rhizoprionodon acutus, n = 207) from northern and eastern Australia, using nuclear (S. lewini, eight microsatellite loci; R. acutus, six loci) and mitochondrial gene markers (873 base pairs of NADH dehydrogenase subunit 4). We were unable to reject genetic homogeneity for S. lewini, which was as expected based on previous studies of this species. Less expected were similar results for R. acutus, which is more benthic and less vagile than S. lewini. These features are probably driving the genetic break found between Australian and central Indonesian R. acutus (F-statistics; mtDNA, 0.751–0.903, respectively; microsatellite loci, 0.038–0.047 respectively). Our results support the spatially homogeneous monitoring and management plan for shark species in Queensland, Australia.  相似文献   

5.
Cryptic organisms often associate with sessile invertebrates for refuge in space-limited environments. To examine interspecific habitat associations on coral reefs, tube- and vase-shaped sponges were surveyed for associated brittlestars at six sites on the coral reefs off Key Largo, Florida. Of 179 sponges encountered, Callyspongia vaginalis was the most abundant (43.0%), followed by Niphates digitalis (39.7%), and Callyspongia plicifera (4.5%). Three of eight sponge species surveyed did not differ from C. vaginalis in two physical refuge characteristics: oscular diameter and inner tube surface area. Brittlestars (416 total), all of the genus Ophiothrix, were only found in C. vaginalis, N. digitalis, and C. plicifera. The most abundant brittlestar, O. lineata (326), occurred on C. vaginalis (99.0%) and N. digitalis (1.0%), while O. suensonii (67) occurred on C. vaginalis (79.1%), N. digitalis (19.4%), and C. plicifera (1.5%). There was no pattern of co-occurrence of O. lineata and O. suensonii on C. vaginalis. The abundance of O. lineata increased with surface area of C. vaginalis. Differential habitat use was observed in O. lineata, with small individuals (<5 mm disk diameter) located inside and on the surface of sponge tubes and large individuals (5 mm) solely inside tubes. The number of large O. lineata in C. vaginalis never exceeded the number of tubes per sponge, and tagged O. lineata remained in the same sponge for at least 3 weeks. In density manipulations, no pattern of intraspecific competition among large O. lineata was observed; however, there was evidence for interaction between size-classes. Brittlestars selected live sponge habitat over a non-living refuge, suggesting a mechanism for sponge habitat recognition. Sponge-dwelling brittle stars prefer some tube- and vase-shaped sponge species despite similar oscular diameters and surface areas. Surprisingly, these preferred sponge species are known from previous studies to be chemically undefended against generalist fish predators; therefore, brittlestars that inhabit these sponges do not gain an associational chemical defense. Sponge habitat use by O. lineata may be governed by intraspecific interactions to maintain habitat and access to food. While past studies have suggested that O. lineata is an obligate sponge commensal, the present study suggests that O. lineata has a species-specific association with the tube-sponge C. vaginalis.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

6.
Reproductive activity and production of the calanoid copepods Calanus helgolandicus and Calanoides carinatus were measured during a summer upwelling event off the coast of NW Spain. The upwelling pattern affected the distribution and fecundity of both species in the study area. The demographic composition of both populations and the stage of gonad maturation (e.g. the high abundance of fertilised females with mature ova) indicated active reproduction. C. carinatus, a highly fecund species associated with the African upwelling zones and considered as an upwelling specialist, showed low production rates (overall means of 15 eggs female–1 day–1 and 3% body C day–1), despite the fact that the food conditions (high phytoplankton biomass dominated by diatoms) seemed to be optimal for this species. By contrast, C. helgolandicus, a temperate species that shows a strong link between spring phytoplankton blooms and reproduction time, seems to be flexible enough to take full advantage of shorter-term, enhanced feeding conditions associated with the pulsed nature of the summer coastal upwelling. Both the egg and carbon-specific production rates attained by this species (overall means of 26 eggs female–1 day–1 and 12% body C day–1) were similar to values reported for a spring bloom situation. This high production would imply a long spring–summer recruitment event of C. helgolandicus in these waters. For both species the stage of gonad maturation was significantly correlated with their egg production rates and likely influenced by the food conditions; a species-specific nutritional requirement for final oogenesis is suggested. The carbon condition factor (carbon weight/prosome volume) of C. carinatus females was higher than that of C. helgolandicus, suggesting differential use of the carbon ingested; C. helgolandicus seems to use all ingested carbon to produce eggs at a high rates, whereas C. carinatus seems to store part of the ingested carbon as lipid reserves to ensure female survival and to support production during subsequent unfavourable food conditions.Communicated by S.A. Poulet, Roscoff  相似文献   

