首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fly ash treated by H2SO4 was used as a low-cost adsorbent for the removal of a typical dye, methylene blue, from aqueous solution. An increase in the specific surface area and dye-adsorption capacity was observed after the acid treatment. The adsorption isotherm and kinetics of the treated fly ash were studied. The experimental results were fitted using Langmuir and Freundlich isotherms. It shows that the Freundlich isotherm is better in describing the adsorption process. Two kinetic models, pseudo-first order and pseudo-second order, were employed to analyze the kinetic data. It was found that the pseudo-second-order model is the better choice to describe the adsorption behavior. The thermodynamic study reveals that the enthalpy (ΔH0) value is positive (5.63 kJ/mol), suggesting an endothermic nature of the adsorption.  相似文献   

2.
In comparison with several other reported inorganic sorbents, Camellia tree leaf and primary sludge obtained from a settling tank as a pretreatment to the activated sludge system in a Hong Kong sewage treatment plant were evaluated for removing Cu(II) from aqueous solutions. Experimental data were modeled by the Langmuir isotherm equation to estimate the maximum sorption capacity (qmax). Results show that, at pH 5.6, biosorbents, Camellia tree leaf and primary sludge in particular, exert higher sorption capacities (qmax > 40 mg g−1) than inorganic sorbents, Na-montmorillonite (qmax = 33.3 mg g−1), fly ash (qmax = 18.8 mg g−1), and goethite powder (10.3 mg g−1). Furthermore, a pseudo second-order kinetic model was found to properly describe the experimental data for both bio- and inorganic sorbents. Sorption of Cu(II) on the Camellia tree leaf and primary sludge were much faster than that on the inorganic sorbents. In addition, desorption tests revealed that the desorption capacities of the two biomaterials are higher than the other selected materials; and much more Cu(II) can be retrieved from the Cu(II)-loaded biosorbents. Finally, increasing solution pH was found to greatly increase qmax and accelerate sorption processes.  相似文献   

3.
The comparison of phenol sorption on phenyltrimethylammonium (PTMA)- and benzyltrimethylammonium (BTMA)-bentonite shows a clear difference as far as phenol sorption isotherms are concerned. For PTMA-bentonite the sorption isotherm is of a straight-line character which results from simple partitioning of phenol between the aqueous and organic phases sorbed on the bentonite surface. For BTMA-bentonite the isotherm has a convex shape, characteristic of physicochemical sorption.For the first time a three-parametric model, including the dissociation constant of phenol pKa, distribution constant of phenol Kdphen and phenolate anion Kdphen between the aqueous phase and the bentonite phases is used for the evaluation of phenol sorption on organoclays with pH change. The model shows that the values of Kdphen are higher than those of Kdphen for all investigated initial phenol concentrations.The inspection of the FTIR spectrum of BTMA-bentonite loaded with phenol in the regions 1300–1600 and 1620–1680 cm−1 shows the features of π–π electron interaction between the benzene rings of phenol and the BTMA cation together with the phenol–water hydrogen bond strengthened by this interaction.  相似文献   

4.
Acid pre-treated powdered waste sludge (PWS) was used for removal of textile dyestuffs from aqueous medium by adsorption as an alternative to the use of powdered activated carbon (PAC). The rate and extent of dysetuff removals were determined for four different dyestuffs at different PWS concentrations varying between 1 and 6 gl(-1). Biosorbed dyestuff concentrations at equilibrium decreased with increasing PWS concentration for all dyestuffs tested. PWS was more effective for adsorption of Remazol red RR and Chrisofonia direct yellow 12 as compared to the other dyestuffs tested. More than 80% percent dyestuff removal was obtained for all dyestuffs at PWS concentrations above 4 gl(-1) after 6h of incubation. Similar to percent dyestuff removal, the rate of adsorption was maximum at a PWS concentration of 4 gl(-1). Kinetics of adsorption of dyestuffs was investigated by using the first- and second-order kinetic models and the kinetic constants were determined. Second-order kinetics was found to fit the experimental data better than the first-order model for all dyestuffs tested. Adsorption isotherms were established for all dyestuffs used and the isotherm constants were determined by using the experimental data. Langmuir and the generalized adsorption isotherms were found to be more suitable than the Freundlich isotherm for correlation of equilibrium adsorption data. Acid pre-treated PWS was proven to be an effective adsorbent for dyestuff removal as compared to the other adsorbents reported in literature studies.  相似文献   

