首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Environmental Chemistry Letters - The rising pollution of water resources is threatening the health of humans and ecosystems, calling for advanced methods to clean polluted waters. Adsorption on...  相似文献   

2.
近年来,水体重金属污染日趋严重,筛选出绿色高效处理重金属污染废水的吸附材料迫在眉睫.本文采用振荡吸附法研究了10种树皮类生物质吸附材料在不同投加量、初始浓度、pH和吸附时间下对模拟污染废水中Pb~(2+)和Cd~(2+)的吸附效率.结果表明,在25℃和180 r·min~(-1)恒温振荡条件下,10种树皮对Pb~(2+)和Cd~(2+)的吸附效率存在明显差异(P0.05).它们对模拟废水Pb~(2+)和Cd~(2+)的吸附量和吸附率,分别随初始浓度的增加呈递增和递减趋势;在0—120 min内随吸附时间的延长而提高;在pH 2.0—4.0范围内,随pH的增大而明显提升.红外光谱分析表明,羟基和羧基参与了Pb~(2+)和Cd~(2+)吸附.在投加量0.5 g·L~(-1)、模拟废水初始浓度50 mg·g~(-1)、pH 5.50和吸附时间120 min条件下,侧柏(Platycladus orientalis)皮、核桃树(Juglans regia)皮和构树(Broussonetia papyrifera)皮对Pb~(2+)的吸附量可达71.77—83.61 mg·g~(-1),对Cd~(2+)的吸附量达到64.69—70.33 mg·g~(-1),对实际污染废水具有较高的吸附率,最高可达98.21%.因此,侧柏皮、核桃树皮和构树皮可能是是吸附复合污染废水中铅镉的潜在材料.  相似文献   

3.
Environmental Chemistry Letters - Water contamination is increasing worldwide, yet actual methods of water and wastewater treatment are limited, in particular by actual fossil-fuel derived...  相似文献   

4.
Environmental Chemistry Letters - Heavy metal pollution such as water contamination by Pb, Hg, Cu, Cd and Cr ions is induced by rapid urbanization and industrialization and is a major threat to...  相似文献   

5.
Environmental Chemistry Letters - Heavy metals and dyes are major pollutants that pose potential threat to the health of humans and ecosystems. Various technologies are available to remediate such...  相似文献   

6.
Environmental Chemistry Letters - Water contamination by pollutants has become one of the most critical health problem worldwide. In the current era, the supply of high-quality drinking water to...  相似文献   

7.
Titanium dioxide photocatalysis for pharmaceutical wastewater treatment   总被引:1,自引:0,他引:1  
Heterogeneous photocatalysis using the semiconductor titanium dioxide (TiO2) has proven to be a promising treatment technology for water purification. The effectiveness of this oxidation technology for the destruction of pharmaceuticals has also been demonstrated in numerous studies. This review highlights recent research on TiO2 photocatalytic treatment applied to the removal of selected pharmaceuticals. The discussions are tailored based on the therapeutic drug classes as the kinetics and mechanistic aspects are compound dependent. These classes of pharmaceuticals were chosen because of their environmental prevalence and potential adverse effects. Optimal operational conditions and degradation pathways vary with different pharmaceutical compounds. The main conclusion is that the use of TiO2 photocatalysis can be considered a state-of-the-art pharmaceutical wastewater treatment methodology. Further studies are, however, required to optimize the operating conditions for maximum degradation of multiple pharmaceuticals in wastewater under realistic conditions and on an industrial scale.  相似文献   

8.
The combination of electrocoagulation with another process is a promising approach to enhance the removal efficiency of water pollutants. For instance, free radical-assisted electrocoagulation is a new combination showing higher performance. There are different combinations depending on the free radical source. This article reviews free radical-assisted electrocoagulation processes. We discuss electrocoagulation mechanisms; ozone-assisted electrocoagulation processes; advanced oxidation-assisted electrocoagulation processes; and ultrasound-assisted electrocoagulation. We present kinetic models used in free radical-assisted electrocoagulation, scale-up of free radical-assisted electrocoagulation and cost estimation. The major points are: most of the available studies have been done at laboratory scale with synthetic wastewater, and lack holistic and systematic approaches to consider the process complexity. The performance of the combined process is improved, and the removal efficiency is increased especially with ozone-assisted electrocoagulation, which gives a removal efficiency of more than 95%. The use of ultrasound energy with electrocoagulation is advantageous in reducing the problem of electrode passivation.  相似文献   

9.
Environmental Chemistry Letters - During the last 30 years, environmental issues about the chemical and biological contaminations of water have become a major concern for society, public...  相似文献   