7.
Sensitivity of three algal species, Chlorella vulgaris, Scenedesmus acutus and Pseudanabaena galeata to herbicides atrazine and chlorsulfuron was studied using single species toxicity tests. Organisms were exposed to different concentrations of these herbicides and the algal growth was measured by turbidity at 750 nm. Atrazine appeared to be the most inhibitory to algae growth. 96 hr EbC50 of atrazine was: 1.3, 0.014, 0.014 mg/1 for C. saccharophila, S. acutus and P. galeata, respectively and 96 hr EbC50 of chlorsulfuron was 74.5 mg/1 for C.saccharophila, 0.19 mg/1 for S. acutus and 21.1 mg/1 for P. galeata  相似文献   

8.
To what extent densities of amphipods associated with red algae are related to food value or habitat form and architecture were investigated. Four epiphytic red algae common on kelp stipes (Laminaria hyperborea) were sampled, and the densities of three species of associated amphipods were analysed. The algae were chosen to represent different structures and levels of architectural complexity. Palmaria palmata and Delesseria sanguinea are leaf-shaped, and Ptilota gunneri and Polysiphonia elongata are branched. The algae were later fed to the common epiphyte-associated amphipods Ampithoe rubricata, Jassa falcata and Caprella septentrionalis in no-choice laboratory experiments. Survival and growth were measured. J. falcata was found at the highest densities on P. gunneri and D. sanguinea, C. septentrionalis was found in highest densities on P. elongata, and P. gunneri and A. rubricata were found at the highest densities on P. gunneri. The survival and growth were highest on P. palmata for all amphipods. This indicates that the form and function of the algal host is more important for the distributions of amphipods than the food value. Interspecific distribution differences between amphipods may have been related to differences in their body form and size, as well as to crypsis.Communicated by L. Hagerman, Helsingør  相似文献   

9.
The present study was designed to evaluate the effect of a natural prey (the crab Callinectes sp.) and an artificial diet (pellet with squid paste and offered as a paste) on the survival and assimilation efficiency of subadult octopuses with 486 g of initial live weight. In order to reach this goal, the effects of the type of diet on energetic balance were assessed by recording ingestion rate (C), respiratory rate (R = R routine, R rout + R apparent heat increment, R AHI), ammonia production rate (U = U routine, U rout + U post-prandial, U PP) and biomass production (P) of Octopus maya during its growing process. Energy lost from faeces (H) was calculated as H=C−(U+R+P) and assimilated energy (As) as R + P. Octopuses fed an artificial diet had almost five times higher ingestion rate compared to that observed in octopuses fed crab. However, growth rate and production (P) were high in octopuses fed crab in comparison to octopuses fed artificial diet. An inverse relation between faeces (H) and type of food was observed, indicating that animals lost 77% of the ingested energy when fed artificial diet and only 5% when fed crab. A higher assimilation and production efficiency were obtained in octopuses fed crab (P/As: 61%) than in animals fed the artificial diet (P/As: −5%). The routine O : N ratio for animals in fasting was 9.1 and 2.3 for octopuses being fed crabs and the artificial diet, respectively. The post-alimentary O : N ratio was 3.6 and 2.2 for animals fed crabs and the artificial diet, respectively. This indicates that animals fed on both diets rely almost exclusively on protein. Based on energy balance data, a value of 472 kJ week−1 kg−1 of live octopus was estimated as the energy needed to obtain a growth rate near 9 g day−1 (2.8% BW day−1) for O. maya subadults. The total crab biomass needed to obtain 1 kg of fed O. maya biomass was calculated. A comparison with other different energy balance measurements made in other octopus species indicates that O. maya and Enteroctopus megalocyathus (Pérez et al. 2006) tend to be more efficient by channelling more ingested energy to biomass production (P = 69.5% of C) than O. vulgaris (P = 23% of C; Petza et al. 2006) or Paraledone charcoti (P = 4% of C; Daly and Peck 2000).  相似文献   