5.
Lignocellulosic materials are good precursors for the production of activated carbon. In this work, coffee residue has been used as raw material in the preparation of powder activated carbon by the method of chemical activation with zinc chloride for the sorption of Pb(II) from dilute aqueous solutions.The influence of impregnation ratio (ZnCl2/coffee residue) on the physical and chemical properties of the prepared carbons was studied in order to optimize this parameter. The optimum experimental condition for preparing predominantly microporous activated carbons with high pore surface area (890 m2/g) and micropore volume (0.772 cm3/g) is an impregnation ratio of 100%. The developed activated carbon shows substantial capability to sorb lead(II) ions from aqueous solutions and for relative impregnation ratios of 75 and 100%, the maximum uptake is practically the same. Thus, 75% represents the optimal impregnation ratio.Batch experiments were conducted to study the effects of the main parameters such as contact time, initial concentration of Pb(II), solution pH, ionic strength and temperature. The maximum uptake of lead(II) at 25 °C was about 63 mg/g of adsorbent at pH 5.8, initial Pb(II) concentration of 10 mg/L, agitation speed of 200 rpm and ionic strength of 0.005 M. The kinetic data were fitted to the models of pseudo-first order and pseudo-second order, and follow closely the pseudo-second order model. Equilibrium sorption isotherms of Pb(II) were analyzed by the Langmuir, Freundlich and Temkin isotherm models. The Freundlich model gives a better fit than the others.Results from this study suggest that activated carbon produced from coffee residue is an effective adsorbent for the removal of lead from aqueous solutions and that ZnCl2 is a suitable activating agent for the preparation of high-porosity carbons.  相似文献   

6.
ABSTRACT: The underwater light field of eight central New York lakes, which represent a wide range of trophic state, was characterized through paired measurements of Sechi disc transparency (SD, m) and diffuse light attenuation (Kd, m?1). A total of 90 paired measurements are included in the data base. Substantial variability in the Kd SD product with time within individual systems, and amongst systems, was observed, which indicates differences in the relative contributions of absorption and scattering to attenuation. More than 50 percent of the temporal variability in Kd was attributable to attendant variations in chlorophyll a (C, mg m?3) in only two of the lakes. Estimates of the adsorption (a, m?1) and scattering (b, m?1) coefficients based on paired Kd and SD measurements compared well with more precise determinations available for one of the lakes. Determinations of a and b for the eight lakes, from SD and Kd measurements, indicated great system-specificity and temporal variability in these characteristics. The temporal variability in relative contributions of a and b to Kd is consistent with covariation of different attenuating components and the lack of correlation between C and Kd in most of the study lakes.  相似文献   

7.
A novel cellulose-based anion exchanger (Cell-AE) with tertiary amine functionality was synthesized by graft polymerization reaction of cellulose and glycidyl methacrylate using N,N′-methylene-bis-acrylamide as a crosslinker and benzoyl peroxide as an initiator, followed by dimethylamine (amination) and acid (HCl) treatment. The chemical modification was confirmed by infrared spectroscopy and CHN analysis. The anion exchanger was used in batch processes to study AS(V) adsorption in solutions. The operating variables studied were pH, contact time, initial As(V) concentration, sorbent mass, and ionic strength. The process was affected by solution pH with an optimum adsorption occurring at pH 6.0. Adsorption equilibrium was achieved within 1 h. Increasing ionic strength of solution negatively affected the arsenic uptake. The adsorption process performed more than 99.0% of As(V) removal from an initial concentration of 25.0 mg/L. The process of adsorption followed pseudo-second-order kinetics. The adsorption equilibrium isotherm data were analyzed using the Langmuir, Freundlich, Redlich–Peterson and Langmuir–Freundlich equations. The Langmuir–Freundlich isotherm described the adsorption data over the concentration range 25–400 mg/L. The adsorption mechanism appears to be a ligand-exchange process. A simulated groundwater sample was treated with Cell-AE to demonstrate its efficiency in removing As(V). The adsorbed As(V) ions were desorbed effectively by a 0.1 M NaOH solution.  相似文献   

