首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Non-thermal plasma technologies have shown their promising potential specially for the low concentration of volatile organic compound control in indoor air in recent years. But it is also high energy consuming. So, to improve the energy efficiency, adding catalysts which enhance the plasma chemical reactions to plasma reactors may be a good selection. Therefore, in this study the manganese dioxide assisted silent discharge plasma was developed for benzene conversion at a relatively high energy efficiency. The results show that MnO2 could promote complete oxidation of benzene with O2 and O3 produced in the plasma discharge zone. The energy efficiency of benzene conversion with MnO2 was two folds as much as that without catalysts. It was also found that the site of MnO2 in the reactor and the energy density had effects on benzene conversion. While the energy density was lower than 48 J/L, benzene conversion decreased with the increase in the distance between MnO2 bed and the plasma discharge zone. Whereas when the energy density was higher than 104 J/L, benzene conversion had an optimal value that was governed by the distance between MnO2 bed and the plasma discharge zone. The mechanism of benzene oxidation in plasma discharges and over MnO2 is discussed in detail.  相似文献   

2.
• Applications of non-thermal plasma reactors for reduction of VOCs were reviewed. • Dielectric barrier discharge (DBD) plasma was considered. • Effect of process parameters was studied. • Effect of catalysts and inhibitors were evaluated. Volatile organic compounds (VOCs) released from the waste treatment facilities have become a significant issue because they are not only causing odor nuisance but may also hazard to human health. Non-thermal plasma (NTP) technologies are newly developed methods and became a research trend in recent years regarding the removal of VOCs from the air environment. Due to its unique characteristics, such as bulk homogenized volume, plasma with high reaction efficiency dielectric barrier discharge (DBD) technology is considered one of the most promising techniques of NTP. This paper reviews recent progress of DBD plasma technology for abatement of VOCs. The principle of plasma generation in DBD and its configurations (electrode, discharge gap, dielectric barrier material, etc.) are discussed in details. Based on previously published literature, attention has been paid on the effect of DBD configuration on the removal of VOCs. The removal efficiency of VOCs in DBD reactors is presented too, considering various process parameters such as initial concentration, gas feeding rate, oxygen content and input power. Moreover, using DBD technology, the role of catalysis and inhibitors in VOCs removal are discussed. Finally, a modified configuration of the DBD reactor, i.e. double dielectric barrier discharge (DDBD) for the abatement of VOCs is discussed in details. It was suggested that the DDBD plasma reactor could be used for higher conversion efficiency as well as for avoiding solid residue deposition on the electrode. These depositions can interfere with the performance of the reactor.  相似文献   

3.
Photosynthetically active protoplasts were isolated from Chondrus crispus Stackh. by treating thalli with -carrageenase produced from batch culture of Pseudomonas carrageenovora. Using the silicone oil centrifugation technique, it was found that the protoplasts: (1) did not generally accumulate inorganic carbon (Ci) above the concentration in their incubation medium; (2) were saturated at Ci concentrations of 3 to 4 mM; (3) had an intracellular pH of 7.50 when incubated at pH 7.5; and (4) their initial carbon fixation rate was reduced by carbonic anhydrase inhibitors. Although the carbon fixation rate of the protoplasts was about 30% that of thallus fragments, presumably due to the relatively harsh protoplast isolation treatment, the behavior of the protoplasts was similar to that of fragments. This similarity indicates that the protoplasts are photosynthetically active and behave as thallus fragments. Further, the data are consistent with the hypothesis that C. crispus acquires Ci for photosynthesis by the diffusion of CO2 across the plasma membrane.  相似文献   

