首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Abstract: Changes in the management of the fin fish fishery of the Great Barrier Reef motivated us to investigate the combined effects on economic returns and fish biomass of no‐take areas and regulated total allowable catch allocated in the form of individual transferable quotas (such quotas apportion the total allowable catch as fishing rights and permits the buying and selling of these rights among fishers). We built a spatially explicit biological and economic model of the fishery to analyze the trade‐offs between maintaining given levels of fish biomass and the net financial returns from fishing under different management regimes. Results of the scenarios we modeled suggested that a decrease in total allowable catch at high levels of harvest either increased net returns or lowered them only slightly, but increased biomass by up to 10% for a wide range of reserve sizes and an increase in the reserve area from none to 16% did not greatly change net returns at any catch level. Thus, catch shares and no‐take reserves can be complementary and when these methods are used jointly they promote lower total allowable catches when harvest is relatively high and encourage larger no‐take areas when they are small.  相似文献   

2.
Correctly quantifying the impacts of rare apex marine predators is essential to ecosystem-based approaches to fisheries management, where harvesting must be sustainable for targeted species and their dependent predators. This requires modelling the uncertainty in such processes as predator life history, seasonal abundance and movement, size-based predation, energetic requirements, and prey vulnerability. We combined these uncertainties to evaluate the predatory impact of transient leopard seals on a community of mesopredators (seals and penguins) and their prey at South Georgia, and assess the implications for an ecosystem-based management. The mesopredators are highly dependent on Antarctic krill and icefish, which are targeted by regional fisheries. We used a state-space formulation to combine (1) a mark-recapture open-population model and individual identification data to assess seasonally variable leopard seal arrival and departure dates, numbers, and residency times; (2) a size-based bioenergetic model; and (3) a size-based prey choice model from a diet analysis. Our models indicated that prey choice and consumption reflected seasonal changes in leopard seal population size and structure, size-selective predation and prey vulnerability. A population of 104 (90–125) leopard seals, of which 64% were juveniles, consumed less than 2% of the Antarctic fur seal pup production of the area (50% of total ingested energy, IE), but ca. 12–16% of the local gentoo penguin population (20% IE). Antarctic krill (28% IE) were the only observed food of leopard seal pups and supplemented the diet of older individuals. Direct impacts on krill and fish were negligible, but the “escapement” due to leopard seal predation on fur seal pups and penguins could be significant for the mackerel icefish fishery at South Georgia. These results suggest that: (1) rare apex predators like leopard seals may control, and may depend on, populations of mesopredators dependent on prey species targeted by fisheries; and (2) predatory impacts and community control may vary throughout the predator's geographic range, and differ across ecosystems and management areas, depending on the seasonal abundance of the prey and the predator's dispersal movements. This understanding is important to integrate the predator needs as natural mortality of its prey in models to set prey catch limits for fisheries. Reliable estimates of the variability of these needs are essential for a precautionary interpretation in the context of an ecosystem-based management.  相似文献   

3.
Vector optimization techniques were used to generate arbitrary segments of a policy frontier for a dynamic yellowfin tuna (Thunnus albacares) fishery model assuming fixed technology and considering four policy objectives: minimizing dolphin mortality, minimizing incidental catch (all species except dolphins), maximizing sustainable yield, and minimizing biological risk for the yellowfin tuna stock. Results show that along the policy frontier: (1) reducing incidental dolphin mortality increases the incidental catch of other species in a nonlinear way; (2) yield increases (subject to a biomass precautionary level) can only be obtained at the expense of higher levels of dolphin mortality and incidental catch; (3) biological risk increases as the level of tunas caught increases, but this increase depends on the type of fishery (longline fishing and three different modes of purse-seining: log-sets, dolphin-sets or school-sets) that dominates the fishing effort; (4) there is an indirect relationship between the dolphin mortality levels and those of biological risk; (5) there is a direct relationship between the incidental catch levels and biological risk. Catch obtained with dolphin-sets dominates the Pareto-optimal solutions with highest dolphin mortality levels but is associated with lower biological risk, whereas catch obtained with log-sets dominates in Pareto-optimal solutions with higher incidental catch and higher biological risk. In general, trade-offs or shadow prices among objectives are not linear, indicating that marginal costs vary along the policy frontier. Results of the trade-off analysis may provide useful information for decision-makers and other policy actors. Complete information about the preferences of the decision-makers regarding the objectives is necessary to recommend a specific management policy.  相似文献   