8.
In the present work, the adsorption capacity of anthill was investigated as a low‐cost adsorbent to remove the heavy metal ions, lead (II) ion (Pb2+), and zinc (II) ion (Zn2+) from an aqueous solution. The equilibrium adsorption isotherms of the heavy metal ions were investigated under batch process. For the study we examined the effect of the solution's pH and the initial cations concentrations on the adsorption process under a fixed contact time and temperature. The anthill sample was characterized using a scanning electron microscope (SEM), X‐ray fluorescence (XRF), and Fourier transform infrared (FTIR) techniques. From the SEM analysis, structural change in the adsorbent was a result of heavy metals adsorption. Based on the XRF analysis, the main composition of the anthill sample was silica (SiO2), alumina (Al2O3), and zirconia (ZrO2). The change in the peaks of the spectra before and after adsorption indicated that there was active participation of surface functional groups during the adsorption process. The experimental data obtained were analyzed using 2‐ and 3‐parameter isotherm models. The isotherm data fitted very well to the 3‐parameter Radke–Prausnitz model. It was noted that Pb2+ and Zn2+ can be effectively removed from aqueous solution using anthill as an adsorbent.  相似文献   

9.
The equilibrium sorption of copper ions from aqueous solution using a new adsorbent, palm kernel fibre, has been studied. Palm kernel fibre is obtained in large amounts as a waste product of palm oil production. Batch equilibrium studies were carried out and system variables such as solution pH, sorbent dose, and sorption temperature were varied. The equilibrium sorption data was then analyzed using the Langmuir, Freundlich, Dubinin–Radushkevich (D–R) and Temkin isotherms. The fit of these isotherm models to the equilibrium sorption data was determined, using the linear coefficient of determination, r2, and the non-linear Chi-square, χ2 error analysis.The results revealed that sorption was pH dependent and increased with increasing solution pH above the pHPZC of the palm kernel fibre with an optimum dose of 10 g/dm3. The equilibrium data were found to fit the Langmuir isotherm model best, with a monolayer capacity of 3.17 × 10?4 mol/g at 339 K. The sorption equilibrium constant, Ka, increased with increasing temperature, indicating that bond strength between sorbate and sorbent increased with temperature and sorption was endothermic. This was confirmed by the increase in the values of the Temkin isotherm constant, B1, with increasing temperature. The Dubinin–Radushkevich (D–R) isotherm parameter, free energy, E, was in the range of 15.7–16.7 kJ/mol suggesting that the sorption mechanism was ion exchange. Desorption studies showed that a high percentage of the copper was desorbed from the adsorbent using acid solutions (HCl, HNO3 and CH3COOH) and the desorption percentage increased with acid concentration. The thermodynamics of the copper ions/palm kernel fibre system indicate that the process is spontaneous and endothermic.  相似文献   