4.
Soils are a key component of the terrestrial carbon cycle as they contain the majority of terrestrial carbon. Soil microorganisms mainly control the accumulation and loss of this carbon. However, traditional concepts of soil carbon stabilisation failed so far to account for environmental and energetic constraints of microorganisms. Here, we demonstrate for the first time that these biological limitations might have the overall control on soil carbon stability. In a long-term experiment, we incubated 13C-labelled compost with natural soils at various soil carbon concentrations. Unexpectedly, we found that soil carbon turnover decreased with lower carbon concentration. We developed a conceptual model that explained these observations. In this model, two types of particles were submitted to random walk movement in the soil profile: soil organic matter substrate and microbial decomposers. Soil carbon turnover depended only on the likelihood of a decomposer particle to meet a substrate particle; in consequence, carbon turnover decreased with lower carbon concentration, like observed in the experiment. This conceptual model was able to simulate realistic depth profiles of soil carbon and soil carbon age. Our results, which are simply based on the application of a two-step kinetic, unmystify the stability of soil carbon and suggest that observations like high carbon ages in subsoil, stability of carbon in fallows and priming of soil carbon might be simply explained by the probability to be decomposed.  相似文献   

5.
Incorporation rates of inorganic carbon and its distribution between the organic matter and the skeleton have been measured using 14C tracer techniques on two species of symbiont-bearing benthonic foraminifera in the Gulf of Elat: Amphistegina lobifera (a perforate species) and Amphisorus hemprichii (an imperforate species). Under constant experimental conditions, incorporation rates of the radiotracer become linear with time after several hours in A. hemprichii and after one day in A. lobifera. A. lobifera showed a lag time of 24 h for skeletal incorporation, whereas in A. hemprichii uptake into the skeleton started within 2 h. Pulse-chase incubations in radioactive seawater, followed by unlabelled incubations, demonstrate transfer of photosynthetically acquired 14C into the skeleton of A. lobifera. No such transfer was found in A. hemprichii. The total 14C uptake by A. lobifera increased during the first 24 h of cold chase incubation. This increase suggests the existence of an internal inorganic carbon pool that was lost (probably evaporated) during the analysis of pulse incubations. However, during the following chase incubations, the 14C in this pool was incorporated mainly into the skeleton and retained during analysis, causing the increase in the total uptake. No such increase was found in A. hemprichii. Additional 14C uptake experiments on other species of the genera Operculina, Heterostegina and Borelis suggest that the differences in pathways for incorporation of carbon between A. lobifera and A. hemprichii can be generalized to the perforate and imperforate foraminiferal groups. In perforate species, respired carbon originally taken up through photosynthesis is partly recycled into the skeleton. In imperforate species such a transfer has not been demonstrated. Perforate species seem to have a large internal inorganic carbon pool which serves mainly for calcification and possibly also for photosynthesis, while imperforate species may take up carbon for calcification directly from seawater or have a very small inorganic carbon pool.  相似文献   

6.
Soil is believed to be the most important sink for sequestering atmospheric carbon. Hence, estimating soil carbon sequestration potential has been carried out for different regions and agricultural practices. However, soil carbon saturation (SCS), a fundamental concept for estimating soil carbon sequestration potential, has not been estimated for countries or regions. In this study, we estimated SCS of agricultural land for most provinces in China for 1990 by the DNDC model, a carbon and nitrogen biogeochemical cycle model, in order to provide a basis for farmers to select the land use, tillage and fertilization regimes to sequester more carbon. The result showed that SCS was as low as 0.48% in Tianjin and up to 5.14% in Tibet. There was a positive correlation between SCS and the proportion of paddy field in a province. In 1990, cropland soil carbon sequestration potential (SCSP) in China was -0.969 Gt C (-2.706 to 0.767 Gt C). This suggests that agricultural soil will be a carbon source to the atmosphere if agricultural practices are not altered. However, SCSP differed between provinces in China. SCSP was highest in Tibet (7.9 t C ha-1) and lowest in Heilongjiang Province (-60.8 t C ha-1), with a gradual decrease from south to north in China.  相似文献   

