首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The primary objective of this study was to determine the presence of unregulated organic chemicals in reclaimed water using complementary targeted and broad spectrum approaches. Eleven of 12 targeted human pharmaceuticals, antioxidants, and plasticizers, and 27 tentatively identified non-target organic chemicals, were present in secondary effluent entering tertiary treatment trains at a wastewater treatment plant and two water reclamation facilities. The removal of these compounds by three different tertiary treatment trains was investigated: coagulant-assisted granular media filtration (California Title-22 water, 22 CCR 60301-60357; Barclay [2006]), lime clarification/reverse osmosis (lime/ RO), and microfiltration-reverse osmosis (MF/RO). Carbamazepine, clofibric acid, gemfibrozil, ibuprofen, p-toluenesulfonamide, caffeine, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), and N-butyl benzenesulfonamide (N-BBSA) were present at low to high nanogram-per-liter levels in Title 22 water. The lime/RO product waters contained lower concentrations of clofibric acid, ibuprofen, caffeine, BHA, and N-BBSA (<10 to 71 ng/L) than their Title 22 counterparts. The MF/RO treatment reduced concentrations to levels below their detection limits, although BHT was present in MF/RO product water from one facility. The presence of the target analytes in two surface waters used as raw drinking water sources and a recharged groundwater was also examined. Surface waters used as raw drinking water sources contained caffeine, BHA, BHT, and N-BBSA, while recharged groundwater contained BHT, BHA, and N-BBSA. Nontarget compounds in recharged groundwater appeared to be attenuated with increased residence time in the aquifer.  相似文献   

2.
The accumulation of nonylphenol in a wastewater recycling process   总被引:1,自引:0,他引:1  
Hao RX  Zhou YW  Cheng SY  Li JB  Zhao M  Chen X  Yao N 《Chemosphere》2008,70(5):783-790
A mathematical model was developed in this paper to describe the nonylphenol (NP) accumulation in the effluent of a wastewater recycling system. The model quantitatively presented the relationships among the NP concentrations in the raw wastewater and the system effluent, the number of wastewater recycling cycles, the water recycling ratio, the system NP removal efficiency, and the NP accumulation factor. The mathematical model was then verified through experimental modeling of a wastewater recycling process, and it was indicated that the Pearson correlation coefficient between mathematical simulation and experimental modeling results was 0.652. The study results indicated that the NP accumulation factor of a wastewater recycling system would approach a constant for large number of wastewater recycling cycles given the wastewater recycling ratio and system NP removal efficiency. The results also revealed that the NP concentration in the effluent increased with the wastewater recycling ratio given the system NP removal efficiency, and the increase of NP removal efficiency would decrease the NP accumulation in the system effluent under a given wastewater recycling ratio condition. The model was then applied to compute the maximum wastewater recycling ratio, predict reclaimed water quality and direct the design and management of sewage recycling systems in China.  相似文献   

3.
Over the past decade, several studies have reported trace levels of endocrine disrupting compounds, pharmaceuticals, and personal care products in surface waters, drinking water, and wastewater effluents. There has also been an increased concern about the ecological and human health impact of these contaminants, and their removal from water and wastewater has become a priority. Traditional treatment processes are limited in their ability to remove emerging contaminants from water, and there is a need for new technologies that are effective and feasible. This paper presents a review on recent research results on molecularly imprinted (MIP) and non-imprinted (NIP) polymers and evaluates their potential as a treatment method for the removal of emerging contaminants from water and wastewater. It also discusses the relative benefits and limitations of using MIP or NIP for water and wastewater treatment. MIP, and in particular NIP, offer promising applications for wastewater treatment, but their toxicity and possible health effects should be carefully studied before they are considered for drinking water treatment. More research is also required to determine how best to incorporate MIP and NIP in treatment plants.  相似文献   