10.
In the present study, chemically modified Aleppo pine (Pinus halepensis Miller) sawdust was used for the removal of phosphate from water. Biosorbent preparation process included size fractionation, extraction for surface activation, acid prehydrolysis, and treatment with urea. Sorption of phosphate ions onto biosorbent was studied using the batch technique. The effect of different parameters such as contact time, adsorbate concentration, and temperature was investigated. The adsorption kinetics data were best described by the pseudo-second-order rate equation, and equilibrium was achieved after 40 and 80 min for modified and unmodified sawdust, respectively. The Langmuir and Freundlich equations for describing adsorption equilibrium were applied to data. The constants and correlation coefficients of these isotherm models were calculated and compared. The adsorption isotherms obey the Freundlich equation. The thermodynamic parameters like free energy, enthalpy, and entropy changes for the adsorption of phosphate ions have been evaluated, and it has been found that the reaction was spontaneous and endothermic in nature. The low value of activated energy of adsorption, 3.088–3.540 kJ mol−1, indicates that the phosphate ions are easily adsorbed on the sawdust. Results suggest that the prepared chemically modified Aleppo pine sawdust has potential in remediation of contaminated waters by phosphate.  相似文献   

11.
研究了pH值、吸附接触时间、铜离子的初始浓度及活性炭纤维(ACF)的投加量对活性炭纤维吸附Cu2+的影响,并选取了最佳的实验条件。用Langmuir方程和Freundlich方程拟合活性炭纤维对Cu2+吸附等温线,结果表明:活性炭纤维吸附Cu2+更符合Langmuir等温式,其相关系数为0.9995,以单分子层吸附为主。对活性炭纤维改性能明显提高对Cu2+的吸附,其中效果最佳的吸附量从4.8mg/g增加到17.32mg/g,提高了3.6倍。  相似文献   

12.
In this paper, Loofa egyptiaca (LE), an agricultural plant cultivated in Egypt, was used to prepare low-cost activated carbon (LEC1 and LEC2) adsorbents. The adsorbents (LE, LEC1 and LEC2) were evaluated for their ability to remove direct blue 106 dye from aqueous solutions. Batch mode experiments were conducted using various parameters such as pH, contact time, dye concentration and adsorbent concentration. The surface chemistry of LE, LEC1 and LEC2 was analyzed by scanning electron microscopy (SEM). The experimental data were examined using Langmuir, Freundlich, Temkin and Harkins–Jura isotherms. The results showed that the adsorption of direct blue 106 was maximal at the lowest value of pH (pH = 2). Removal efficiency was increased with an increase in dye concentration and a decrease in amount of adsorbent. Maximum adsorption capacity was found to be 57.14, 63.3 and 73.53 mg/g for LE, LEC1 and LEC2 respectively. Kinetics were also investigated using pseudo-first-order, pseudo-second-order and intra-particle diffusion models. The experimental data fitted very well with the pseudo-first-order and pseudo-second-order kinetic models. The results indicate that LE, LEC1 and LEC2 could be employed as adsorbents for the removal of direct blue dye from aqueous solutions.  相似文献   

13.
The use of low-cost adsorbents was investigated as a replacement for current costly methods of removing metals from aqueous solution. Removal of copper (II) from aqueous solution by different adsorbents such as shells of lentil (LS), wheat (WS), and rice (RS) was investigated. The equilibrium adsorption level was determined as a function of the solution pH, temperature, contact time, initial adsorbate concentration and adsorbent doses. Adsorption isotherms of Cu (II) on adsorbents were determined and correlated with common isotherm equations such as Langmuir and Freundlich models. The maximum adsorption capacities for Cu (II) on LS, WS and RS adsorbents at 293, 313 and 333 K temperature were found to be 8.977, 9.510, and 9.588; 7.391, 16.077, and 17.422; 1.854, 2.314, and 2.954 mg g(-1), respectively. The thermodynamic parameters such as free energy (delta G0), enthalpy (delta H0) and entropy changes (delta S0) for the adsorption of Cu (II) were computed to predict the nature of adsorption process. The kinetics and the factors controlling the adsorption process were also studied. Locally available adsorbents were found to be low-cost and promising for the removal of Cu (II) from aqueous solution.  相似文献   