4.
Incorporating Uncertainty into Management Models for Marine Mammals   总被引:2,自引:0,他引:2  
Abstract: Good management models and good models for understanding biology differ in basic philosophy. Management models must facilitate management decisions despite large amounts of uncertainty about the managed populations. Such models must be based on parameters that can be estimated readily, must explicitly account for uncertainty, and should be simple to understand and implement. In contrast, biological models are designed to elucidate the workings of biology and should not be constrained by management concerns. We illustrate the need to incorporate uncertainty in management models by reviewing the inadequacy of using standard biological models to manage marine mammals in the United States. Past management was based on a simple model that, although it may have represented population dynamics adequately, failed as a management tool because the parameter that triggered management action was extremely difficult to estimate for the majority of populations. Uncertainty in parameter estimation resulted in few conservation actions. We describe a recently adopted management scheme that incorporates uncertainty and its resulting implementation. The approach used in this simple management scheme, which was tested by using simulation models, incorporates uncertainty and mandates monitoring abundance and human-caused mortality. Although the entire scheme may be suitable for application to some terrestrial and marine problems, two features are broadly applicable: the incorporation of uncertainty through simulations of management and the use of quantitative management criteria to translate verbal objectives into levels of acceptable risk.  相似文献   

5.
Abstract: Achieving multiple conservation objectives can be challenging, particularly under high uncertainty. Having agreed to limit seahorse (Hippocampus) exports to sustainable levels, signatories to the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) were offered the option of a single 10‐cm minimum size limit (MSL) as an interim management measure for all Hippocampus species (≥34). Although diverse stakeholders supported the recommended MSL, its biological and socioeconomic implications were not assessed quantitatively. We combined population viability analysis, model sensitivity analysis, and economic information to evaluate the trade‐off between conservation threat to and long‐term cumulative income from these exploited marine fishes of high conservation concern. We used the European long‐snouted seahorse (Hippocampus guttulatus) as a representative species to compare the performance of MSLs set at alternative biological reference points. Our sensitivity analyses showed that in most of our scenarios, setting the MSL just above size at maturity (9.7 cm in H. guttulatus) would not prevent exploited populations from becoming listed as vulnerable. By contrast, the relative risk of decline and extinction were almost halved—at a cost of only a 5.6% reduction in long‐term catches—by increasing the MSL to the size reached after at least one full reproductive season. On the basis of our analysis, a precautionary increase in the MSL could be compatible with sustaining fishers' livelihoods and international trade. Such management tactics that aid species conservation and have minimal effects on long term catch trends may help bolster the case for CITES trade management of other valuable marine fishes.  相似文献   

6.
We describe two structured decision-making methods—one using a hierarchy of goals and a second using ranking on the sum of weighted criteria—that may be useful for many practical conservation problems, particularly when advisory groups evaluate the output of simulation models. We illustrate both methods by applying them to the problem of choosing a management strategy to address the "mobbing" problem in endangered Hawaiian monk seals. Both methods require estimates of the probabilities of various outcomes, such as a population size of more than 400 seals after 20 years under a specific management regime. We used a simulation model of a small monk seal population to generate these probabilities. Both methods provide an explicit, well-documented, and reproducible decision process that helps justify the decision. Furthermore, they are easy for those untrained in decision analysis to understand and use, they focus discussion on management objectives, they facilitate an examination of trade-offs in the light of multiple and sometimes conflicting objectives, they are suitable for use in workshops, and, at least in our example, they lead to management recommendations that are not highly sensitive to minor changes in probability estimates or other factors.  相似文献   