10.
城市污水处理厂污泥处理处置的政策分析   总被引:8,自引:0,他引:8  
岑超平  张德见  韩琪 《生态环境》2005,14(5):803-806
简要介绍了城市污水处理厂污泥处理处置技术,提出污泥产业发展政策的建议,指出土地利用是符合我国国情的污泥处置的方向之一:污泥处理技术主要有减量化、浓缩、脱水、消化、堆肥等;污泥处置技术主要有焚烧、填埋、土地利用、建材利用等。污泥处理处置应按照减量化、稳定化、无害化原则,鼓励污泥资源化综合利用。合理确定污水处理厂污泥处理处置设施的布局和设计规模;鼓励对污泥处理处置给与税、费优惠政策,明确将污泥处理处置的运营费用列入污水排污收费范围,建立科学的价格补偿机制;政府在污泥产业发展中起着较为重要的作用,主要体现为服务与监督,包括承诺、保障和协调三个方面。  相似文献   

11.
12.
The cost of control for conventional pollutants at municipal wastewater treatment plants is examined. Empirical estimates of the effect of performance measures as well as the flow size of the waste stream are obtained for both the capital and the operation and maintenance components of total facility cost. These estimates are used to calculate the marginal cost per pound of pollution control over the range of effluent concentration beyond secondary treatment. The implications of the results for current environmental policy issues are outlined.  相似文献   

13.
火山岩型膨润土原矿的脱色性能研究   总被引:2,自引:0,他引:2  
考察了火山岩型膨润土原矿对亚甲基蓝溶液的脱色处理效果,发现12min后4种矿物的脱色率均达到了85%以上,其中信阳、黑山和凌源膨润土矿样脱色率高达98%以上。各膨润土矿地质背景差异导致矿样间物理化学性质的差异较大。讨论膨润土的物理化学性质和染料脱色效果,发现影响膨润土样品吸附的主要因素为膨润土d001值、CEC以及内表面积。  相似文献   

14.
难降解有机废水成分复杂、危害大,易导致癌变、畸变,对人类健康产生重大影响,是需要优先治理的环境问题.在许多情况下,采用传统生物法和物理化学法来处理难生化处理有机废水很难达到理想的处理效果,并且其操作工艺复杂,成本相对较高.三维电催化氧化技术的出现为难降解有机废水的处理提供了一种绿色环保高效的方法.三维电催化氧化体系具有...  相似文献   

15.
Adding iron salt or iron hydroxide to sludgemixed liquor in an aeration tank of a conventional activated sludge processes (bioferric process) can simultaneously improve the sludge’s filterability and enhance the system’s treatment capacity. In view of this, Fe(OH)3 was added to a submerged membrane bioreactor (SMBR) to enhance the removal efficiency and to mitigate membrane fouling. Bioferric process and SMBR were combined to create a novel process called Bioferric-SMBR. A side-by-side comparison study of Bioferric-SMBR and common SMBR dealing with dyeing wastewater was carried out. Bioferric-SMBR showed potential superiority, which could enhance removal efficiency, reduce membrane fouling and improve sludge characteristic. When volumetric loading rate was 25% higher than that of common SMBR, the removal efficiencies of Bioferric-SMBR on COD, dye, and NH4 +-N were 1.0%, 9.5%, and 5.2% higher than that of common SMBR, respectively. The trans-membrane pressure of Bioferric-SMBR was only 36% of that in common SMBR while its membrane flux was 25% higher than that of common SMBR. The stable running period in Bioferric-SMBR was 2.5 times of that in common SMBR when there was no surplus sludge discharged. The mixed liquor suspended solids concentration of Bioferric-SMBR was higher than that of common SMBR with more diversified kinds of microorganisms such as protozoans and metazoans. The mean particle diameter and specific oxygen uptake rate of Bioferric-SMBR were 3.10 and 1.23 times the common SMBR, respectively.  相似文献   

16.
● Reduce the quantifying MPs time by using Nile red staining. ● The removal rate of MPs and PAEs in wastewater and sludge were investigated. ● MPs and PAEs were firstly analyzed during thermal hydrolysis treatment. ● The removal of PAEs from wastewater and sludge was mainly biodegradation. Microplastics (MPs) and plasticizers, such as phthalate esters (PAEs), were frequently detected in municipal wastewater treatment plants (MWTP). Previous research mainly studied the removal of MPs and PAEs in wastewater. However, the occurrence of MPs and PAEs in the sludge was generally ignored. To comprehensively investigate the occurrence and the migration behaviors of MPs and PAEs in MWTP, a series of representative parameters including the number, size, color, shape of MPs, and the concentrations of PAEs in wastewater and sludge were systematically investigated. In this study, the concentrations of MPs in the influent and effluent were 15.46±0.37 and 0.30±0.14 particles/L. The MP removal efficiency of 98.1% was achieved and about 73.8% of MPs were accumulated in the sludge in the MWTP. The numbers of MPs in the sludge before and after digestion were 4.40±0.14 and 0.31±0.01 particles/g (dry sludge), respectively. Fourier Transform Infrared Spectroscopy (ATR FT-IR) analysis showed that the main types of MPs were polyethylene terephthalate (PET), polypropylene (PP), polyethylene (PE), and polystyrene (PS). Six PAEs, including phthalate (DMP), diethyl phthalate (DEP), diisobutyl phthalate (DIBP), ortho dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), and bis(2-ethyl) hexyl phthalate (DEHP), were detected in the MWTP. The concentrations of total PAEs (ΣPAEs) in the influent and effluent were 76.66 and 6.28 µg/L, respectively. The concentrations of ΣPAEs in the sludge before and after digestion were 152.64 and 31.70 µg/g, respectively. In the process of thermal hydrolysis, the number and size of MPs decreased accompanied by the increase of the plasticizer concentration.  相似文献   