14.
15.
Experiments have been conducted to examine the liquid-phase adsorption of phenol from water by silica gel, HiSiv 3000, activated alumina, activated carbon, Filtrasorb-400, and HiSiv 1000. Experiments were carried out for the analysis of adsorption equilibrium capacities and kinetics. The adsorption isotherm model of the Langmuir-Freundlich type was the best to describe adsorption equilibrium data for phenol for the adsorbents studied. Results of kinetic experiments indicated that HiSiv 1000 had the highest rate of adsorption among the adsorbents studied and therefore more detailed studies were carried out with this adsorbent. The influence of particle size, temperature, and thermal regeneration on adsorption of phenol by HiSiv 1000 was evaluated. From particle size experiments it appeared that adsorption capacity of HiSiv 1000 did not change by changing the particle size, but the rate of adsorption decreased considerably by increasing the particle size. The effect of temperature on adsorption was studied by determining equilibrium isotherms for HiSiv 1000 at 25, 40, and 55 degrees C. The results showed that adsorption capacity decreased with increasing temperature. Thermal regeneration of HiSiv 1000 was performed at 360 degrees C. It was observed that adsorption capacity of HiSiv 1000 did not change after 14 regeneration cycles. Equilibrium experiments showed that the adsorption capacities of activated carbon and Filtrasorb-400 were several times higher than that of HiSiv 1000.  相似文献   

16.
Adsorption of malachite green (MG) from aqueous solution onto treated ginger waste (TGW) was investigated by batch and column methods. The effect of various factors such as initial dye concentration, contact time, pH and temperature were studied. The maximum adsorption of MG was observed at pH 9. Langmuir and Freundlich isotherms were employed to describe the MG adsorption equilibrium. The monolayer adsorption capacities were found to be 84.03, 163.9 and 188.6 mg/g at 30, 40 and 50 °C, respectively. The values of thermodynamic parameters like ΔG°, ΔH° and ΔS° indicated that adsorption was spontaneous and endothermic in nature. The pseudo second order kinetic model fitted well in correlation to the experimental results. Rechienberg's equation was employed to determine the mechanism of adsorption. The results indicated that film diffusion was a major mode of adsorption. The breakthrough capacities were also investigated.  相似文献   

17.
Zeolitic materials have been prepared from coal fly ash as well as from a SiO2–Al2O3 system upon NaOH fusion treatment, followed by subsequent hydrothermal processing at various NaOH concentrations and reaction times. During the preparation process, the starting material initially decomposed to an amorphous form, and the nucleation process of the zeolite began. The carbon content of the starting material influenced the formation of the zeolite by providing an active surface for nucleation. Zeolite A (Na-A) was transformed into zeolite X (Na-X) with increasing NaOH concentration and reaction time. The adsorption isotherms of the obtained Na-X based on the characteristics required to remove heavy ions such as Ni2+, Cu2+, Cd2+ and Pb2+ were examined in multi-metal systems. Thus obtained experimental data suggests that the Langmuir and Freundlich models are more accurate compared to the Dubinin–Kaganer–Radushkevich (DKR) model. However, the sorption energy obtained from the DKR model was helpful in elucidating the mechanism of the sorption process. Further, in going from a single- to multi-metal system, the degree of fitting for the Freundlich model compared with the Langmuir model was favored due to its basic assumption of a heterogeneity factor. The Extended-Langmuir model may be used in multi-metal systems, but gives a lower value for equilibrium sorption compared with the Langmuir model.  相似文献   

