首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Water shortage is a major problem facing the world today, although 70% of the earth is covered with water. With 95% of this water in seas and oceans, man has to find the most energy-efficient way of desalination for sustainable freshwater supply. Conventional desalination technologies such as reverse osmosis and thermal distillation involve large amounts of energy, especially for high salt rejection. In comparison, the discovery of two-dimensional materials such as graphene and its structural analogs boron nitride and molybdenum disulphide (MoS2) has fostered been tremendous progress for energy-saving desalination using nanopores of these materials. This article reviews the recent developments in this technology with experimental and molecular simulation literature survey over the past few years. It explains the role of nanopores in desalination in terms of structure, energy, cost-effectiveness and process efficiency.  相似文献   

2.
Water scarcity arises rapidly with increasing human population, urbanization and industrialization. Therefore, water production from natural sources using efficient and environmental friendly technologies is gaining attention. Pervaporative desalination is a promising technology based upon membrane filtration. Here, we fabricated and tested a novel hybrid-composite membrane: polyvinylidene fluoride (PVDF)/polyvinyl pyrrolidone/(PVP)/3A zeolite. Desalination performance was evaluated in terms of flux, salt rejection, zeolite incorporation within the membrane and temperature. Results show that all membranes exhibited salt rejection higher than 99.5%. The highest flux of 2.5 kg m?2 h?1 and salt rejection of 99.9% were obtained using 10 wt% 3A incorporated PVDF/PVP membrane at 40 °C. The PVDF/PVP/3A zeolite membrane preserved its stability during 55-h desalination operating without performance decline.  相似文献   

3.
Nanomaterials may help to solve issues such as water availability, clean energy generation, control of drug-resistant microorganisms and food safety. Here we review innovative approaches to solve these issues using nanotechnology. The major topics discussed are wastewater treatment using carbon-based, metal-based and polymeric nanoadsorbents for removing organic and metal contaminants; nanophotocatalysis for microbial control; desalination of seawater using nanomembranes; energy conversion and storage using solar cells and hydrogen-sorbents nanostructures; antimicrobial properties of nanomaterials; smart delivery systems; biocompatible nanomaterials such as nanolignocellulosis and starches-based materials, and methods to decrease the toxicity of nanomaterials. Significantly, here it is reviewed two ways to palliate nanomaterials toxicity: (a) controlling physicochemical factors affecting this toxicity in order to dispose of more safe nanomaterials, and (b) harnessing greener synthesis of them to bring down the environmental impact of toxic reagents, wastes and byproducts. All these current challenges are reviewed at the present article in an effort to evaluate environmental implications of nanomaterials technology by means of a complete, reliable and critical vision.  相似文献   

4.
石墨烯作为一种新兴的二维碳纳米材料,近年来受到了医学领域科学家的高度关注。由于石墨烯类纳米材料具有较大的比表面积,易于表面修饰等优点,目前在药物载体方面的研究发展迅速。随着纳米技术的发展,除了氧化石墨烯外,进一步将还原氧化石墨烯、石墨烯量子点、石墨烯纳米带等石墨烯类纳米材料作为药物载体应用到医学领域。本文综述了石墨烯类纳米材料作为药物载体在医学领域的研究进展,并从石墨烯类纳米材料的相关毒性研究角度,提醒了人们负载药物前后石墨烯类纳米材料的迁移规律对其潜在风险研究的重要性。  相似文献   

5.
Nanotechnology is expected to have a beneficial influence on agriculture, food and environment, due to the unique properties of nanomaterials. However, little is known about their safety and potential toxicity. Here we review metal nanoparticles, nanometal oxides, carbon nanotubes, liposomes and dendrimers. We present the application of these nanomaterials in agriculture, food and environment for plant protection; disease treatment; packing materials; development of new tastes, textures and sensations; pathogen detection; and delivery systems. We discuss risk assessment of nanomaterials and toxicological impacts of nanomaterials on agriculture, food and environment. We then provide regulatory guidelines for the safer use of nanomaterials.  相似文献   

