首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
Sun  Hui  Zhang  Hengyuan  Mao  Huimin  Yu  Bin  Han  Jian  Bhat  Gajanan 《Environmental Chemistry Letters》2019,17(2):1091-1096
Environmental Chemistry Letters - Dyeing wastewaters present high hazards for the environment and human health. Advanced dye removal may be achieved by magnetic metal–organic frameworks...  相似文献   

2.
In this investigation, Fe3O4 magnetic nanoparticles (MNPs) were prepared by the alkalinization of an aqueous medium containing ferrous sulfate and ferric chloride. In the next step, a Fe3O4–AgCl magnetic nanocomposite was fabricated by the drop-by-drop addition of silver nitrate solution into a NaCl solution containing Fe3O4 MNPs. All prepared nanoparticles were characterized by transition electron microscopy (TEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). Both particle types varied in size from 2.5 to 20?nm, with an average size of 7.5?nm for Fe3O4 MNPs and 12.5?nm for Fe3O4–AgCl nanocomposites. The antibacterial effect of the Fe3O4 MNPs and fabricated Fe3O4–AgCl nanocomposites against Escherichia coli (ATCC 35218) were investigated by conventional serial agar dilution method using the Müller–Hinton Agar medium. The minimum inhibitory concentration was 4?mg?mL?1 for Fe3O4 MNPs and 2?mg?mL?1 for the Fe3O4–AgCl magnetic nanocomposites. Time-kill course assays showed that the Fe3O4–AgCl magnetic nanocomposites successfully killed all inoculated bacterial cells during an exposure time of 60?min. The antibacterial activity of recycled Fe3O4–AgCl magnetic nanocomposites over four 60?min cycles of antibacterial treatment was further tested against E. coli by the colony-forming unit (CFU) method. The antibacterial efficiency of the nanocomposites was constant over two cycles of antibacterial testing.  相似文献   

3.
Behavioral type–environment correlations occur when specific behavioral types of individuals are more common in certain environments. Behavioral type–environment correlations can be generated by several different mechanisms that are probably very common such as niche construction and phenotypic plasticity. Moreover, behavioral type–environment correlations have important ecological and evolutionary implications. However, few studies have examined behavioral type–environment correlations in natural populations. In this study, we asked whether some behavioral types of three-spined stickleback were more likely to occur in certain social environments (alone or in a shoal with other stickleback) or in certain microhabitats in a river (in the open or under cover). We found that individuals that were in shoals with other stickleback at the time of collection from the field emerged from a refuge more quickly compared to individuals that were found alone. In addition, fish that were alone in an open microhabitat explored more of a pool compared to fish that were alone in cover, but this difference did not occur among fish that were in shoals at the time of collection. Subsequent analyses of gut contents suggested that differences in microhabitat use were consistent over time. Our study provides some of the first evidence for behavioral type–environment correlations in a natural population of non-human animals.  相似文献   

4.
any sacoglossans (opisthobranch gastropods) have the potential for carbon acquisition from photosynthesis by plastids sequestered from their macroalgal food as well as by ingestion, digestion and assimilation of the organic carbon derived from the alga. A new method for obtaining a minimum estimate of the fraction of sacoglossan carbon supplied from photosynthesis by kleptoplastids is suggested, based on the mass balance of stable carbon isotopes at the natural abundance level. The method involves comparison of 13C/12C ratios in sacoglossans with those of the algae on which they are found. Differences in ratios between alga and sacoglossan are used to give a minimum estimate of carbon acquisition by kleptoplasty, granted assumptions about the range of 13C/12C fractionation values which can occur for marine photolithotrophs. The new method is applied to several green (ulvophycean) alga–sacoglossan associations from Rottnest Island, Western Australia, and the values compared with those obtained previously by other means. The method suggests values of up to 0.6 of the total carbon input to the sacoglossans from photosynthesis by their kleptoplastids. To improve the estimates of the minimum role of kleptoplastidy in the carbon nutrition of sacoglossans, further information is needed: (1) on the fidelity of a given sacoglossan to a given algal individual (or species), (2) on the 13C/12C ratio of the part of the alga ingested by the sacoglossan, and (3) on the allocation of dietary organic carbon and of kleptoplastidic photosynthate to carbon lost in respiration, mucopolysaccharide production and gametes (and hence not sampled with the animal). Received: 24 November 1999 / Accepted: 20 October 2000  相似文献   