10.
The effect of diel and seasonal changes in the distribution of fishes on a subtropical sandy beach on the southeastern coast of Brazil were studied. Seine netting was carried out on both seasonal and diel scales between July 1998 and June 1999. A total of 46 fish species was recorded, six being numerically dominant: Anchoa tricolor, Gerres aprion, Harengula clupeola, Atherinella brasiliensis, Mugil liza and Diapterus rhombeus. Seasonal changes in abundance of dominant species were detected. Species dominant in winter were Anchoa tricolor, H. clupeola and Atherinella brasiliensis; in spring, Anchoa tricolor and G. aprion; in summer G. aprion and D. rhombeus; and in autumn M. liza and H. clupeola. Overall, diel patterns did not reveal any significant trends; however, if we consider each season separately, an increase in A. tricolor abundance was recorded during the day in winter/spring, being replaced at night by H. clupeola in winter, and by G. aprion in spring. Increases in number of individuals and biomass at sunset, and decreases during the night were recorded. The winter/spring inshore/offshore movements at diel scale performed by the three most abundant species demonstrate that diel fluctuation acts more at a species-specific level than at a structural one; in summer there was no evidence of diel movements due to a heavy influx of G. aprion and D. rhombeus, which use the area throughout day and night, increasing overall abundance. Seasonal movements seems to be related to ontogenetic change in species, while diel movements in the fish assemblage seem to be more related to physiological requirements, such feeding activity of each particular species, than to physico-chemical conditions.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

11.
We quantified the nitrogen and enzyme hydrolyzable amino acid (EHAA) concentrations of sediments prior to and after corals sloughed, ingested, and egested sediments layered onto their surfaces, for the three coral species Siderastrea siderea, Agaricia agaricites, and Porites astreoides in Jamaica. The percent nitrogen of the sediments egested by all three species was lower than in the sediments available to the corals. Additionally, the sediments sloughed (not ingested) by A. agaricites and P. astreoides were lower in percent nitrogen, while the sediments sloughed by S. siderea had the same percent nitrogen as that of the available sediments. The percent nitrogen of the sediments sloughed and egested by P. astreoides showed significant negative and positive relationships, respectively, to increasing sediment loads, while the percent nitrogen of the sediments sloughed and egested by both S. siderea and A. agaricites showed no relationship to sediment load. EHAA concentrations were not significantly different between the sloughed and available sediments but were significantly lower in the sediments egested by S. siderea and A. agaricites (EHAA concentrations were not measured for P. astreodies sediment fractions). Comparisons of the nitrogen and EHAA concentrations in the sloughed and egested sediments to what was available prior to coral processing show that maximum ingestion was between 0.1 and 0.2 µg N µg–1 coral N cm–2 and between 0.5 and 0.6 µg EHAA·cm–2. Maximum assimilation efficiencies were estimated to be 30–60% of the available nitrogen. The data show that corals ingest and alter the nitrogen concentration of particles that land on their surfaces. The corals abilities to process these sediments, and the sediments possible contributions to coral nutrition, are discussed based on these results.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