6.
Due to their small size and unique physico-chemical characteristics, nanomaterials have gained importance in the agri-food sector, notably in preservation and packaging. Future applications will focus on shelf life, food quality, safety, fortification and biosensors for contaminated or spoiled food, irrigating water and drinking water. Different types and shapes of nanomaterials are being used depending upon the needs and nature of the work in agriculture and water quality management. Here we review the application of nanotechnology in agriculture. The major points discussed are: (1) Nanomaterials for agriculture and water quality management. (2) Research interests such as nanoscale carriers, fabricated xylem vessels, nanolignocellulosic materials, clay nanotubes, photocatalysis, bioremediation of resistant pesticides, disinfectants, agricultural wastewater treatment, nanobarcode technology, quantum dots for staining bacteria and nanobiosensors. (3) Nanotechnological applications for agriculture, which includes nanolignodynamic metallic particles, photocatalysis, desalination, removal of heavy metals and wireless nanosensors.  相似文献   

7.
Membrane technology has become a common separation technology over the past decennia. Membranes are used more and more for the production of drinkable water from groundwater, surface water and wastewater. Membranes are now competitive versus conventional techniques. Desalination is predominantly used to eradicate the problem of water scarcity. The sustainability of all desalination processes depends mainly on the reduction of energy costs (production cost) and the increase in water recovery. Forward osmosis and membrane distillation are emerging technologies for sustainable desalination. Here we review membrane processes of forward osmosis and membrane distillation and the advancements in membrane material and modules. We also discuss the capability of membrane distillation in treating highly concentrated aqueous solutions derived from other desalination processes. Furthermore, the advancements in fabrication of high-performance membrane is reviewed and the performance of different membranes and optimization of membrane distillation process are summarized.  相似文献   

8.
2种类型多壁碳纳米管对蛋白核小球藻的毒理研究   总被引:1,自引:0,他引:1  
碳纳米材料由于其具有优异的性能,得以广泛生产和使用,其不可避免会进入水环境中,对水生生态系统造成潜在影响。多壁碳纳米管(P-MWCNTs)和羟基化多壁碳纳米管(MWCNTs-OH)作为纳米材料的典型代表,应用非常广泛,其潜在的环境效应受到人们越来越多的关注。为此,本文以蛋白核小球藻(Chlorella pyrenoidosa)作为受试生物,通过暴露实验,研究了P-MWCNTs和MWCNTs-OH对蛋白核小球藻的生物学效应。研究结果表明:1)当P-MWCNTs浓度≤10 mg·L-1、MWCNTs-OH≤20 mg·L-1浓度时对蛋白核小球藻生长未造成影响;2)暴露96 h后,当P-MWCNTs≤10 mg·L-1、MWCNTs-OH浓度≤20 mg·L-1时,蛋白核小球藻细胞可溶性蛋白质含量增加,当P-MWCNTs浓度≥20 mg·L-1、MWCNTs-OH浓度≥40 mg·L-1时,2种类型MWCNTs均对蛋白核小球藻造成毒性效应;3)随着2种类型MWCNTs浓度的增加,蛋白核小球藻细胞总抗氧化能力(T-AOC)值减少,蛋白核小球藻细胞丙二醛(MDA)含量显著增加,细胞的健康程度逐渐恶化,细胞结构受到严重损伤;4)MWCNTs-OH比P-MWCNTs具有更好的生物相容性。  相似文献   

9.
Hollow nanomaterials have attracted significant attention because of their high chemical and thermal stability, high specific surface area, high porosity, low density, and good biocompatibility. These state-of-the-art nanomaterials have been shown to efficiently adsorb heavy metals, and volatile hazardous substances, photodegrade persistent organic pollutants, and other compounds, and inactivate bacteria. Such properties have enabled the use of these materials for environmental remediation, such as in water/wastewater treatment, soil remediation, air purification, and substance monitoring, etc. Hollow nanomaterials showed higher photocatalytic activity than those without hollow structure owing to their high active surface area, reduced diffusion resistance, and improved accessibility. And, the Doping method could improve the photocatalytic performance of hollow nanomaterials further under visible light. Moreover, the synthetic mechanisms and methods of these materials are important because their size and morphology help to determine their precise properties. This article reviews the environmental applications and potential risks of these materials, in addition to their syntheses. Finally, an outlook into the development of these materials is provided.  相似文献   