5.
Environmental Geochemistry and Health - Hooghly–Matla estuarine system along with the Sundarbans mangroves forms one of the most diverse and vulnerable ecosystems in the world. We have...  相似文献   

6.
This study evaluated the temporal and spatial variations of water quality data sets for the Xin'anjiang River through the use of multivariate statistical techniques, including cluster analysis (CA), discriminant analysis (DA), correlation analysis, and principal component analysis (PCA). The water samples, measured by ten parameters, were collected every month for three years (2008-2010) from eight sampling stations located along the river. The hierarchical CA classified the 12 months into three periods (First, Second and Third Period) and the eight sampling sites into three groups (Groups 1, 2 and 3) based on seasonal differences and various pollution levels caused by physicochemical properties and anthropogenic activ- ities. DA identified three significant parameters (tempera- ture, pH and E.coli) to distinguish temporal groups with close to 76% correct assignment. The DA also discovered five parameters (temperature, electricity conductivity, total nitrogen, chemical oxygen demand and total phosphorus) for spatial variation analysis, with 80.56% correct assignment. The non-parametric correlation coefficient (Spear- man R) explained the relationship between the water quality parameters and the basin characteristics, and the GIS made the results visual and direct. The PCA identified four PCs for Groups 1 and 2, and three PCs for Group 3. These PCs captured 68.94%, 67.48% and 70.35% of the total variance of Groups 1, 2 and 3, respectively. Although natural pollution affects the Xin'anjiang River, the main sources of pollution included agricultural activities, industrial waste, and domestic wastewater.  相似文献   

7.
It is difficult to meet the increasingly stringent environmental regulations by the application of conventional precipitation processes treating complex heavy metal wastewaters. We studied the potential of a new method for removing heavy metals from metal–EDTA wastewater by Fenton reaction followed by hydroxide precipitation. This process is referred to as Fenton reaction-hydroxide precipitation (FR-HP) process. This study investigated the use of FR-HP and ultrasonic/FR-HP processes for the removal of Ni(II) from Ni–EDTA wastewater. The results indicate that ultrasonic/FR-HP process is more effective for the removal of nickel ions than FR-HP process.  相似文献   

8.
Spatial and temporal distributions of water quality using multivariate statistical techniques for the evaluation of nutrients (NO2-N, NO3-N, NH4-N, PO4-P, SiO4-Si, total N, total P) in relation to some physico-chemical features (DO, BOD, TSS, TDS, SO42−, Cl) were studied for 31 different stations of the Mahanadi river–estuarine system in the eastern part of India. The seasonal nutrient variations (except SiO4-Si) exhibit higher values during monsoon season in unpolluted stations and the reverse trends for polluted stations, which are related to agricultural run-off and regional anthropogenic activities respectively. Silicate shows a well defined pattern of distribution with a higher concentration during the monsoon, which is slightly removed from the estuarine water of Mahanadi during the pre-monsoon season. The results of R-mode factor analyses revealed that anthropogenic contributions are responsible for the increase in nutrients and the decrease in DO and pH levels of the water. The magnitude of BOD with respect to total N and P demonstrates the intensity of organic pollution in the system. The removal of silicate in the saline system is clearly visible through factor analysis and the different mode of association of TSS is reflected seasonally. The relationships among the stations are highlighted by cluster analysis, represented in dendograms to categorize different levels of contamination.  相似文献   

9.
A method for the solid phase extraction of trace metals, namely Co, Cu, Pb, Ni and Zn, from environmental and biological samples using column Amberlite XAD-7 loaded with 2-hydroxy-propiophenone-4-phenyl-3-thiosemicarbazone (HPPPTSC) and determination by inductively coupled spectrometry (ICP–AES) has been developed. The reagent has the capacity to form chelate complexes with the metals because of three binding sites in the reagent molecule. The optimum experimental conditions for the quantitative sorption of five metals, pH, effect of flow rate, concentration of eluent, sorption capacity and the effect of diverse ions on the preconcentration of analytes have been investigated. The sorption capacity of the resin has 83, 127, 35, 88 and 85?µmol?g?1 for Co2+, Cu2+, Pb2+, Ni2+ and Zn2+, respectively. The preconcentration factors for Co2+, Cu2+, Pb2+, Ni2+ and Zn2+ were 100, 110, 120, 140 and 150, respectively. The accuracy of the proposed procedure was evaluated by standard reference materials. The achieved results were in good agreement with certified values. The proposed method was applied for the determination of trace metals in river water and plant leaves.  相似文献   