4.
The organic matter present in the concentrate streams generated from reverse osmosis (RO) based municipal wastewater reclamation processes poses environmental and health risks on its disposal to the receiving environment (e.g., estuaries, bays). The potential of a biological activated carbon (BAC) process combined with pre-oxidation using a UVC/H2O2 advanced oxidation process for treating a high salinity (TDS ∼ 10 000 mg L−1) municipal wastewater RO concentrate (ROC) was evaluated at lab scale during 90 d of operation. The combined treatment reduced the UVA254 and colour of the ROC to below those for the influent of the RO process (i.e., biologically treated secondary effluent), and the reductions in DOC and COD were approximately 60% and 50%, respectively. UVC/H2O2 was demonstrated to be an effective means of converting the recalcitrant organic compounds in the ROC into biodegradable substances which were readily removed by the BAC process, leading to a synergistic effect of the combined treatment in degrading the organic matter. The tests using various BAC feed concentrations suggested that the biological treatment was robust and consistent for treating the high salinity ROC. Using Microtox analysis no toxicity was detected for the ROC after the combined treatment, and the trihalomethane formation potential was reduced from 3.5 to 2.8 mg L−1.  相似文献   

5.
Pothitou P  Voutsa D 《Chemosphere》2008,73(11):1716-1723
The occurrence and fate of endocrine disrupting compounds (EDCs) in a sewage treatment plant and two industrial wastewater treatment plants from textile and tannery factories were investigated. EDCs of interest are 4-nonylphenol, 4-octylphenol, their ethoxylate oligomers (mono- and di-ethoxylates of nonylphenol and octylphenol), bisphenol A, triclosan and steroid estrogens. Target compounds were determined in dissolved fraction, total suspended solids and sludge by employing solid phase extraction and ultrasonication followed by gas chromatography–mass spectrometry.Nonylphenols and oligomers with one or two ethoxy groups were the most abundant compounds in raw wastewater as well as in effluents from all the treatment stages of sewage treatment plant, followed by triclosan and bisphenol A. Steroids were found at very low concentrations. Almost all phenolic EDCs compounds were predominantly associated to suspended solids in influents whereas the dissolved fraction dominated the treated effluents. High removal rates, ranging from 86% to 99%, were observed throughout the whole treatment process. Biodegradation was the main removal pathway of EDCs. Tannery wastewaters exhibited high concentrations of nonylphenolic compounds. This type of wastewaters could pose a significant risk to the aquatic and terrestrial environment.  相似文献   

6.
Wastewater treatments can eliminate or remove a substantial amount of pharmaceutical active compounds (PhACs), but there may still be significant concentrations of them in effluents discharged into surface water bodies. Beirolas wastewater treatment plant (WWTP) is located in the Lisbon area and makes its effluent discharges into Tagus estuary (Portugal). The main objective of this study is to quantify a group of 32 PhACs in the different treatments used in this WWTP. Twelve sampling campaigns of wastewater belonging to the different treatments were made in 2013–2014 in order to study their removal efficiency. The wastewaters were analysed by solid phase extraction (SPE) and ultra-performance liquid chromatography coupled with tandem mass detection (UPLC–MS/MS). The anti-diabetics were the most frequently found in wastewater influent (WWI) and wastewater effluent (WWE) (208 and 1.7 μg/L, respectively), followed by analgesics/antipyretics (135 μg/L and < LOQ, respectively), psychostimulants (113 and 0.49 μg/L, respectively), non-steroidal anti-inflammatory drugs (33 and 2.6 μg/L, respectively), antibiotics (5.2 and 1.8 μg/L, respectively), antilipidemics (1.6 and 0.24 μg/L, respectively), anticonvulsants (1.5 and 0.63 μg/L, respectively) and beta blockers (1.3 and 0.51 μg/L, respectively). A snapshot of the ability of each treatment step to remove these target PhACs is provided, and it was found that global efficiency is strongly dependent on the efficiency of secondary treatment. Seasonal occurrence and removal efficiency was also monitored, and they did not show a significant seasonal trend.  相似文献   