10.
Nanoparticles are not specifically targeted in conventional treatment schemes; consequently, typical wastewater treatment systems are ineffective for nanoparticles removal. With rapidly increasing concern over their health effects, improved understanding of nanoparticle transport and retention in porous media filters is critical because of its application in new wastewater treatment methods and for assessment of the fate of the discharged nanoparticles in soil. In this study, a unique and robust integrated method is developed and validated. Experimentally, this approach uses an on-line, real-time, and in situ method for measuring nanoparticle retention dynamics, eliminating the laborious and less accurate sampling and off-line analysis. The data analysis part is a process simulator which provides both kinetic properties of the retention process as well as the overall capacity and loading. This technique is validated by application to the transport and retention of TiO2 nanoparticles in two vastly different porous filtration media—activated carbon and sand. TiO2 retained concentrations ranged from 0.24 to 0.37 mg g?1 for activated carbon and 0.01–0.014 mg g?1 for sand. The integrated method presented here is useful for both comparison of the filtration effectiveness of various porous materials as well as for process optimization and scale-up for industrial applications.  相似文献   

11.
纳米材料是近几年应用越来越多的一种新型材料,因此国内外科研单位对其毒性的研究也逐年增加。但是目前对鼠科动物生殖毒性及其机理的了解还相对较少,亟需大量研究填补此领域的空白。本文主要从亲代和子代2个方面阐述了纳米材料对鼠科动物的生殖毒性,从不同生物水平等方面概述了纳米材料对亲子两代鼠科动物的损伤效应及可能的机制。最后,试探性地提出了今后在纳米材料领域对鼠科动物生殖毒性的研究重点。  相似文献   

12.
Nanotechnology has revolutionized plethora of scientific and technological fields; environmental safety is no exception. One of the most promising and well- developed environmental applications of nanotechnology has been in water remediation and treatment where different nanomaterials can help purify water through different mechanisms including adsorption of heavy metals and other pollutants, removal and inactivation of patho- gens and transformation of toxic materials into less toxic compounds. For this purpose, nanomaterials have been produced in different shapes, integrated into various composites and functionalized with active components. Nanomaterials have also been incorporated in nanostructured catalytic membranes which can in turn help enhance water treatment. In this article, we have provided a succinct review of the most common and popular nanomaterials (titania, carbon nanotubes (CNTs), zero-valent iron, dendrimers and silver nanomaterials) which are currently used in environmental remediation and particularly in water purification. The catalytic properties and functionalities of the mentioned materials have also been discussed.  相似文献   

13.
The effects of two carbon-based nanomaterials, nano-sized carbon black (nCB), and single-layer graphene oxide (GO) on settlement of Amphibalanus amphitrite (Cirripedia, Crustacea) cypris larvae (cyprids) were assessed after 24, 48, and 72 h of exposure. Additionally, the effects of these nanomaterials on the mortality and swimming behaviour of the nauplius larvae (nauplii) of the same organism were determined after 24 and 48 h. The data indicate that nCB is more effective as a potential antisettlement agent than single-layer GO; moreover, nCB did not show any adverse effects on the larvae. The swimming behaviour of II stage nauplii of A. amphitrite exposed to a suspension of nCB was inhibited only at very high nCB concentrations (≥0.5 mg/mL). Single-layer GO, on the contrary, showed lower antisettlement effects and was more active in altering the survival and inhibiting the swimming behaviour of the nauplii. An indication of the toxic or non-toxic mechanisms of the antisettlement properties of both of these nanomaterials is provided by the reversibility of the antisettlement activity. In conclusion, we propose nCB as an innovative antifouling nanomaterial that shows low toxicity towards the model organism (crustaceans) used in this study.  相似文献   

14.
Environmental Chemistry Letters - Microbial desalination cells are promising bio-electrochemical technologies for water desalination, treating wastewater and bioelectricity production. In this...  相似文献   