18.
Lead removal from contaminated water using mineral adsorbents   总被引:3,自引:0,他引:3  
This study records experiments undertaken to determine the suitable conditions for the use of naturally occurring minerals (talc, chalcopyrite and barite) as an adsorbent for the removal of lead ions from liquid wastes. The adsorption of lead ions from solutions containing different initial lead concentrations (50, 100, 200, 400, 600, 800 and 1000 mg l–1 Pb as lead nitrate) using different size fractions (<63 m, 63–150 m) of talc, chalcopyrite and barite at different pH (3, 5, 7 and 9) and different adsorption times (24, 48, 72 and 96 hr) was examined. The results revealed that of the studied minerals, the chalcopyrite fraction at 63–150 m showed the highest adsorption capacity. The adsorption data of Pb ions was also analyzed with the help of the Langmuir and Freundlich models to evaluate the mechanistic parameters associated with the adsorption process. The adsorption isotherms obtained from the Langmuir and Freundlich equations were generally linear and the adsorption of Pb by the studied minerals was correlated with the adsorption maximum and binding energy constant of the Langmuir equation and equilibrium partition constant and binding partition coefficient of the Freundlich equation. It was concluded that the equilibrium time of adsorption was 72 hr at an optimum pH from 7 to 9. This technique might be successfully used for the removal of lead ions from liquid industrial wastes and wastewater.  相似文献   

19.
Natural, acid and base modified kaolin clays were studied for the sake of phenol and 4-chlorophenol removal from aqueous environments and their application to real ground and industrial wastewater samples. Scanning electron microscope (SEM), infrared spectroscopy (IR), X-ray diffraction (XRD), Thermo Gravimetric Analysis (TGA), Differential Thermal Analysis (DTA), and Surface area analysis were employed for characterization of the adsorbents microstructure. Operating factors such as adsorbent dose, solution pH, initial phenol concentration, and contact time were studied. The experimental data displayed that the increase of the adsorbent dose, contact time, and pH value from 2 to 7 increases the efficiency of the removal process. Optimal conditions for phenolic removal were; contact time of 300 min, primary phenol solution of 25 mg/L, pH 7 and 2.5 g/L as an appropriate adsorbent dose using crude (natural), acid modified and base modified kaolin clays. The higher phenolic removal efficiencies were obtained at 5 mg/L as 90, 97, 96.2%, respectively, for the adsorbents in the previously mentioned order. The adsorption capacity in the removal of phenol and 4-chlorophenol were 7.481 and 4.195, 8.2942 and 3.211, and 8.05185 and 18.565 mg/g, respectively, for the adsorbents in the same mentioned order. The adsorption equilibrium data were fitted and analyzed with four isotherm models, namely, Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm equations. The adsorption process of phenol on studied adsorbents was exothermic, spontaneous and thermodynamically favorable proved by the negative values of their thermodynamic parameters ΔH° and ΔG°. The correlation coefficient (R2) for all concentrations was higher than 0.94, which indicates that in the studied system, the data suitably fit the first-order kinetics. The % desorption capacity was amounted to 96%, 91.11%, and 87.06% of adsorbed phenol, respectively, for the adsorbents in the previous order using 0.1N NaOH and 10% V/V ethanol solutions as eluents at 25°C, indicating the reusability of the adsorbents. Kaolin and its modified forms can be introduced as eco-friendly and low-cost adsorbents in water remediation implementation.  相似文献   

20.
This study uses rate parameters in pseudo-first-order (PFO) and pseudo-second-order (PSO) equations (k1 and k2qe, respectively) to judge the extent for approaching equilibrium in an adsorption process. Out of fifty-six systems collected from the literature, the adsorption processes with a k2qe value between 0.1 and 0.8 min?1 account for as much as 70% of the total. These are classified as fast processes. This work compares the validity of PFO and PSO equations for the adsorption of phenol, 4-chlorophenol (4-CP), and 2,4-dichlorophenol (2,4-DCP) on activated carbons prepared from pistachio shells at different NaOH/char ratios. The activated carbons, recognized as microporous materials, had a surface area ranging from 939 to 1936 m2/g. Findings show that the adsorption of phenol, 4-CP, and 2,4-DCP on activated carbons had a k2qe value of 0.15–0.58 min?1, reflecting the fast process. Evaluating the operating time by rate parameters revealed that k2qe was 1.6–1.8 times larger than k1. These findings demonstrate the significance of using an appropriate kinetic equation for adsorption process design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号