7.
The aim of this study was to investigate the performances of polyamide nanofiltration membranes during water reclamation. The study was conducted using nanofiltration concentrates obtained from two different nanofiltration drinking water treatment plants placed in the northern part of Serbia (Kikinda and Zrenjanin). Used nanofiltration concentrates contained high concentrations of arsenic (45 and 451 μg/L) and natural organic matter (43.1 and 224.40 mgKMnO4/L). Performances of polyamide nanofiltration membranes during water reclamation were investigated under various fluxes and transmembrane pressures in order to obtain drinking water from nanofiltration concentrates and, therefore, reduce the amount of produced concentrates and minimize the waste that has to be discharged in the environment. Applied polyamide nanofiltration membranes showed better removal efficiency during water reclamation when the concentrate with higher content of arsenic and natural organic matter was used while the obtained permeates were in accordance with European regulations. This study showed that total concentrate yield can be reduced to ~5 % of the optimum flux value, in both experiments. The obtained result for concentrate yield under the optimum flux presents considerable amount of reclaimed drinking water and valuable reduced quantity of produced wastewater.  相似文献   

8.
The rejection of emerging trace organics by a variety of commercial reverse osmosis (RO), nanofiltration (NF), and ultra-low-pressure RO (ULPRO) membranes was investigated using TFC-HR, NF-90, NF-200, TFC-SR2, and XLE spiral membrane elements (Koch Membrane Systems, Wilmington, Massachusetts) to simulate operational conditions for drinking-water treatment and wastewater reclamation. In general, the presence of effluent organic matter (EfOM) improved the rejection of ionic organics by tight NF and RO membranes, as compared to a type-II water matrix (adjusted by ionic strength and hardness), likely as a result of a decreased negatively charged membrane surface. Rejection of ionic pharmaceutical residues and pesticides exceeded 95% by NF-90, XLE, and TFC-HR membranes and was above 89% for the NF-200 membrane. Hydrophobic nonionic compounds, such as bromoform and chloroform, exhibited a high initial rejection, as a result of both hydrophobic-hydrophobic solute-membrane interactions and steric exclusion, but rejection decreased significantly after 10 hours of operation because of partitioning of solutes through the membranes. This resulted in a partial removal of disinfection byproducts by the RO membrane TFC-HR. In a type-II water matrix, the effect of increasing feed water recoveries on rejection of hydrophilic ionic and nonionic compounds was compound-dependent and not consistent for different membranes. The presence of EfOM, however, could neutralize the effect of hydrodynamic operating condition on rejection performance. The ULPRO and tight NF membranes were operated at lower feed pressure, as compared to the TFC-HR, and provided a product water quality similar to a conventional RO membrane, regarding trace organics of interest.  相似文献   

9.
A survey on the presence of pharmaceuticals in urban wastewater of a Spanish Mediterranean area (Castellon province) was carried out. The scope of the study included a wide variety of pharmaceuticals belonging to different therapeutical classes. For this purpose, 112 samples, including influent and effluent wastewater, from different conventional wastewater treatment plants were collected. Two monitoring programmes were carried out along several seasons. The first was in June 2008 and January 2009, and the second in April and October 2009. During the first monitoring, the occurrence of 20 analytes in 84 urban wastewater samples (influent and effluent) was studied. The selection of these pharmaceuticals was mainly based on consumption. From these, 17 compounds were detected in the samples, with analgesics and anti-inflammatories, cholesterol lowering statin drugs and lipid regulators being the most frequently detected groups. 4-Aminoantipyrine, bezafibrate, diclofenac, gemfibrozil, ketoprofen, naproxen and venlafaxine were the compounds most frequently found. In the highlight of these results, the number of analytes was increased up to around 50. A lot of antibiotic compounds were added to the target list as they were considered “priority pharmaceuticals” due to their more potential hazardous effects in the aquatic environment. Data obtained during the second monitoring programme (spring and autumn) corroborated the results from the first one (summer and winter). Analgesics and anti-inflammatories, lipid regulators together with quinolone and macrolide antibiotics were the most abundant pharmaceuticals. Similar median concentrations were found over the year and seasonal variation was not clearly observed. The removal efficiency of pharmaceuticals in the wastewater treatment plants was roughly evaluated. Our results indicated that elimination of most of the selected compounds occurred during the treatment process of influent wastewater, although it was incomplete.  相似文献   