7.
The populations of many native species have increased or expanded in distribution in recent decades, sometimes with negative consequences to sympatric native species that are rarer or less adaptable to anthropogenic changes to the environment. An example of this phenomenon from the Pacific Northwest is predation by locally abundant pinnipeds (seals and sea lions) on threatened, endangered, or otherwise depleted salmonid (Oncorhynchus spp.) populations. We used survey sampling methodology, acoustic telemetry, and molecular genetics to quantify the amount of harbor seal (Phoca vitulina) predation on a depressed run of coho salmon (O. kisutch) and to determine whether some seals consumed a disproportionately higher number of salmonids than others. Based on a probability sample totaling 759.5 h of observation, we estimated that seals consumed 1161 adult salmonids (95% CI = 503-1818 salmonids) during daylight hours over an 18.9-km estuarine study area in Oregon during an 84-d period in fall 2002. Simultaneous tracking of 56 seals via an acoustic telemetry array indicated that a small proportion of marked seals (12.5%) exhibited behavior that was consistent with specialization on salmonids. These seals spent the majority of their time in the riverine portion of the study area and did so disproportionately more at night than day. Genetic analysis of 116 salmonid structures recovered from 11 seal fecal samples suggested that coho salmon accounted for approximately one-half of total salmonid consumption. Though subject to considerable uncertainty, the combined results lead us to infer that seals consumed 21% (range = 3-63%) of the estimated prespawning population of coho salmon. We speculate that the majority of the predation occurred upriver, at night, and was done by a relatively small proportion of the local seal population. Understanding the extent and nature of pinniped predation can provide important inputs into risk assessments and other modeling efforts designed to aid the conservation and recovery of salmonids in the Pacific Northwest. Such understanding may also help inform management actions designed to reduce the impact of pinniped predation on salmonids, which potentially range from short-term lethal removal programs to long-term ecosystem restoration and protection efforts.  相似文献   

8.
Human-caused mortality of wildlife is a pervasive threat to biodiversity. Assessing the population-level impact of fisheries bycatch and other human-caused mortality of wildlife has typically relied upon deterministic methods. However, population declines are often accelerated by stochastic factors that are not accounted for in such conventional methods. Building on the widely applied potential biological removal (PBR) equation, we devised a new population modeling approach for estimating sustainable limits to human-caused mortality and applied it in a case study of bottlenose dolphins affected by capture in an Australian demersal otter trawl fishery. Our approach, termed sustainable anthropogenic mortality in stochastic environments (SAMSE), incorporates environmental and demographic stochasticity, including the dependency of offspring on their mothers. The SAMSE limit is the maximum number of individuals that can be removed without causing negative stochastic population growth. We calculated a PBR of 16.2 dolphins per year based on the best abundance estimate available. In contrast, the SAMSE model indicated that only 2.3–8.0 dolphins could be removed annually without causing a population decline in a stochastic environment. These results suggest that reported bycatch rates are unsustainable in the long term, unless reproductive rates are consistently higher than average. The difference between the deterministic PBR calculation and the SAMSE limits showed that deterministic approaches may underestimate the true impact of human-caused mortality of wildlife. This highlights the importance of integrating stochasticity when evaluating the impact of bycatch or other human-caused mortality on wildlife, such as hunting, lethal control measures, and wind turbine collisions. Although population viability analysis (PVA) has been used to evaluate the impact of human-caused mortality, SAMSE represents a novel PVA framework that incorporates stochasticity for estimating acceptable levels of human-caused mortality. It offers a broadly applicable, stochastic addition to the demographic toolbox to evaluate the impact of human-caused mortality on wildlife.  相似文献   