12.
We sought to determine whether common intertidal and shallow subtidal zone grazers would consume extracts or fronds of three invasive Caulerpa spp., all of which are now resident in southern New South Wales, Australia. We examined the responses of herbivorous fishes, echinoderms and molluscs to C. filiformis. A subset of these organisms was tested with extracts of C. scalpelliformis and C. taxifolia. Polar (seawater) extracts of C. filiformis deterred a single herbivore, Aplysia sydneyensis, but confirmed that the biological activity reported from some Caulerpa spp. is not restricted to the lipophilic fractions. The large turbinid Turbo torquatus was deterred by an ethanol extract of C. filiformis, while the small congener T. undulatus demonstrated a significant preference for palatable agar discs containing ethanol extracts of C. filiformis. However, when T. undulatus were offered a choice of fronds from five algal species in the laboratory, they readily consumed Ulva spp. and Sargassum sp., showing the lowest preference for C. filiformis. Solvent extracts of C. scalpelliformis and C. taxifolia did not significantly deter any grazers. However, the overall trend was for reduced consumption of discs containing solvent extracts of these seaweeds. Indeed, for the large urchin Centrostephanus rodgersii and in the fish trials these effects were very near significant (P<0.06). We conclude that common herbivores associated with hard substrata are highly unlikely to intercede in the spread or control of these invasive algae.Communicated by M.S. Johnson, Crawley  相似文献   

13.
This study documented the range of corals, and other prey types, consumed by 20 species of butterflyfishes, which co-occur at Lizard Island, northern Great Barrier Reef, Australia. Six species (Chaetodon aureofasciatus, C. baronessa, C. lunulatus, C. plebius, C. rainfordi and C. trifascialis) fed almost exclusively on scleractinian corals, and a further eight species (C. citrinellus, C. kleinii, C. lunula, C. melannotus, C. rafflesi, C. speculum, C. ulietensis, and C. unimaculatus) took a significant proportion of their bites from corals. The other six species (C. auriga, C. ephippium, C. lineolatus, C. semeion, C. vagabundus, and Chelmon rostratus) rarely consumed coral, but fed on small discrete prey items from non-coral substrates. Coral-feeding butterflyfishes consumed a wide range of corals. Chaetodon lunulatus, for example, consumed 51 coral species from 24 different genera. However, there was up to 72% dietary overlap between coral-feeding butterflyfishes, with 11/14 species feeding predominantly on Acropora hyacinthus or Pocillopora damicornis. The most specialised corallivore, C. trifascialis, took 88% of bites from A. hyacinthus. Chaetodon trifascialis defend territories encompassing one or more colonies of A. hyacinthus, and may have prevented other species such as C. lunulatus from feeding even more extensively on this coral. This study has shown that coexistence of coral-feeding butterflyfishes occurs despite an apparent lack of partitioning of prey resources. While different coral-feeding butterflyfishes were more or less selective in their use of different coral prey, virtually all species fed predominantly on A. hyacinthus or P. damicornis.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

14.
15.
The foraging behaviours and dietary compositions of three co-occurring labrids (Ophthalmolepis lineolatus, Notolabrus gymnogenis and Pictilabrus laticlavius), which are conspicuous on rocky reefs in temperate south-eastern Australia, were investigated between 2003 and 2005. SCUBA observations at two locations showed that the feeding intensity, and hence the associated effects of these fishes on rocky reef invertebrate prey, was temporally consistent. Relative differences in the contributions of ingested prey and use of different feeding microhabitats demonstrated that the feeding ecology differed significantly among the three species. Thus, O. lineolatus fed on proportionately higher volumes of polychaetes, polyplacophorans, marginellid gastropods (especially Austroginella sp.), bivalves and echinoids, which were sighted opportunistically in a wide selection of microhabitats, but particularly in sand/rubble. Ambush hunting was used regularly by smaller N. gymnogenis and all sizes of P. laticlavius to forage on amphipods, small decapods and small gastropods at algal bases or fronds and Diopatra dentata tubes. Amphipods were similarly important in the diet of smaller O. lineolatus. Larger N. gymnogenis foraged opportunistically over an increased reef area and made greater use of microhabitats that offered minimal prey refuge (e.g. sand/rubble, bare rock/steel) from which common prey, in particular decapods, were obtained. The significant intra- and inter-specific differences in dietary compositions, allied with differences in the use of feeding microhabitats, would facilitate co-occurrence of these three conspicuous species and contribute to maintaining high richness of labrid species in reef systems. Echinoids were regularly consumed by each species but they made a moderate contribution to the diet of only O. lineolatus, which suggests that only one of the three labrids is likely to play a significant role in regulation of echinoid densities in these rocky reef habitats. However, the broad diets and diverse forging strategies employed by these labrid species imply that they have a system-wide influence on invertebrate prey on rocky reefs.  相似文献   