10.
为了提高高校优质中水的处理与回用率,提出了适用于高校优质中水的处理与回用系统,设计了中水原位处理设备,并进行了试验验证.结果表明,沉淀-SOBMR-过滤设备能够实现无动力、自动化运行,尤其适合于盥洗和洗浴废水的处理.沉淀单元对盥洗废水COD和SS去除率分别为23.8%和55.7%;SOBMR单元对盥洗废水COD和SS去除率分别为35.8%和27.9%;过滤单元能有效去除废水中绝大部分SS,且能耐受SS冲击负荷,对废水COD去除率先增后降,受水力负荷的影响,负荷越小,处理效果越好.整个系统出水水质满足杂用水对COD、SS和色度等要求,可用于冲厕和杂用.每套处理装置可节约水资源151.2 m3/a,设备投资回收期为2.01年,具有巨大的经济效益.  相似文献   

11.
反渗透处理稀土氨氮废水试验研究   总被引:4,自引:2,他引:2  
根据稀土冶炼厂排放的碳铵沉淀洗涤废水的水质情况,采用NH4Cl和 NaCl模拟废水进行了反渗透可行性对比实验。模拟实验发现,在相同条件下反渗透对NaCl 较NH4Cl 有着更高的去除率,而NH4Cl 相对NaCl则有着更高的产水速率。实际废水试验结果表明,在恒定操作压力范围内回收率为65%的条件下,NH4Cl浓度为2.85 g/L的碳铵沉淀洗涤废水经反渗透处理其NH4Cl去除率为77.3%,可作为氨氮废水的预处理。对该废水处理成本进行了分析,得出其约为2.7元/m3,比相近浓度氨氮废水的氨吹脱处理成本节省约26%。  相似文献   

12.
The European Union has defined environmental quality standards (EQSs) for surface waters for priority substances and several other pollutants. Furthermore national EQSs for several chemicals are valid in Austria. The study investigated the occurrence of these compounds in municipal wastewater treatment plant (WWTP) effluents. In a first screening of 15 WWTPs relevant substances were identified, which subsequently were monitored in 9 WWTPs over 1 year (every 2 months). Out of 77 substances or groups of substances (including more than 90 substances) 13 were identified as potentially relevant in respect to water pollution and subjected to the monitoring, whereas most other compounds were detected in concentrations far below the respective EQS for surface waters and therefore not further considered. The preselected 13 compounds for monitoring were cadmium (Cd), nickel (Ni), copper (Cu), selenium (Se), zinc (Zn), diuron, polybrominated diphenyl ethers (PBDEs), di(ethyl-hydroxyl)phthalate (DEHP), tributyltin compounds (TBT), nonylphenoles (NP), adsorbable organic halogens (AOX) and the complexing agents ethylenediaminetetraacetic acid (EDTA) as well as nitrilotriacetic acid (NTA). In the effluents of WWTPs the concentrations of the priority substances Cd, NP, TBT and diuron frequently exceeded the respective EQS, whereas the concentrations for DEHP and Ni were below the respective EQS. The effluent concentrations for AOX, EDTA, NTA, Cu, Se and Zn frequently are in the range or above the Austrian EQS for surface waters. Besides diuron and EDTA all compounds are removed at least partially during wastewater treatment and for most substances the removal via the excess sludge is the major removal pathway. For the 13 compounds which were monitored in WWTP effluents population equivalent specific discharges were calculated. Since for many compounds no or only few information is available, these population equivalent specific discharges can be used to assess emissions from municipal WWTPs to surface waters as well as to make a first assessment of the impact of a discharge on surface waters chemical status. Comparing discharges and river pollution on a load basis, the influence of diffuse sources becomes obvious and therefore should also be taken into consideration in river management.  相似文献   