9.
Accurate assessment of shark population status is essential for conservation but is often constrained by limited and unreliable data. To provide a basis for improved management of shark resources, we analyzed a long‐term record of species‐specific catches, sizes, and sexes of sharks collected by onboard observers in the western and central Pacific Ocean from 1995 to 2010. Using generalized linear models, we estimated population‐status indicators on the basis of catch rate and biological indicators of fishing pressure on the basis of median size to identify trends for blue (Prionace glauca), mako (Isurus spp.), oceanic whitetip (Carcharhinus longimanus), and silky (Carcharhinus falciformis) sharks. Standardized catch rates of longline fleets declined significantly for blue sharks in the North Pacific (by 5% per year [CI 2% to 8%]), for mako sharks in the North Pacific (by 7% per year [CI 3% to 11%]), and for oceanic whitetip sharks in tropical waters (by 17% per year [CI 14% to 20%]). Median lengths of silky and oceanic whitetip sharks decreased significantly in their core habitat, and almost all sampled silky sharks were immature. Our results are consistent with results of analyses of similar data sets. Combined, these results and evidence of targeted fishing for sharks in some regional fisheries heighten concerns for sustainable utilization, particularly for oceanic whitetip and North Pacific blue sharks. Regional regulations that prohibit shark finning (removal of fins and discarding of the carcass) were enacted in 2007 and are in many cases the only form of control on shark catches. However, there is little evidence of a reduction of finning in longline fisheries. In addition, silky and oceanic whitetip sharks are more frequently retained than finned, which suggests that even full implementation of and adherence to a finning prohibition may not substantially reduce mortality rates for these species. We argue that finning prohibitions divert attention from assessing whether catch levels are sustainable and that the need for management of sharks should not be addressed by measures that are simple to implement but complex to enforce and evaluate. Tendencias Poblacionales de Tiburones del Océano Pacífico y la Utilidad de Regulaciones sobre Cercenamiento de Aletas  相似文献   

10.
The continental shelf ecosystem on the Eastern Scotian Shelf (ESS) has experienced drastic changes. Once common top predators are a small fraction of their historical abundance, and much of the current community structure is now dominated by pelagic fishes and invertebrates. Embedded within this food web, Atlantic cod and gray seal populations have recently exhibited nearly opposite trends. Since 1984, cod populations have decreased exponentially at a rate averaging 17% per year, whereas gray seals have continued to increase exponentially at a rate of 12%. We reexamined the impact of gray seals on Atlantic cod dynamics using more than 30 years of data on the population trends of cod and gray seals while incorporating new information on seal diet and seasonal distribution. The closure of the cod fishery over 10 years ago allowed for a better estimation of natural mortality rates. We quantified the impact of seals on ESS cod by (1) estimating trends in seal and cod abundance, (2) estimating the total energy needed for seal growth and maintenance from an energetics model, (3) using estimates of the percentage of cod in the total diet derived from quantitative fatty acid signature analysis (QFASA) and of the size-specific selectivity of cod consumed (derived from otoliths collected from fecal samples), and (4) assuming a gray seal functional response. Uncertainties of the model estimates were calculated using the Hessian approximation of the variance-covariance matrix. Between 1993 and 2000, cod comprised, on average, < 5% of a gray seal's diet. Our model shows that, since the closure of the fishery, gray seals have imposed a significant level of instantaneous mortality (0.21), and along with other unknown sources of natural mortality (0.62), are contributing to the failure of this cod stock to recover.  相似文献   

11.
Abstract: There are differences in perception of the status of fisheries around the world that may partly stem from how data on trends in catches over time have been used. On the basis of catch trends, it has been suggested that about 70% of all stocks are overexploited due to unsustainable harvesting and 30% of all stocks have collapsed to <10% of unfished levels. Catch trends also suggest that over time an increasing number of stocks will be overexploited and collapsed. We evaluated how use of catch data affects assessment of fisheries stock status. We analyzed simulated random catch data with no trend. We examined well‐studied stocks classified as collapsed on the basis of catch data to determine whether these stocks actually were collapsed. We also used stock assessments to compare stock status derived from catch data with status derived from biomass data. Status of stocks derived from catch trends was almost identical to what one would expect if catches were randomly generated with no trend. Most classifications of collapse assigned on the basis of catch data were due to taxonomic reclassification, regulatory changes in fisheries, and market changes. In our comparison of biomass data with catch trends, catch trends overestimated the percentage of overexploited and collapsed stocks. Although our biomass data were primarily from industrial fisheries in developed countries, the status of these stocks estimated from catch data was similar to the status of stocks in the rest of the world estimated from catch data. We conclude that at present 28–33% of all stocks are overexploited and 7–13% of all stocks are collapsed. Additionally, the proportion of fished stocks that are overexploited or collapsed has been fairly stable in recent years.  相似文献   