17.
采用自主研发的紫外光氧化除臭系统处理某污水处理厂曝气沉砂池产生的恶臭气体.系统考察了空塔停留时间、进口恶臭物质浓度、紫外辐射照度等因素对系统除臭效果和臭氧产生的影响,并对恶臭物质去除和臭氧产生过程分别进行了动力学分析.结果表明,在空塔停留时间1.5 s,平均紫外辐射照度1664μW.cm-2,H2S进口浓度为35 mg.m-3,NH3进口浓度为0.26 mg.m-3的条件下,H2S和NH3的去除率分别可达到为34.3%和53.8%.紫外光氧化反应器对H2S和NH3的去除速率随紫外辐射照度增大而线性增加,随进口浓度增加而增大且趋近于某极限值.反应器臭氧产生速率随进口恶臭物质浓度增加而线性减小,随紫外辐射照度增加而增大且趋近于某极限值.动力学分析和计算的结果表明,本研究建立的数学关系式可以较好地定量描述恶臭物质浓度以及紫外辐射照度对恶臭物质去除速率和臭氧产生速率的影响.  相似文献   

18.
Environmental Chemistry Letters - The rising energy conflicts and environmental pollution are calling for the rapid development of advanced techniques such as photoelectrocatalysis to...  相似文献   

19.
● A novel nonpolar super-aligned carbon nanotube (SACNT) membrane was prepared. ● SACNT membranes achieved smoother and more uniform structures. ● SACNT membranes have inert chemistry and unique nonpolar wetting feature. ● SACNT membranes exhibit superior separation and antifouling capabilities. ● SACNT membranes achieved superior oil/water separation efficiency. Membrane separation technology has made great progress in various practical applications, but the unsatisfactory separation performance of prevailing membrane materials hampers its further sustainable growth. This study proposed a novel nonpolar super-aligned carbon nanotube (SACNT) membrane, which was prepared with a layer-by-layer cross-stacking method. Through controlling the number of stacked SACNT layers, three kinds of SACNT membranes (SACNT_200, SACNT_300, and SACNT_400) were prepared. Systematic characterizations and filtration tests were performed to investigate their physico-chemical properties, surface wetting behavior, and filtration performance. Compared with two commercial membranes (Com_0.22 and Com_0.45), all the SACNT membranes achieved smoother and more uniform structures. Due to the hexagonal graphene structure of CNTs, the surface chemistry of the SACNT membranes is simple and inert, thereby potentially eliminating the covalent-bonding-induced membrane fouling. Besides, the SACNT membranes exhibited a typical nonpolar wetting behavior, with high contact angles for polar liquids (water: ~124.9°–126.5°; formamide: ~80.0°–83.9°) but low contact angles for nonpolar diiodomethane (~18.8°–20.9°). This unique nonpolar feature potentially leads to weak interactions with polar substances. Furthermore, compared with the commercial membranes, the SACNT membranes obtained a significantly higher selectivity while achieving a comparable or higher permeability (depending on the number of stacked layers). Moreover, the SACNT membranes exhibited superior separation performance in various application scenarios, including municipal wastewater treatment (> 2.3 times higher cleaning efficiency), electro-assistant fouling inhibition (or even self-cleaning), and oil/water separation (> 99.2 % of separation efficiency), suggesting promising application prospects in various fields.  相似文献   

20.
• Various low-cost adsorbents are studied for capturing urban stormwater pollutants. • Adsorbents are selected based on both pollutant adsorption and unexpected leaching. • Application modes of adsorbents influence their utilization efficacy in practice. Stormwater represents a major non-point pollution source at an urban environment. To improve the treatment efficacy of stormwater infrastructure, low-cost adsorbents have increasingly gained attention over the past decades. This article aims to briefly discuss several key aspects and principles for utilization of low-cost adsorbents for urban stormwater treatment. To determine whether a low-cost adsorbent is suitable for stormwater treatment, two aspects should be carefully assessed, including: 1) its adsorption mechanisms and behaviors that can influence the binding stre.g.,h, adsorption kinetics, and treatment capacity; and 2) unwanted chemical leaching patterns that can affect the extent of water quality degradation. Furthermore, the application mode of an adsorbent in the system design influences the utilization efficiency. Adsorbents, after dosed to soil media in infrastructure, would eventually become ineffective after oversaturation. In contrast, standalone filters or innovative composite adsorbents (e.g., adsorbent-coated mulch chips) can enable a long-lasting adsorption due to periodic replacement with fresh adsorbents. The aforementioned principles play a key role in the success of urban stormwater treatment with low-cost adsorbents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号