16.
Hill  R.  Schreiber  U.  Gademann  R.  Larkum  A. W. D.  Kühl  M.  Ralph  P. J. 《Marine Biology》2004,144(4):633-640
Heterogeneity in photosynthetic performance between polyp and coenosarc tissue in corals was shown using a new variable fluorescence imaging system (Imaging-PAM) with three species of coral, Acropora nobilis, Cyphastrea serailia and Pocillopora damicornis. In comparison to earlier studies with fibre-optic microprobes for fluorescence analysis, the Imaging-PAM enables greater accuracy by allowing different tissues to be better defined and by providing many more data points within a given time. Spatial variability of photosynthetic performance from the tip to the distal parts was revealed in one species of branching coral, A. nobilis. The effect of bleaching conditions (33°C vs. 27°C) was studied over a period of 8 h. Marked changes in fluorescence parameters were observed for all three species. Although a decline in PSII (effective quantum yield) and Yi (the first effective quantum yield obtained from a rapid light curve) were observed, P. damicornis showed no visual signs of bleaching on the Imaging-PAM after this time. In A. nobilis and C. serailia, visual signs of bleaching over the 8 h period were accompanied by marked changes in F (light-adapted fluorescence yield), NPQ (non-photochemical quenching) and E k (minimum saturating irradiance), as well as PSII and Yi. These changes were most marked over the first 5 h. The most sensitive species was A. nobilis, which after 8 h at 33°C had reached a PSII value of almost zero across its whole surface. Differential bleaching responses between polyps and coenosarc tissue were found in P. damicornis, but not in A. nobilis and C. serailia. NPQ increased with exposure time to 33°C in both the latter species, accompanied by a decreasing E k, suggesting that the xanthophyll cycle is entrained as a mechanism for reducing the effects of the bleaching conditions.Communicated by L. Hagerman, Helsingør  相似文献   

17.
Barz  K.  Hirche  H.-J. 《Marine Biology》2005,147(2):465-476
The annual cycle of abundance and distribution of the scyphozoan medusae Aurelia aurita and Cyanea capillata was studied in the Bornholm Basin (central Baltic Sea) in 2002. Seasonal changes in prey composition and predatory impact were investigated by analyzing stomach contents. A. aurita occurred from July to November, with a maximum mean abundance of 2.3 ind. per 100 m3 in August, whereas C. capillata was caught in much smaller numbers from July to September. No ephyrae of either species were found; therefore, advection of medusae from the western Baltic Sea is assumed. From July to October, ~80% of A. aurita medusae was distributed in the upper 20 m above the thermocline, whereas C. capillata occurred only in the halocline below 45 m. A. aurita did not migrate vertically and fed mainly on the most abundant cladoceran species Bosmina coregoni maritima. Further prey organisms were the cladocerans Evadne nordmanni and Podon spp., mollusk larvae and copepods. Copepod nauplii and copepodite stages I–III were not eaten by the medusae, neither were fish eggs and larvae used as prey. Based on mean medusa and zooplankton abundance from the upper 20 m, the predatory impact was very low. In August, when mean abundance of A. aurita was highest, only 0.1% of the copepod and 0.5% of the cladoceran standing stock were eaten per day. However, in regions with higher medusa or lower zooplankton abundance, up to 7.9% of the cladoceran standing stock was consumed per day. Hence, A. aurita did not regulate the zooplankton community in the Bornholm Basin, and fish larvae did not suffer from competition with and predation by the medusae.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

