首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The aim of our research is to apply experimental design methodology to the optimization of photocatalytic degradation of indole present in wastewater. Heterogeneous photocatalysis for the oxidation of organic biorecalcitrant pollutants in water is an environmental promising method. We used the response surface methodology (RSM) for the modelization and optimization of the photodegradation of indole in the presence of titanium dioxide. The effect of indole concentration, UV intensity and stirring speed on the yield of indole degradation was determined. According to the mathematic optimization of the process, the optimum point when 100% of degradation is achieved is given by the following values: UV intensity = 250 W/m2, stirring speed = 536.36 tr/min and initial indole concentration = 10.10 mg/l.  相似文献   

2.

Plastics are utilized in various materials that are useful in everyday life. As the usage of plastics increases, the disposal of plastic materials has become a major issue, calling for recycling methods. Here, we review the different methods to recycle plastics, with focus on catalytic cracking. We present catalysts, cracking mechanisms, and we compare the various treatment methodologies. Several attempts were made by researchers to increase the efficiency of the cracking process using different catalysts and reactors. Many studies reveal high quality products are obtained by catalytic cracking, which consumes low energy and produces lesser residues when compared to other treatment technologies.

  相似文献   

3.
2,4-Dichlorophenol (2,4-DCP) from chemical industry wastewaters has caused serious environmental pollution. Removal of 2,4-DCP using either physico-chemical or biological methods is not very efficient. In this paper, a combination of biological and electrochemical methods gave satisfactory results. By comparisons of the degradation of 2,4-DCP and the removal of chemical oxygen demand (COD) in electrochemical, biological and biofilm-electrode processes, it was found that the biofilm-electrode process possesses the highest degradation efficiency and removal rate; both the pure electrochemical and the pure biological processes were far less efficient. The removal efficiency of 2,4-DCP using the biofilm-electrode process was 100% in 48 h, while that using the pure electrochemical and the pure biological processes were 62 and 42%, respectively. The experiments show that the current of 5 mA for the cathode of 9 cm2 and the initial concentration 100 mg/l of 2,4-DCP were the optimal parameters of technology for the biofilm-electrode process. The excellent effects are due to the withdrawing electron action of bacterium, electrochemically anodic oxidation and cathodic dechlorination. It is the first time that the biofilm-electrode method was applied in 2,4-DCP degradation. Here, we demonstrated that biofilm-electrode process is a promising method to remove some aromatic compounds in industrial wastewater.  相似文献   

4.

The huge amounts of sewage sludge produced by municipal wastewater treatment plants induce major environmental and economical issues, calling for advanced disposal methods. Traditional methods for sewage sludge disposal increase greenhouse gas emissions and pollution. Moreover, biochar created from sewage sludge often cannot be used directly in soil applications due to elevated levels of heavy metals and other toxic compounds, which alter soil biota and earthworms. This has limited the application of sewage sludge-derived biochar as a fertilizer. Here, we review biomass and sewage sludge co-pyrolysis with a focus on the stabilization of heavy metals and toxicity reduction of the sludge-derived biochar. We observed that co-pyrolyzing sewage sludge with biomass materials reduced heavy metal concentrations and decreased the environmental risk of sludge-derived biochar by up to 93%. Biochar produced from sewage sludge and biomass co-pyrolysis could enhance the reproduction stimulation of soil biota by 20‒98%. Heavy metals immobilization and transformation are controlled by the co-feed material mixing ratio, pyrolysis temperature, and pyrolysis atmosphere.

  相似文献   

5.

Halogenated biphenyls are worldwide persistent pollutants of great environmental concern. In particular, polychlorinated biphenyls and polybrominated biphenyls have been globally used for industrial purposes until they were found highly toxic, mutagenic and carcinogenic to humans. Therefore, ecological strategies to remove halogenated biphenyls, such as enzyme-catalyzed degradation, are needed. Here, we studied the effect of substitution of F, Cl, Br or I at the 4,4′-positions of 2,3-dihydro-2,3-dihydroxybiphenyl-2,3-dehydrogenase (BphB) on the degradation of halogenated biphenyls by quantum and molecular mechanics. Results show that Boltzmann-weighted average degradation barriers of substituted BphB are all lower than the unsubstituted biphenyl, except for chlorinated biphenyl. The roles of residues nearby the active site, e.g., isoleucine89, asparagine115, serine142, asparagine143, proline184, methionine187 and threonine189, were also investigated.