7.
Marine macroalgae need carbon-concentrating mechanisms because they have only limited access to CO2 in their natural environment. Previous studies have shown that one important strategy common to many algae is the activity of periplasmic carbonic anhydrases that catalyse the dehydration of HCO3- into CO2. The latter can then cross the plasma membrane by passive diffusion. We hypothesised that an active (energy-consuming) mechanism might also be involved in the membrane transport of CO2, as is the case in a number of microalgae. Coccotylus truncatus was chosen as a model organism for this study because it belongs to a group of algae that usually lack direct HCO3- uptake: sublittoral red algae. The method used to study carbon uptake was pH drift of the seawater medium surrounding the algae in a closed vessel, with and without the addition of specific inhibitors or proton buffers. Measured parameters included pH, total inorganic carbon and alkalinity of the seawater medium. Our results suggest that, in C. truncatus, periplasmic carbonic anhydrase as well as H+ extrusion, probably driven by a vanadate-sensitive P-type H+-ATPase (proton pump), are involved in CO2 uptake. No direct uptake of HCO3- was discovered. This paper also presents data on the buffer capacity of several proton buffers and the carbon-uptake inhibitors acetazolamide, 4,4'-diisothiocyano-stilbene-2,2'-disulfonate (DIDS) and orthovanadate in Baltic Sea water with a salinity of 6.5 psu.  相似文献   

8.
中国农田生态系统土壤碳库的饱和水平及其固碳潜力   总被引:45,自引:0,他引:45  
在利用反硝化-分解(DNDC)模型估算中国分县农田土壤碳库及其变化量的基础上,分析中国分省农田土壤碳库的饱和水平,估算各省市自治区农田土壤的固碳潜力,比较旱田与水田固碳能力的差异。结果表明:笔者所得到的中国农田土壤碳库的饱和水平可代表在1990年的土地利用方式、耕作措施、施肥水平和气候条件不变的情况下农田土壤经过耕种后所能达到的碳含量的平衡值,为农田选择土地利用方式、耕作栽培措施和施肥方式以固定更多的碳素提供依据。在分布上,中国农田土壤碳库的饱和水平以华北地区较低,以华北地区为中心向外呈辐射状递增。在1990年的土地利用方式、耕作措施、施肥水平和气候条件不变的情况下,中国农田土壤的固碳潜力为-0.969Pg。从单位面积的固碳潜力看,以西藏自治区最高,黑龙江省最低;从分布看,从南向北有逐渐递减的趋势。中国水田比旱田有更大的固碳能力。  相似文献   

9.
中国农田生态系统土壤碳库的饱和水平及其固碳潜力   总被引:4,自引:0,他引:4  
在利用反硝化-分解(DNDC)模型估算中国分县农田土壤碳库及其变化量的基础上,分析中国分省农田土壤碳库的饱和水平,估算各省市自治区农田土壤的固碳潜力,比较旱田与水田固碳能力的差异。结果表明:笔者所得到的中国农田土壤碳库的饱和水平可代表在1990年的土地利用方式、耕作措施、施肥水平和气候条件不变的情况下农田土壤经过耕种后所能达到的碳含量的平衡值,为农田选择土地利用方式、耕作栽培措施和施肥方式以固定更多的碳素提供依据。在分布上,中国农田土壤碳库的饱和水平以华北地区较低,以华北地区为中心向外呈辐射状递增。在1990年的土地利用方式、耕作措施、施肥水平和气候条件不变的情况下,中国农田土壤的固碳潜力为-0.969 Pg。从单位面积的固碳潜力看,以西藏自治区最高,黑龙江省最低;从分布看,从南向北有逐渐递减的趋势。中国水田比旱田有更大的固碳能力。  相似文献   

10.
Fingerlings of Labeo rohita subjected to sublethal unionized ammonia (0.132mg/l) for 30 days exhibited significant changes. Increase in haemoglobin, haematocrit, plasma cortisol, plasma glucose, plasma cholesterol and plasma lactic acid levels whereas, decrease in plasma chloride, liver and muscle glycogen, hepatosomatic index and DNA/RNA ratio of muscles with stable plasma protein was observed. Metabolic recovery was not observed within 30 days of exposure.  相似文献   