12.
A numerical approach involving dynamic programming and computer simulation is used to examine the socially optimal exploitation of a single-cohort fishery under risk, with specific reference to the Exmouth Gulf Prawn Fishery in Western Australia. Best management strategies for given investment levels are sought before optimizing investment. The results for this industry show that time of year is much more important then level of biomass in determining best fishing policies, and that the timing of the catch is sensitive to natural fluctuations in some biological variables. Employing a “closed season” policy for part of the year appears an attractive way of reconciling private and social objectives under commonality. Under or overcapitalization does not reduce benefits markedly.  相似文献   

13.
Harvest restrictions and stock enhancement are commonly proposed management responses for sustaining degraded fisheries, but comparisons of their relative effectiveness have seldom been considered prior to making policy choices. We built a population model that incorporated both size-dependent harvest restrictions and stock enhancement contributions to explore trade-offs between minimum length limits and stock enhancement for improving population sustainability and fishery metrics (e.g., catch). We used a Murray cod Maccullochella peelii peelii population as a test case, and the model incorporated density-dependent recruitment processes for both hatchery and wild fish. We estimated the spawning potential ratio (SPR) and fishery metrics (e.g., angler catch) across a range of minimum length limits and stocking rates. Model estimates showed that increased minimum length limits were much more effective than stock enhancement for increasing SPR and angler catches in exploited populations, but length limits resulted in reduced harvest. Stocking was predicted to significantly increase total recruitment, population sustainability, and fishery metrics only in systems where natural reproduction had been greatly reduced via habitat loss, fishing mortality was high, or both. If angler fishing effort increased with increased fish abundance from stocking efforts, fishing mortality was predicted to increase and reduce the benefits realized from stocking. The model also indicated that benefits from stock enhancement would be reduced if reproductive efficiency of hatchery-origin fish was compromised. The simulations indicated that stock enhancement was a less effective method to improve fishery sustainability than measures designed to reduce fishing mortality (e.g., length limits).  相似文献   

14.
This paper examines the determination of effort levels, the rental price of quotas and the number of participants in a fishery managed with a total allowable catch and individual transferable quotas. How these variables change is determined for three phases of the management process. Potential participants in the fishery are assumed to be heterogeneous in their catching capabilities so that almost all active fishers earn positive net profits from fishing activities. It is shown that these quasirents are reduced during any of the management phases considered here. The impact of free allocations of permanent quota rights on fishers’ welfare is also considered. This may increase the welfare of all fishers if the allocation is based on catch history. However, an example is provided where the welfare of some highliners is reduced when the allocation is based on effort history.  相似文献   

15.
Abstract: Often abundance of rare species cannot be estimated with conventional design‐based methods, so we illustrate with a population of blue whales (Balaenoptera musculus) a spatial model‐based method to estimate abundance. We analyzed data from line‐transect surveys of blue whales off the coast of Chile, where the population was hunted to low levels. Field protocols allowed deviation from planned track lines to collect identification photographs and tissue samples for genetic analyses, which resulted in an ad hoc sampling design with increased effort in areas of higher densities. Thus, we used spatial modeling methods to estimate abundance. Spatial models are increasingly being used to analyze data from surveys of marine, aquatic, and terrestrial species, but estimation of uncertainty from such models is often problematic. We developed a new, broadly applicable variance estimator that showed there were likely 303 whales (95% CI 176–625) in the study area. The survey did not span the whales' entire range, so this is a minimum estimate. We estimated current minimum abundance relative to pre‐exploitation abundance (i.e., status) with a population dynamics model that incorporated our minimum abundance estimate, likely population growth rates from a meta‐analysis of rates of increase in large baleen whales, and two alternative assumptions about historic catches. From this model, we estimated that the population was at a minimum of 9.5% (95% CI 4.9–18.0%) of pre‐exploitation levels in 1998 under one catch assumption and 7.2% (CI 3.7–13.7%) of pre‐exploitation levels under the other. Thus, although Chilean blue whales are probably still at a small fraction of pre‐exploitation abundance, even these minimum abundance estimates demonstrate that their status is better than that of Antarctic blue whales, which are still <1% of pre‐exploitation population size. We anticipate our methods will be broadly applicable in aquatic and terrestrial surveys for rarely encountered species, especially when the surveys are intended to maximize encounter rates and estimate abundance.  相似文献   