  相似文献   

6.
Toxiwasp∗     
TOXIWASP combines most of the kinetic structure of EXAMS 2 with the transport capabilities of WASP (Water Analysis Simulation Program). TOXIWASP uses variable chemical degradation rates from chemical properties and the environmental conditions of the aquatic ecosystem. These rates are reduced from pseudo first‐order rates to first‐order rates including the processes hydrolysis, biotransfor‐mation, phototransformation, oxidation, and volatilisation. Assuming ultimate local equilibrium, and using a chemical dependent partition coefficient as well as spatially varying environmental carbon fractions, sorption onto sediments and biomass is calculated. Environmental alternations could be specified in any time scale by providing monitoring data.

TOXIWASP generates total sediment and chemical concentrations every time step in every segment, including surface water, subsurface water, surface bed and subsurface bed. Advection, dispersion, mass loading, sedimentation, and scour affect sediment concentration in the water column and in the bed sediment concentrations depend on burial and erosion. In addition chemical concentrations are influenced by degradation, sediment‐water dispersion, and percolation. Lateral transport of chemical within the bed is neglected and transport data are not calculated in the program. TOXIWASP is developed to model stratified lakes, reservoirs, large rivers, estuaries, and coastal waters. As for EXAMS 2 (Burns et al.2) the TOXIWASP user has to accept the model's inability to connect the water body to a chemically contaminated atmosphere.  相似文献   

7.
8.

The energy crisis and environmental pollution have recently fostered research on efficient methods such as environmental catalysis to produce biofuel and to clean water. Environmental catalysis refers to green catalysts used to breakdown pollutants or produce chemicals without generating undesirable by-products. For example, catalysts derived from waste or inexpensive materials are promising for the circular economy. Here we review environmental photocatalysis, biocatalysis, and electrocatalysis, with focus on catalyst synthesis, structure, and applications. Common catalysts include biomass-derived materials, metal–organic frameworks, non-noble metals nanoparticles, nanocomposites and enzymes. Structure characterization is done by Brunauer–Emmett–Teller isotherm, thermogravimetry, X-ray diffraction and photoelectron spectroscopy. We found that water pollutants can be degraded with an efficiency ranging from 71.7 to 100%, notably by heterogeneous Fenton catalysis. Photocatalysis produced dihydrogen (H2) with generation rate higher than 100 μmol h−1. Dihydrogen yields ranged from 27 to 88% by methane cracking. Biodiesel production reached 48.6 to 99%.

  相似文献   

9.

Water pollution and the unsustainable use of fossil fuel derivatives require advanced catalytic methods to clean waters and to produce fine chemicals from modern biomass. Classical homogeneous catalysts such as sulfuric, phosphoric, and hydrochloric acid are highly corrosive and non-recyclable, whereas heterogeneous catalysts appear promising for lignocellulosic waste depolymerization, pollutant degradation, and membrane antifouling. Here, we review the use of sulfonated graphene and sulfonated graphene oxide nanomaterials for improving membranes, pollutant adsorption and degradation, depolymerization of lignocellulosic waste, liquefaction of biomass, and production of fine chemicals. We also discuss the economy of oil production from biomass. Sulfonated graphene and sulfonated graphene oxide display an unusual large theoretical specific surface area of 2630 m2/g, allowing the reactants to easily enter the internal surface of graphene nanosheets and to reach active acid sites. Sulfonated graphene oxide is hydrophobic and has hydrophilic groups, such as hydroxyl, carboxyl, and epoxy, thus creating cavities on the graphene nanosheet’s surface. The adsorption capacity approached 2.3–2.4 mmol per gram for naphthalene and 1-naphthol. Concerning membranes, we observe an improvement of hydrophilicity, salt rejection, water flux, antifouling properties, and pollutant removal. The nanomaterials can be reused several times without losing catalytic activity due to the high stability originating from the stable carbon–sulfur bond between graphene and the sulfonic group.