10.
A soil–plant–air continuum multilayer model was used to numerically simulate canopy net assimilation (An), evapotranspiration (ET), and soil moisture in a deciduous teak plantation in a dry tropical climate of northern Thailand to examine the influence of soil drought on An. The timings of leaf flush and the end of the canopy duration period (CDP) were also investigated from the perspective of the temporal positive carbon gain. Two numerical experiments with different seasonal patterns of leaf area index (LAI) were carried out using above-canopy hydrometeorological data as input data. The first experiment involved seasonally varying LAI estimated based on time-series of radiative transmittance through the canopy, and the second experiment applied an annually constant LAI. The first simulation captured the measured seasonal changes in soil surface moisture; the simulated transpiration agreed with seasonal changes in heat pulse velocity, corresponding to the water use of individual trees, and the simulated An became slightly negative. However, in the second simulation, An became negative in the dry season because the decline in stomatal conductance due to severe soil drought limited the assimilation, and the simultaneous increase in leaf temperature increased dark respiration. Thus, these experiments revealed that the leaflessness in the dry season is reasonable for carbon gain and emphasized the unfavorable soil water status for carbon gain in the dry season. Examining the duration of positive An (DPA) in the second simulation showed that the start of the longest DPA (LDPA) in a year approached the timing of leaf flush in the teak plantation after the spring equinox. On the other hand, the end appeared earlier than that of all CDPs. This result is consistent with the sap flow stopping earlier than the complete leaf fall, implying that the carbon assimilation period ends before the completion of defoliation. The model sensitivity analysis in the second simulation suggests that a smaller LAI and slower maximum rate of carboxylation likely extend the LDPA because soil water from the surface to rooting depth is maintained longer at levels adequate for carbon gain by decreased canopy transpiration. The experiments also suggest that lower soil hydraulic conductivity and deeper rooting depth can postpone the end of the LDPA by increasing soil water retention and the soil water capacity, respectively.  相似文献   

11.
Terpenes react quite rapidly with ambient ozone and lead via ozonides to highly oxidizing radicals and consecutive products forming aerosols. In the presence of SO2 sulphur containing compounds, mainly as sulphate, are formed. By means of gas chromatography/mass spectrometry and by comparison with known spectra the main products of the reaction of ß‐pinene (as a model compound) with ozone and sulphur dioxide could be identified.

Reaction of terpenes with NO3‐radicals, which build up in the atmosphere at night‐time, leads to the formation of organic nitrates that form aerosols. The kinetics as well as the products of the reaction between NO3‐radicals and ß‐pinene have been studied by FTIR and MS.  相似文献   

12.
Power generation using straw biomass has quantifiable benefits from an economic, ecological, and sociological perspective in China. The methods used to construct the assessment models of these integrated benefits were the revenue capitalization approach and the discounted-cash-flow approach. The results indicated that a straw power plant with the capacity of 2.50×107W and burning 1.23×105 tons of cotton straw could annually supply 1.40×108 kWh of power. However, it would not be until six years later that these results could be measured. Over the long term, the gross benefits could reach up to 4.63×108 Yuan. Therefore, the total benefits are expected to be 1.18 × 1012 Yuan if all available straw resources are used to generate power. The policy implication showed that the long-term integrated benefits of power generation by straw biomass outweighed the short-term benefits. This is the main incentive to use straw biomass for power generation in the future.  相似文献   

13.
ABSTRACT

Cadmium (Cd) is a toxic-heavy metal that induces a wide range of behavioural, biochemical and physiological effects in aquatic organisms. Oxidative damage has been proposed as a possible mechanism involved in cadmium toxicity. The current study was carried out to evaluate the antioxidant activity of Spirulina as feed additive (1?mg/L) against the toxicity of cadmium (Cd) 0.5?mg/L in freshwater mussel Unio ravoisieri. At the end of the exposed period of 4 days, digestive gland antioxidant status Superoxide dismutase, Catalase, Glutathione-S-transferase and damage markers such as Malondialdehyde and Protein carbonyl were determined. Associations between biomarkers were assessed by a multivariate analysis technique, principal component analysis (PCA). The results of this study revealed that digestive gland antioxidant status showed a significant decrease when mussels were exposed to Cd. Superoxide dismutase, Catalase and Glutathione-S-transferase activities in the Cd?+?SP group were significantly higher than the Cd group (p P?相似文献   