11.
Guoliang Liu  Shijie Han 《Ecological modelling》2009,220(13-14):1719-1723
In their efforts to deal with global climate change, scientists and governments have given much attention to the carbon emissions associated with fossil fuels and to strategies for reducing their use. While it is very important to burn less fossil fuel and to employ alternative energy sources, other carbon-reduction options must also be considered. Given that forests comprise a large portion of the global landbase and that they play a very significant role in the global carbon cycle, it is logical to examine how forest management practices could effect reductions in carbon emissions. Many papers that discuss forest carbon sinks or sources refer only to the short term (<20 years). This paper focuses on the sustainable carbon storage contributions of a forest over the long term. This paper explains that long-term carbon storage and reduced carbon fluctuation can be achieved by a combination of improved forest management and efficient transfer of carbon into wood products. Here we show how three different forest management scenarios affect the overall carbon storage capacity of forest and wood products combined over the long term. We used a timber supply model and scenario analysis to predict forest carbon and other resource conditions over time in the Prince George Forest District, a 3.4-million-ha landbase in northern British Columbia. We found that the high-harvest scenario stores 3% more carbon than the low-harvest scenario and 27% (120 million tonnes) more carbon than the no-harvest scenario even though only 1.2-million ha is in timber harvesting landbase. Our results tell us that forest management practices that maintain and increase forest area, reduce natural disturbances in the forest, improve forest conditions, and ensure the appropriate and timely transfer of carbon into wood products lead to increasing overall carbon storage, thereby reducing carbon in the atmosphere.  相似文献   

12.
西双版纳森林植被碳储量动态与增汇潜力研究   总被引:1,自引:0,他引:1  
科学评估区域森林碳储量动态与增汇潜力对理解陆地碳循环具有重要的意义。本文基于生物量转换因子连续函数法,对西双版纳1993—2006年间森林植被碳储量与碳汇潜力进行了研究,结果表明,(1)西双版纳1993—1994年间森林植被整体碳储量为60 770 378.37 t,碳汇增量表现为栎类(Quercus L.)〉经济林〉思茅松(Pinus kesiya)〉其它阔叶〉桤木(Alnus cremastogyne),主要森林类型的碳密度范围为15.08~74.76 t.hm-2;2005—2006年间森林植被整体碳储量为62 347 715.19 t,比1994—1993年间上升2.60%,碳汇增量均表现为其它阔叶〉经济林〉栎类〉思茅松〉桤木〉杉木(Cunninghamia lanceolate)〉其它针叶,主要森林类型的碳密度范围为8.60~70.90 t.hm-2。(2)2005—2006年间,景洪森林植被整体碳储量为23 299 801.23 t,碳密度范围为8.78~73.35 t.hm-2;勐海森林植被整体碳储量为14 058 043.42 t,碳密度范围为7.95~59.51 t.hm-2;勐腊森林植被整体碳储量为25 050 562.32 t,碳密度范围为8.46~98.73 t.hm-2。可见,1993—2006年间,西双版纳森林植被起到了重要的碳汇功能,且其碳汇功能呈上升趋势。  相似文献   

13.
We study optimal carbon capture and storage (CCS) from point sources, taking into account damages incurred from the accumulation of carbon in the atmosphere and exhaustibility of fossil fuel reserves. High carbon concentrations call for full CCS, meaning zero net emissions. We identify conditions under which partial or no CCS is optimal. In the absence of CCS the CO2 stock might be inverted U-shaped. With CCS more complicated behavior may arise. It can be optimal to have full capture initially, yielding a decreasing stock, then partial capture while keeping the CO2 stock constant, and a final phase without capture but with an inverted U-shaped CO2 stock. We also introduce the option of adaptation and provide a unified theory regarding the optimal use of CCS and adaptation.  相似文献   