  相似文献   

10.
All chemicals form non-extractable residues (NER) to various extents in environmental media like soil, sediment, plants and animals. NER can be quantified in environmental fate studies using isotope-labeled (such as 14C or 13C) tracer compounds. Previous NER definitions have led to a mismatch of legislation and state of knowledge in research: the residues are assumed to be either irreversibly bound degradation products or at least parts of these residues can be released. In the latter assumption, soils and sediments are a long-term source of slowly released residues. We here present a conceptual experimental and modeling approach to characterize non-extractable residues and provide guidance how they should be considered in the persistence assessment of chemicals and pesticides. Three types of NER can be experimentally discriminated: sequestered and entrapped residues (type I), containing either the parent substance or xenobiotic transformation products or both and having the potential to be released, which has indeed been observed. Type II NER are residues that are covalently bound to organic matter in soils or sediments or to biological tissue in organisms and that are considered being strongly bound with very low remobilization rates like that of humic matter degradation rates. Type III NER comprises biogenic NER (bioNER) after degradation of the xenobiotic chemical and anabolic formation of natural biomolecules like amino acids and phospholipids, and other biomass compounds. We developed the microbial turnover to biomass (MTB) model to predict the formation of bioNER based on the structural properties of chemicals. Further, we proposed an extraction sequence to obtain a matrix containing only NER. Finally, we summarized experimental methods to distinguish the three NER types. Type I NER and type II NER should be considered as potentially remobilizable residues in persistence assessment but the probability of type II release is much lower than that of type I NER, i.e., type II NER in soil are “operationally spoken” irreversibly bound and can be released only in minute amounts and at very slow rates, if at all. The potential of remobilization can be evaluated by chemical, physical and biological methods. BioNER are of no environmental concern and, therefore, can be assessed as such in persistence assessment. The general concept presented is to consider the total amount of NER minus potential bioNER as the amount of xenoNER, type I?+?II. If a clear differentiation of type I and type II is possible, for the calculation of half-life type I NER are considered as not degraded parent substance or transformation product(s). On the contrary, type II NER may generally be considered as (at least temporarily) removed. Providing proof for type II NER is the most critical issue in NER assessment and requires additional research. If no characterization and additional information on NER are available, it is recommended to assess the total amount as potentially remobilizable. We propose our unified approach of NER characterization and evaluation to be implemented into the persistence and environmental hazard assessment strategies for REACH chemicals and biocides, human and veterinary pharmaceuticals, and pesticides, irrespective of the different regulatory frameworks.  相似文献   

11.

Chemiluminescence appearing during oxidation of isoproterenol using chemical system involving superoxide anion radical has been studied. Chemiluminescence and fluorescence spectra were measured. The chemiluminescence spectrum was measured with cut‐off filters and revealed bands with maximum at 440, 480, 550, 640 and 700 nm. The bands at 480, 640 and 700 nm were similar to those observed for singlet oxygen. The fluorescence spectrum exhibited maximum at 560 nm.

The inhibitory effect of several biologically important compounds known as O2 ?‐ HO? and 1O2 scavengers on the light emission was studied.

The obtained results indicate that oxidation of isoproterenol by O2 ?‐ involves products in the electronically excited states. The data also seem to indicate the protective effect of isoproterenol on the deoxyribose degradation.  相似文献   

12.
Contaminated groundwater and a riverine sediment core heavily affected by the same industrial point source were analysed for hexachlorocyclohexanes (HCH) and its degradation products. A detailed quantification by GC/MS revealed contamination levels up to 730 μg/L and 396 ng/g in sum for the water and sediment samples, respectively. The isomer pattern differed significantly in both compartments. The ground water samples were depleted in γ-HCH, whereas a significant loss of α-HCH was evident in the sediments as compared to the technical composition. The data obtained revealed interesting insights into the transformation behaviour and fate of HCH mixtures in anaerobic environmental compartments. In the affected groundwater system an ongoing microbial degradation was pointed out by the identification of indicative anaerobic metabolites. On the contrary in the sedimentary system a high environmental stability or rather a hindered degradation was observed as indicated by unaltered concentration levels as compared to production rates as well as by the absence of metabolites. Interestingly, the environmental fate of HCH in subaquatic sediments as well as in anaerobic ground water differs highly in contrast to the behaviour in anaerobic soil or surface water systems. Further on, it has to be stated, that the knowledge about the long-term behaviour of HCH residues in sedimentary material under anaerobic conditions is rather limited so far.  相似文献   