14.
The objective of this study was to assess the bulk chemical composition as well as the extent and severity of heavy metal contamination in the paddy soil of Kočani Field (eastern Macedonia). The results revealed that the paddy soil of the western part of Kočani Field is severely contaminated with Pb, Zn, As and Cd in the vicinity of the Zletovska River due to irrigation with riverine water that is severely affected by acid mine and tailing effluents from the Pb–Zn mine in Zletovo. The detected total concentrations of these metals are far above the threshold values considered to be phytotoxically excessive for surface soil. The paddy soil in the vicinity of the Zletovska River was also found to exhibit elevated levels of Ba, Th, U, V, W, Mo, Cu, Sb, Bi, Ag, Au, Hg and Tl, with concentrations above their generally accepted median concentration values obtained during this study. A correlation matrix revealed that the Mn and Fe oxides/hydroxides are the most important carrier phase for several trace elements, with the exception of rare earth elements (REEs). These also represent a major sink for the observed heavy metal pollution of the soil. REEs are mostly associated with two phases: light (L)REEs are bound to K-Al, while heavy (H)REEs are bound to Mg-bearing minerals. Although there is no direct evidence of a health risk, the paddy soil in the vicinity of Zletovska River needs further investigation and an assessment should be made of its suitability for agricultural use, particularly in view of the highly elevated concentrations of Pb, Zn, As and Cd.  相似文献   

15.
Polycyclic aromatic hydrocarbon (PAH) concentrations were determined in 16 topsoils (0–10 cm) collected across the site of a former tar works in NE England. The soils were prepared in the laboratory to two different particle size fractions: <250 μm (fraction A) and >250 μm to <2 mm (fraction B). Sixteen priority PAHs were analysed in the soils using in situ pressurised fluid extraction (PFE) followed by gas chromatography—mass spectrometry (GC–MS). The average total PAH concentration in the soils ranged from 9.0 to 1,404 mg/kg (soil fraction A) and from 6.6 to 872 mg/kg (soil fraction B). These concentrations are high compared with other industrially contaminated soils reported in the international literature, indicating that the tar works warrants further investigation/remediation. A predominance of higher-molecular-weight compounds was determined in the samples, suggesting that the PAHs were of pyrogenic (anthropogenic) origin. Statistical comparison (t-test) of the mean total PAH concentrations in soil fractions A and B indicated that there was a significant difference (95% confidence interval) between the fractions in all but two of the soil samples. Additionally, comparisons of the distributions of individual PAHs (i.e. 16 PAHs × 16 soil samples) in soil fractions A and B demonstrated generally higher PAH concentrations in fraction A (i.e. 65.8% of all individual PAH concentrations were higher in soil fraction A). This is important because fraction A corresponds to the particle size thought to be most important in terms of human contact with soils and potential threats to human health.  相似文献   

16.
Selection should favor strategies that reduce costs associated with spermatogenesis. This is especially true when males are sympatric with closely related species, and must avoid heterospecific matings, as in the unisexual–bisexual species complex of mollies. Male sailfin mollies, Poecilia latipinna, are sexually parasitized by Amazon mollies (P. formosa), and produce more sperm in the presence of female sailfin mollies than in the presence of Amazon mollies. We tested the hypothesis that male sailfin mollies differentially expend sperm when mating with either conspecific or heterospecific females. We measured sperm expenditure by determining the amount of sperm males have remaining after mating. Male sailfin mollies had more sperm available after mating with female sailfin mollies than after mating with Amazon mollies. While this result could indicate higher sperm expenditure to Amazon mollies, males mating with female sailfin mollies had more sperm available after mating than their baseline sperm reserves. Spermiation, the last stage of spermatogenesis, could be triggered by physical contact with females, and could increase sperm availability during mating. We examined the relationship between sperm availability and the amount of time that males mated with females. We found that sperm availability increased as mating trial time increased with female sailfin mollies, but not with Amazon mollies. Spermiation in the presence of conspecific female stimuli could reduce physiological costs associated with spermatogenesis while increasing the amount and quality of sperm available for sperm competition. We suggest that future studies examining sperm priming and expenditure should consider the potential for spermiation.  相似文献   