14.
We present here a terrestrial carbon cycle model based on a scheme of the phytomass change, which is continuous in time. The experimental information about net primary production, living and dead phytomass, and soil organic matter for various ecosystems is used for calibration of the model. The suggested model enables to characterize terrestrial ecosystems as carbon sources or carbon sinks and to evaluate intensity of these sources and sinks. The model is applied for the European territory of Russia as a case study. Intensity of the total exchange carbon flux for this territory is evaluated. The obtained results allow to conclude that the given territory is the sink of carbon.  相似文献   

15.
An estimate of the social cost of carbon (SCC) is crucial to climate policy. But how should we estimate the SCC? A common approach uses an integrated assessment model (IAM) to simulate time paths for the atmospheric CO2 concentration, its impact on temperature, and resulting reductions in GDP. I have argued that IAMs have deficiencies that make them poorly suited for this job, but what is the alternative? I present an approach to estimating an average SCC, which I argue can be a useful guide for policy. I rely on a survey of experts to elicit opinions regarding (1) probabilities of alternative economic outcomes of climate change, but not the causes of those outcomes; and (2) the reduction in emissions required to avert an extreme outcome, i.e., a large climate-induced reduction in GDP. The average SCC is the ratio of the present value of lost GDP from an extreme outcome to the total emission reduction needed to avert that outcome. I discuss the survey instrument, explain how experts were identified, and present results. I obtain SCC estimates of $200/mt or higher, but the variation across experts is large. Trimming outliers and focusing on experts who expressed a high degree of confidence in their answers yields lower SCCs, $80 to $100/mt, but still well above the IAM-based estimates used by the U.S. government.  相似文献   

16.
• Submerged arc plasma was introduced in terms of wastewater treatment. • Ozone oxidation was coupled with submerged arc plasma system. • Ozone was converted into O and O2 by submerged arc plasma. • Decomposition rate was accelerated by submerged arc plasma. • Introduction of ozone led to significant increase in mineralization. Submerged arc plasma technology was assessed for the removal of phenols from wastewater. The OH radicals generated from the boundary between the plasma and waste solution were considered as a significant factor on the degradation reaction. In this study, the effects of highly energetic electrons released from the submerged arc plasma were mainly studied. The highly energetic electrons directly broke the strong chemical bond and locally increased the reaction temperatures in solution. The effects of the submerged-arc plasma on the decomposition of phenol are discussed in terms of the input energy and initial concentration. The single use of submerged arc plasma easily decomposed the phenol but did not increase the mineralization efficiency. Therefore, the submerged arc plasma, coupled with the ozone injection, was investigated. The submerged arc plasma combined with ozone injection had a synergic effect, which led to significant improvements in mineralization with only a small increase in input energy. The decomposition mechanism of phenol by the submerged arc plasma with the ozone was analyzed.  相似文献   

17.
围湖造田不同土地利用方式土壤有机碳和易氧化碳   总被引:4,自引:0,他引:4  
围湖造田是我国20世纪50年代后期开始大量出现的与水争地的人类干扰活动。以太湖流域肖甸湖区为试验地,测定分析了该围湖造田区香樟(Cinnamomum camphora)林、水杉(Metasequoia glyptostroboides)林、毛竹(Phyllostachys heterocycla)林和农田4种不同典型土地利用方式35年后0~10 cm、10~20 cm、20~40 cm土壤有机碳和易氧化碳含量的差异,以及土壤易氧化碳的季节动态。结果表明:表层(0~10 cm)土壤有机碳含量林地显著高于农田,阔叶林高于针叶林。土壤易氧化碳含量随季节与土层深度的变化而变化,香樟林与毛竹林春夏季节大于冬季,水杉林与农田季节波动较平缓。4种土地利用方式下土壤有机碳和易氧化碳均随土层增加含量递减。与围湖地区内的溪流底泥相比,林地与农田表层土壤有机碳含量均有明显增加;与旱地发育的植被土壤相比,围湖后的土壤有机碳含量较低,易氧化碳含量较高,土壤有机碳稳定性较差。围湖造田作为人类对自然生态系统的一种干扰方式,显著改变了原有生态系统的碳循环特征,因此在研究全球碳循环中,围湖造田对生态系统碳循环的影响应该给予充分考虑。  相似文献   

18.