13.
Membrane separations are powerful tools for various applications, including wastewater treatment and the removal of contaminants from drinking water. The performance of membranes is mainly limited by material properties. Recently, successful attempts have been made to add nanoparticles or nanotubes to polymers in membrane synthesis, with particle sizes ranging from 4 nm up to 100 nm. Ceramic membranes have been fabricated with catalytic nanoparticles for synergistic effects on the membrane performance. Breakthrough effects that have been reported in the field of water and wastewater treatment include fouling mitigation, improvement of permeate quality and flux enhancement. Nanomaterials that have been used include titania, alumina, silica, silver and many others. This paper reviews the role of engineered nanomaterials in (pressure driven) membrane technology for water treatment, to be applied in drinking water production and wastewater recycling. Benefits and drawbacks are described, which should be taken into account in further studies on potential risks related to release of nanoparticles into the environment.  相似文献   

14.
This study focused on the input of hydrophilic biocides into the aquatic environment and on the efficiency of their removal in conventional wastewater treatment by a mass flux analysis. A fully automated method consisting of on-line solid phase extraction coupled to LC-ESI-MS/MS was developed and validated for the simultaneous trace determination of different biocidal compounds (1,2-benzisothiazoline-3-one (BIT), 3-Iodo-2-propynylbutyl-carbamate (IPBC), irgarol 1051 and 2-N-octyl-4-isothiazolinone (octhilinone, OIT), carbendazim, diazinon, diuron, isoproturon, mecoprop, terbutryn and terbutylazine) and pharmaceuticals (diclofenac and sulfamethoxazole) in wastewater and surface water. In the tertiary effluent, the highest average concentrations were determined for mecoprop (1010 ng/L) which was at comparable levels as the pharmaceuticals diclofenac (690 ng/L) and sulfamethoxazole (140 ng/L) but 1-2 orders of magnitude higher than the other biocidal compounds. Average eliminations for all compounds were usually below 50%. During rain events, increased residual amounts of biocidal contaminants are discharged to receiving surface waters.  相似文献   

15.
采用AOAB(水解酸化A1+生物接触氧化O+深度水解酸化A2+曝气生物滤池BAF)工艺处理难降解混合化工污水,重点研究工艺挂膜方式和生物膜的驯化。结果表明,采用分段连续式挂膜法进行反应器挂膜,20 d即可完成快速挂膜启动;采用分阶段同步培养驯化法驯化生物膜,30 d内可完成高浓度多组分混合化工污水进水的驯化,最终进水COD 1 456 mg/L,出水COD 324 mg/L,总去除率76.85%,驯化效果显著;整个工艺对COD的降解主要集中在生物接触氧化池和曝气生物滤池,驯化期间生物接触氧化池去除率稳定在40%左右,曝气生物滤池去除率稳定在50%以上。同时,通过对比一段水解酸化和深度水解酸化的VFA(挥发性脂肪酸)产出,表明在高有机负荷进水时,一段水解酸化降解大分子有机物的能力有限,但这些有机物可通过二段水解酸化再次降解,由此体现了AOAB工艺在处理多组分混合型的难降解化工污水的优势。  相似文献   

16.
The knowledge on the efficiency of wastewater treatment plants (WWTPs) from animal food production industry for the removal of both hormones and antibiotics of veterinary application is still very limited. These compounds have already been reported in different environmental compartments at levels that could have potential impacts on the ecosystems. This work aimed to evaluate the role of activated sludge in the removal of commonly used veterinary drugs, enrofloxacin (ENR), tetracycline (TET), and ceftiofur, from wastewater during a conventional treatment process. For that, a series of laboratory-controlled experiments using activated sludge were carried out in batch reactors. Sludge reactors with 100 μg/L initial drug charge presented removal rates of 68 % for ENR and 77 % for TET from the aqueous phase. Results indicated that sorption to sludge and to the wastewater organic matter was responsible for a significant percentage of drugs removal. Nevertheless, these removal rates still result in considerable concentrations in the aqueous phase that will pass through the WWTP to the receiving environment. Measuring only the dissolved fraction of pharmaceuticals in the WWTP effluents may underestimate the loading and risks to the aquatic environment.  相似文献   