13.
Water samples from Xikuangshan (China), the world largest antimony (Sb) mine with a Sb mining and smelting history of more than 200 years, were analyzed. These water samples ranged from stream water in the vicinity of the mining and smelting area that received seepage from ore residues to the underground mine-pit drainage. The concentrations of total Sb, Sb (III) and Sb (V) of the samples were determined by HPLC-ICP-MS. In addition, water pH and concentrations of major cations and anions were analyzed. All 18 samples demonstrated total Sb concentrations with ppm levels from 0.33 ppm to 11.4 ppm, which is two to three orders of magnitude higher compared to the typical concentration of dissolved Sb in unpolluted rivers (less than 1 ppb). This is probably the first time that such high Sb contents have been documented with complete environmental information. Distribution of total Sb and Sb species was investigated, taking into account the respective local environment (in the mining area or close to the smelter, etc.). Sb (V) was the predominant valence in all 18 samples. Only trace levels of Sb (III) were detected in 4 of the 18 samples. Geochemical speciation modeling showed the dominant species was Sb(OH)6. It is also probably the first time that such high Sb contents have been documented in the natural environment with Sb speciation distribution information. Several potential oxidation pathways are also discussed that might have facilitated the oxidation of Sb (III) in the natural environment. Signs of intoxication were observed among local mine workers with extensive exposure to different forms of Sb for a long period of time.  相似文献   

14.

The rising global population is inducing a fast increase in the amount of municipal waste and, in turn, issues of rising cost and environmental pollution. Therefore, alternative treatments such as waste-to-energy should be developed in the context of the circular economy. Here, we review the conversion of municipal solid waste into energy using thermochemical methods such as gasification, combustion, pyrolysis and torrefaction. Energy yield depends on operating conditions and feedstock composition. For instance, torrefaction of municipal waste at 200 °C generates a heating value of 33.01 MJ/kg, while the co-pyrolysis of cereals and peanut waste yields a heating value of 31.44 MJ/kg at 540 °C. Gasification at 800 °C shows higher carbon conversion for plastics, of 94.48%, than for waste wood and grass pellets, of 70–75%. Integrating two or more thermochemical treatments is actually gaining high momentum due to higher energy yield. We also review reforming catalysts to enhance dihydrogen production, such as nickel on support materials such as CaTiO3, SrTiO3, BaTiO3, Al2O3, TiO3, MgO, ZrO2. Techno-economic analysis, sensitivity analysis and life cycle assessment are discussed.

  相似文献   

15.

The use of psychoactive substances, including illegal drugs, drugs of abuse and psychiatric pharmaceuticals, is a major health and environmental issue. In particular, drugs are found in urban sewage and water ecosystems. The analysis of drugs in wastewater is challenging because drugs occur at trace levels in complex organo-mineral media, calling for advanced analytical methods. Here we review recent methods developped to analyze drugs in sludge, sediments, soils and biota. Extraction methods include solid–liquid extraction, sonication, microwave, and quick, easy, cheap, effective, rugged and safe extraction (QuEChERS). We compare and discuss advantages and disadvantages of each analytical step for various sample types.

  相似文献   

16.
Self-organized, well-crystallized and high aspect-ratio TiO2 nanotube arrays (TNAs) have been prepared by anodic oxidation in dimethyl sulfoxide (DMSO) containing 5 wt% HF at 40 V (vs. Pt). A 50 h anodization results in a nanotube arrays approximately 19.4 μm in length, referred as long tube. As a comparison, the short titania nanotube arrays, about 500 nm in length, was obtained by anodization in HF aqueous solution, referred as short tube. Different characterization techniques (viz. FESEM, TEM, XRD and DRS) are used to study the nanotubular microstructure. The morphology of the nanotube electrodes shows an evident influence on their photocatalytic (PC) and photoelectrochemical reactivity. The long tube reveals enhanced photocurrent response and PC degradation efficiency of organic compounds. The kinetic constant of PC degradation of methylic orange (MO) for long tube electrode is found 1.55 times as high as the short tube. A significant photoelectrochemcial synergetic effect in MO degradation was observed on the long tube electrode and the photoelectrocatalytic (PEC) degradation of MO on long tube is 27% higher than its PC process.  相似文献   

17.