In the context of global warming and the energy crisis, emissions to the atmosphere of greenhouse gases such as carbon dioxide (CO2) and methane (CH4) should be reduced, and biomethane from landfill biogas should be recycled. For this, there is a need for affordable technologies to capture carbon dioxide, such as adsorption of biogas on activated carbon produced from industrial wastes. Here we converted glycerol, a largely available by-product from biodiesel production, into activated carbon with the first use of potassium acetate as an activating agent. We studied adsorption of CO2 and CH4 on activated carbon. The results show that activated carbon adsorb CO2 up to 20% activated carbon weight at 250 kPa, and 9% at atmospheric pressure. This is explained by high specific surface areas up to 1115 m2g−1. Moreover, selectivity values up to 10.6 are observed for the separation of CO2/CH4. We also found that the equivalent CO2 emissions from activated carbon synthesis are easily neutralized by their use, even in a small biogas production unit.

  相似文献   

19.
We examined the growth rate (µ) ofUlva lactuca L. (collected from Roskilde Fjord, Denmark in 1987) at different levels of dissolved inorganic carbon (DIC), pH and oxygen in two culture facilities. Growth was faster in Facility A (µ max ca 0.3 d–1) than in B (µ max ca 0.2 d–1), probably because of more efficient stirring and higher light intensity. The growth-DIC response curve exhibited low half-saturation constant (K 1/2) values (0.35 mM DIC in A, 0.55 mM in B) and growth rates close toµ max at natural seawater concentration of 2 mM DIC. Growth rate showed a low sensitivity to oxygen over a wide range of DIC and oxygen concentrations. Collectively, the results demonstrated an efficient mechanism for DIC use, unaffected by acclimatization to DIC concentrations between 0.2 and 3 mM. The growth rate decreased little between pH 7.5 and 9 at 2 mM DIC, but steeply above pH 9 approaching zero just above pH 10. The decline of growth at high pH may result from direct pH effects on cell pH, reduced HCO 3 - availability and impaired operation of the carbon uptake process. The growth responses ofU. lactuca to DIC, pH and oxygen resembled those observed in previous short-term photosynthetic experiments. This similarity is probably due to the fast growth ofU. lactuca which means that photosynthetic products are rapidly converted into cell growth. Based on the culture experiments we argue that field plants ofU. lactuca not exposed to stagnant water and DIC depletion are likely to be limited in growth by environmental factors other than DIC (e.g. light and nutrients). Dense mats ofU. lactuca, however, may show reduced growth as a result of DIC depletion, high pH and self-shading.  相似文献   

20.
碳纳米材料在环境中的转化   总被引:1,自引:0,他引:1  
张礼文  黄庆国  毛亮 《环境化学》2013,(7):1268-1276
碳纳米材料主要包括富勒烯、碳纳米管和石墨烯.随着碳纳米材料的研究和应用范围不断扩大,其对环境的影响和在环境中的行为也逐渐受到关注,而在环境中的转化是环境行为的一个重要方面.首先,环境转化会改变碳纳米材料的性质,从而影响其它行为如聚集沉降和生态毒性.同时,作为一种以碳为骨架的材料,能否被自然界转化、从而进入碳循环是评价碳纳米材料长期环境影响的必要信息.因此,本文重点总结了碳纳米材料在自然环境条件和水处理条件下可能发生的生物或非生物转化,并分析影响碳纳米材料转化的因素,和转化过程对其环境行为的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号