17.
Today, the presence of contaminants in the environment is a topic of interest for society in general and for the scientific community in particular. A very large amount of different chemical substances reaches the environment after passing through wastewater treatment plants without being eliminated. This is due to the inefficiency of conventional removal processes and the lack of government regulations. The list of compounds entering treatment plants is gradually becoming longer and more varied because most of these compounds come from pharmaceuticals, hormones or personal care products, which are increasingly used by modern society. As a result of this increase in compound variety, to address these emerging pollutants, the development of new and more efficient removal technologies is needed. Different advanced oxidation processes (AOPs), especially photochemical AOPs, have been proposed as supplements to traditional treatments for the elimination of pollutants, showing significant advantages over the use of conventional methods alone. This work aims to review the analytical methodologies employed for the analysis of pharmaceutical compounds from wastewater in studies in which advanced oxidation processes are applied. Due to the low concentrations of these substances in wastewater, mass spectrometry detectors are usually chosen to meet the low detection limits and identification power required. Specifically, time-of-flight detectors are required to analyse the by-products.  相似文献   

18.
采用膜生物反应器(MBR)-反渗透(RO)工艺对印染废水进行了深度处理实验。原水经MBR系统处理后,COD去除率、ss去除率和色度去除率分别达89.9%、100%和87.5%。MBR系统处理出水进入反渗透(RO)系统进行处理,硬度去除率和除盐率分别达99.62%和99.64%,同时可进一步除去剩余的COD、色度。系统出水水质满足生产回用的要求。  相似文献   

19.
Developing advanced treatment technologies for improving the removal of micropollutants in water/wastewater is important. A suitable treatment is more likely to be used as the polishing step in the treatment scheme. Advanced oxidation technologies (AOTs) are relevant for removing micropollutants. The ability of direct UV photolysis and selected AOTs to degrade pharmaceuticals, endocrine-disrupting compound and herbicide has been studied and compared. The tested methods resulted in the degradation of the studied micropollutants; however, none of the methods was preferred for the removal of all tested compounds. The UV-active processes have strong potential for removal of the studied micropollutants. The utilisation of a moderate hydrogen peroxide admixture resulted in a more reliable treatment.  相似文献   

20.
不同垃圾渗滤液组合处理工艺中DOM的变化特征   总被引:1,自引:0,他引:1  
为了快速表征垃圾渗滤液处理过程中有机物的特性变化,分别采用紫外光谱和三维荧光光谱对2种垃圾渗滤液处理工艺不同单元溶解性有机物(DOM)的变化进行了系统分析。结果表明,二级RO和厌氧+好氧+MBR+NF+RO工艺对渗滤液COD和NH3-N的去除率分别为98.7%、99.0%和98.8%、98.6%。随着处理过程的进行,2个处理工艺中DOM的SUVA254、E253/E203分别由0.74、0.33和0.46、0.12下降至0.015、0.014和0.010、0.012,有机物的芳香性和不饱和性下降,脂肪链芳香烃化合物开始增加。不同处理阶段渗透液DOM三维荧光光谱表明,随着处理过程的进行,类富里酸和类蛋白物质的含量逐渐下降,芳构化程度开始降低。其中二级RO系统对渗滤液中类富里酸物质的去除效果较好,而厌氧-好氧-MBR-NF-RO工艺中,类酪氨酸物质主要通过微生物降解去除,NF和RO膜对类富里酸和类腐殖酸物质的截留效果较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号