16.
The optimal management of a particular fishery is illustrated. Using data describing previous fishery exploitation, relevant biological and economic relationships are estimated, then the optimum levels of catches, effort, and stock are calculated. The prices that, if implemented, would ensure the current efficient exploitation of the fishery are also calculated. Finally, the welfare gains that can be achieved by a movement from the freemarket equilibrium to the socially optimum solution are demonstrated.  相似文献   

17.
Canada, and other signatories to the London Convention 1972 on the prevention of marine pollution by dumping, are preparing to ratify a 1996 Protocol to this convention. Among the improvements to this international agreement, is a new process for the Assessment of Waste and Other Matter, which is to be adopted by signatory parties. the process includes a step in which material considered potentially acceptable for sea disposal must be characterized by chemical, physical and biological properties. Canada's interpretation and intended implementation of this characterization step is presented for the assessment of dredged sediments. This tiered testing approach involves using chemical screening limits for contaminants, and biological testing when screening levels are exceeded. Dredged material containing specified substances (e.g., cadmium, mercury, PAHs, PCBs, etc.) below or at screening levels would generally be considered of little environmental concern for disposal at sea. Wastes above the screening levels would require more detailed assessment before their suitability for disposal at sea could be determined.  相似文献   

18.
19.
Low Genetic Variability in the Hawaiian Monk Seal   总被引:1,自引:0,他引:1  
The Hawaiian monk seal (   Monachus schauinslandi) is a critically endangered species that has failed to recover from human exploitation despite decades of protection and ongoing management efforts designed to increase population growth. The seals breed at five principal locations in the northwestern Hawaiian islands, and inter-island migration is limited. Genetic variation in this species is expected to be low due to a recent population bottleneck and probable inbreeding within small subpopulations. To test the hypothesis that small population size and strong site fidelity has led to low within-island genetic variability and significant between-island differentiation, we used two independent approaches to quantify genetic variation both within and among the principal subpopulations. Mitochondrial control region and tRNA gene sequences (359 base pairs) were obtained from 50 seals and revealed very low genetic diversity (0.6% variable sites), with no evidence of subpopulation differentiation. Multilocus DNA fingerprints from 22 individuals also indicated low genetic variation in at least some subpopulations (band-sharing values for "unrelated" seals from the same island ranged from 49 to 73%). This method also provided preliminary evidence of population subdivision (  F'st estimates of 0.20 and 0.13 for two adjacent island pairs). Translocations of seals among islands may therefore have the potential to relieve local inbreeding and possibly to reduce the total amount of variation preserved in the population. Genetic variation is only one of many factors that determine the ability of an endangered species to recover. Maintenance of existing genetic diversity, however, remains an important priority for conservation programs because of the possibility of increased disease resistance in more variable populations and the chance that inbreeding depression may only be manifest under adverse environmental conditions.  相似文献   

20.
Abstract: Traditionally, marine resources have been managed such that controls on new developments are implemented only when harmful effects on other environmental or economic interests can be demonstrated. This approach poses particular problems for the conservation of coastal cetaceans because potential threats to their populations are diverse and likely to interact, individual threats may result from multiple sources, and the problems inherent in studying cetaceans result in considerable scientific uncertainty and low statistical power to detect any effects. Consequently, many countries are adopting integrated coastal management programs and precautionary management principles. In practice, however, issues continue to be dealt with within traditional frameworks that require demonstration of harm. Because cetaceans are long-lived, they demand long-term studies, and populations could decline to dangerously low levels before management action is taken. We illustrate these problems using a case study from the Moray Firth, Scotland. This inshore area will soon be designated and managed as a "special area of conservation" to protect bottlenose dolphins (   Tursiops truncatus ) under the European Community's Habitats Directive. The population is small and isolated, and it faces a wide range of potential threats, but there remains considerable uncertainty over the magnitude of each threat. We combined power analysis and population viability analysis to explore the relative consequences of adopting either traditional or precautionary approaches to management. In this case, our results reaffirm the need for precautionary management. More generally, we illustrate how this approach can be used to provide a more scientific basis for determining the level of precaution required to address particular management issues in this and other marine systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号