18.
Bite damage patterns have long been used to estimate shark species and body size, with somewhat limited success. The lack of fit between damage patterns and shark size is partially due to variation in tooth size and shape within an individual. The ability to accurately predict body size from bite patterns is important for better understanding the ecological and behavioral underpinnings of shark bites/attacks on marine organisms, humans, and submarine equipment. To this end, we measured interdental distance (IDD) between the most labial teeth in the first six tooth files on both the upper and lower jaws, as well as the circumference of the portion of each jaw that bears teeth, for prepared jaw sets from fourteen shark species and regressed these data against total length. IDD is allometric as well as an accurate predictor of total length in all species examined, except Carcharhinus acronotus. Tooth-bearing circumference is also allometric and predictive of total length in all species. Though considerable overlap exists in IDD and circumference ranges among species for the total length ranges examined, Carcharodon carcharias and Isurus sp. can be differentiated from Carcharhinus limbatus, Carcharhinus brevipinna, and C. acronotus based on these values alone. When combined with knowledge of species-specific feeding behavior, geographic distribution, and habitat preferences, these simple measures from bite damage patterns allow quick, accurate assessment of shark size and potential species.  相似文献   

19.
Introduced species are having major impacts in terrestrial, freshwater and marine ecosystems world-wide. It is increasingly recognised that effects of multiple species often cannot be predicted from the effect of each species alone, due to complex interactions, but most investigations of invasion impacts have examined only one non-native species at a time and have not addressed the interactive effects of multiple species. We conducted a field experiment to compare the individual and combined effects of two introduced marine predators, the northern Pacific seastar Asterias amurensis and the European green crab Carcinus maenas, on a soft-sediment invertebrate assemblage in Tasmania. Spatial overlap in the distribution of these invaders is just beginning in Tasmania, and appears imminent as their respective ranges expand, suggesting a strong overlap in food resources will result from the shared proclivity for bivalve prey. A. amurensis and C. maenas provide good models to test the interaction between multiple introduced predators, because they leave clear predator-specific traces of their predatory activity for a number of common prey taxa (bivalves and gastropods). Our experiments demonstrate that both predators had a major effect on the abundance of bivalves, reducing populations of the commercial bivalves Fulvia tenuicostata and Katelysia rhytiphora. The interaction between C. maenas and A. amurensis appears to be one of resource competition, resulting in partitioning of bivalves according to size between predators, with A. amurensis consuming the large and C. maenas the small bivalves. At a large spatial scale, we predict that the combined effect on bivalves may be greater than that due to each predator alone simply because their combined distribution is likely to cover a broader range of habitats. At a smaller scale, in the shallow subtidal, where spatial overlap is expected to be most extensive, our results indicate the individual effects of each predator are likely to be modified in the presence of the other as densities increase. These results further highlight the need to consider the interactive effects of introduced species, especially with continued increases in the number of established invasions.Communicated by M.S. Johnson, Crawley  相似文献   

20.
We tested whether ingesting toxic algae by heterotrophic prey affected their nutritional value to crab larval predators, using toxic algal strains that are either ingested directly by larval crabs or rejected by them. Ingestion of toxic strains of the dinoflagellates Alexandrium andersoni and A. fundyense by the rotifer Brachionus plicatilis was confirmed. Rotifers having ingested either algal type for five days were fed to freshly hatched larvae of three crab species, with larval survival and stage durations determined. For both algal/rotifer treatments in all three crab species, larvae fed algae directly died during the first zoeal stage, while those fed rotifers that had been fed either algal strain survived to the experiment’s end (zoeal stage 3). Survival was lower, and stage duration longer, for larvae fed rotifers cultured on toxic algae when compared to those fed non-toxic algae. The role of toxic algae in the planktonic food web may be influenced by its direct or indirect ingestion by larval crabs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号