17.
The flux of organic particles below the mixed layer is one major pathway of carbon from the surface into the deep ocean. The magnitude of this export flux depends on two major processes—remineralization rates and sinking velocities. Here, we present an efficient method to measure sinking velocities of particles in the size range from approximately 3–400?μm by means of video microscopy (FlowCAM?). The method allows rapid measurement and automated analysis of mixed samples and was tested with polystyrene beads, different phytoplankton species, and sediment trap material. Sinking velocities of polystyrene beads were close to theoretical values calculated from Stokes’ Law. Sinking velocities of the investigated phytoplankton species were in reasonable agreement with published literature values and sinking velocities of material collected in sediment trap increased with particle size. Temperature had a strong effect on sinking velocities due to its influence on seawater viscosity and density. An increase in 9?°C led to a measured increase in sinking velocities of ~40?%. According to this temperature effect, an average temperature increase in 2?°C as projected for the sea surface by the end of this century could increase sinking velocities by about 6?% which might have feedbacks on carbon export into the deep ocean.  相似文献   

18.
Sulfoxides are versatile synthetic intermediates for the preparation of biological products. Therefore, there is a need for efficient methods to oxidize sulfides into sulfoxides. Such oxidation may be catalyzed by magnetic nanocatalysts due to their good stability, easy synthesis, high surface area, low toxicity and easy separation by magnetic forces. Here we prepared a nanocatalyst by immobilization of the chitosan–Schiff base complex on supramagnetic Fe3O4 nanoparticles. The chitosan–Schiff base complex has been previously prepared by functionalization of chitosan with 5-bromosalicylaldehyde and metalation with copper(II) acetate. The catalyst was characterized by Fourier transform infrared, powder X-ray diffraction, transmission electron microscope, scanning electron microscopy, energy-dispersive X-ray spectroscopy and thermogravimetric analysis. Results show that the Fe3O4 nanoparticles and nanocatalyst were spherical in shape with an average size of 20 nm. Upon the covalently anchoring of chitosan–Schiff base Cu complex on the magnetic Fe3O4 nanoparticles, the average size increased to 60 nm. The prepared Fe3O4–chitosan–Schiff base Cu complex catalyzed very efficiently the oxidation of sulfides to sulfoxides with 100 % selectivity in all cases under green reaction conditions and excellent yields. Additionally, ease of recovery and reusability up to four cycles without noticeable loss of catalytic activity make the present protocol beneficial from industrial and environmental viewpoint.  相似文献   

19.
Adult Vinciguerria nimbaria are the main prey of tuna during the tuna fishing season (late autumn and winter) in the equatorial Atlantic (0–4°N, and ~15°W). V. nimbaria trophic behavior in the fishing grounds was studied in relation to hydrobiological factors to determine its role in the trophic food web. Sampling stations spaced by 20 nautical miles were set up along a 15°W north–south transect from 4°N to 0°40S. At each station, the temperature and vertical fluorescence profiles were recorded. Nitrate and chlorophyll a analyses were performed on water sampled at different levels in the euphotic zone. Vertical plankton hauls were carried out at depths of 0–100 and 0–200 m using a standard WP2 net fitted with a 200-μm mesh gauze. Vinciguerria nimbaria adults were collected using a young-fish mid-water trawl net (10 × 15 m opening mouth, 10 mm cod end mesh). The weight of the stomach contents, the stomach fullness index, the number of prey, the frequency of occurrence and the prey preponderance were recorded for 20 fish from each haul. An oligotrophic typical tropical structure (TTS) was found between 1° and 4°N where small zooplankton was relatively abundant above or near the thermocline. In the TTS, V. nimbaria behaved as an epipelagic fish, feeding on the dominant small prey during the daytime. In turn, it was a prey for tuna. In the equatorial zone, where zooplankton was more abundant than in the north equatorial zone, V. nimbaria behaved as a mesopelagic fish and as an opportunistic mesozooplankton feeder. It consumed a wide range of sizes of food, feeding on the most abundant species of zooplankton as well as the largest zooplankton species, possibly while migrating towards the surface in the late afternoon or in the deep layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号