Plastic pollution is a major environmental issue worldwide, calling for advanced methods to recycle waste plastics in the context of the circular economy. Here we review methods and strategies to convert waste plastics into value-added carbon materials, with focus on sources, properties, pretreatment of waste plastics, and on preparation of carbon materials. Pretreatment techniques include mechanical crushing, plastic stabilization and electrospinning. Carbon materials such as carbon nanotubes, graphene, carbon nanosheets, carbon spheres and porous carbon are prepared by oxygen-limited carbonization, catalytic carbonization, the template-based method, and pressure carbonization. We emphasize the conversion of polyethene terephthalate, polyethylene, polypropylene, polystyrene, halogenated plastics, polyurethane and mixed plastics.

  相似文献   

18.

The contamination of the Sonora River with 40,000 m3 of toxic leachate released from a copper mine on August 6, 2014, was considered the worst environmental disaster of the mining industry in Mexico, exceeding safety levels in the concentrations of heavy metals and arsenic. To explore the potential association of the toxic release with subfecundity, by comparing time to pregnancy (TTP) of women with different levels of exposure at municipalities located along the Sonora River watershed, just 35 km south of the Arizona–Mexico border. Data from 235 pregnancies were included in a retrospective cohort study. Exposure was measured whether pregnancy occurred before or after the disaster and included a non-exposed community outside the watershed. Pregnancies were also compared between communities according to the concentration-level gradient of water pollutants found in the river. Fecundability odds ratios (fORs) were calculated using discrete time analogue of Cox’s proportional hazard models. Multiple analysis included all pregnancies with TTP of no more than 12 months, only first-time pregnancy, or excluding women with TTP = 1. The probability for pregnancy decreased after the disaster (fOR 0.55, 95% CI 0.31, 0.97), when the residency was located mid-or-downstream the watershed (fOR 0.37, 95% CI 0.15, 0.91), when reported chicken consumption, when mining was the father’s occupation, and when surface water was reported to be used for crop irrigation and for animal consumption. There was a decrease in fecundity on women exposed to the contaminated river. There is a need for more studies to prove these findings and to broaden the knowledge of other possible adverse health effects associated with this environmental disaster.

  相似文献   

19.
有机磷酸酯阻燃剂降解方法的研究进展   总被引:1,自引:0,他引:1  
有机磷阻燃剂(OPFRs)已取代溴代阻燃剂广泛应用于各行业,并很容易通过挥发、磨损等方式进入各环境介质中.目前,已在水体、土壤等环境介质中检测到了OPFRs的存在.本文总结了目前已有的OPFRs在环境中的降解方式,据其原理主要可分为化学法和生物法,化学法主要包含Fenton/类Fenton氧化法、紫外-双氧水法(UV/H2O2)、光催化法、过硫酸盐活化法和水解光解等,能够产生大量具有强氧化性的自由基(·OH、SO4·-等)破坏烃链使其降解.但该方法容易受到实际水体中的复杂成分影响,导致效果降低.生物法则是利用不同的细菌将OPFRs作为碳源或磷源在生长过程中将其消耗或和微生物体内的特异性酶发生酶促反应从而降解.通过总结归纳目前OPFRs的降解方法,了解现有方法存在的优点和缺点,为高效去除OPFRs提供理论基础.  相似文献   

20.
Heterogeneous photocatalysis has long been considered to be one of the most promising approaches to tackling the myriad environmental issues. However, there are still many challenges for designing efficient and cost-effective photocatalysts and photocatalytic degradation systems for application in practical environmental remediation. In this review, we first systematically introduced the fundamental principles on the photocatalytic pollutant degradation. Then, the important considerations in the design of photocatalytic degradation systems are carefully addressed, including charge carrier dynamics, catalytic selectivity, photocatalyst stability, pollutant adsorption and photodegradation kinetics. Especially, the underlying mechanisms are thoroughly reviewed, including investigation of oxygen reduction properties and identification of reactive oxygen species and key intermediates. This review in environmental photocatalysis may inspire exciting new directions and methods for designing, fabricating and evaluating photocatalytic degradation systems for better environmental remediation and possibly other relevant fields, such as photocatalytic disinfection, water oxidation, and selective organic transformations.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号