15.
Nanomaterial toxicity for plants   总被引:1,自引:0,他引:1  
  相似文献   

16.
The discovery of ordered mesoporous materials in 1992 by Mobil Oil Corporation scientists has opened great opportunities for new applications in many emerging fields such as heterogeneous catalysis, biocatalysis, energy conversion, biosensors, photocatalytic devices and environmental technologies. Porous materials are grouped by the International Union of Pure and Applied Chemistry (IUPAC) into three classes according to their pore diameter: microporous (<?2 nm), mesoporous (2–50 nm) and macroporous (>?50 nm). One of the most versatile methods for the preparation of those materials is the soft template approach which combines the sol–gel process with molecular self-assembly. While the micelles formed by ionic or nonionic surfactants, as well as amphiphilic polymers, have been extensively used as templates, the supramolecular assemblies formed between cyclodextrins and block copolymers have been less investigated, despite their large chemical and structural diversity. This review article focuses mainly on nanostructured porous inorganic materials derived from cyclodextrins or cyclodextrin-based assemblies. More than 100 references are described and discussed, in which we look both at their synthesis and characterization, as well as their applications in the emerging fields of heterogeneous catalysis and photocatalysis. A special attention is paid to the evaluation of the critical parameters that need to be controlled for improving their (photo) catalytic performances.  相似文献   

17.
纳米技术已成为21世纪发展最迅猛的技术领域之一。纳米材料因其具备新异的物理、化学特性而广泛应用于各种领域,包括农业,电子工业,生物医学,制造业,医药品和化妆品等,因此纳米颗粒不可避免会释放到水环境中。贝类由于其具有分布广,处于食物链中的关键位置,滤食食性,对重金属及污染物有较强的生物累积能力,且很多贝类具有养殖和商业价值,因而纳米颗粒对贝类的生态毒性效应备受关注。本文通过对已有相关研究成果进行归纳分析,重点阐述了3方面的内容:1)人工纳米材料在水环境中的行为;2)贝类作为水生污染监测指示生物的重要意义;3)人工纳米材料对贝类的毒性效应,主要包括贝类对纳米颗粒摄取、积累和转移,并从组织细胞水平,分子和基因水平,胚胎发育和个体生长水平等阐述了纳米材料对贝类的毒性效应。  相似文献   

18.
Zhou  Ziqing  Yu  Fei  Ma  Jie 《Environmental Chemistry Letters》2022,20(1):563-595

In material synthesis, nanoconfinement acts both as a physical reactor to tune the shape and size of nanomaterials, and as a chemical microenvironment for the nucleation and growth of nanoconfined substances, resulting in unique material properties. This nanoconfinement effect has been extensively applied to synthesize materials for hydrogen storage, catalysis and separation for environmental protection. Here, we review methods to construct nanoconfined space in carbon materials, metal–organic frameworks, mesoporous silica, porous organic polymers and MXenes, a class of two-dimensional inorganic compounds. We discuss nanoconfinement for enhanced adsorption with focus on covering size and dispersion, crystallization and stability, confined water and coordination.

  相似文献   

19.
随着纳米科技的迅猛发展,人工碳纳米材料的生产和使用逐年递增,越来越多的碳纳米材料进入水环境中,对水生生物产生毒性效应。本文在介绍了碳纳米球、石墨烯、碳纳米管3种碳纳米材料的基础上,分析了碳纳米材料的水环境行为,重点综述了碳纳米材料对水生生物毒性效应研究现状,以及可能的致毒机制,并指出今后碳纳米材料对水生生物毒理学亟待加强的研究领域。  相似文献   

20.
The immobilisation of heavy metals in contaminated soils is a promising alternative to conventional remediation techniques. Very few studies have focused on the use of iron-rich nanomaterials and natural materials for the adsorption of toxic metals in soils. Synthesised iron-rich nanomaterials (Fe and Zr–Fe oxides) and natural iron-rich materials (natural red earth; NRE) were used to immobilise As and Pb in contaminated agricultural soil. Total concentrations of As and Pb in the initial soil (as control) were 170.76 and 1945.11 mg kg?1, respectively. Amendments were applied into the soil at 1, 2.5 and 5% (w/w) in triplicate and incubated for 150 days. Except for the NRE-amended soil, soil pH decreased from 5.6 to 4.9 with increasing application rates of Fe and Zr–Fe oxides. With addition of Fe and Zr–Fe oxides at 5%, the ammonium acetate (NHO4Ac)-extractable Pb was greatly decreased by 83 and 65% compared with NRE addition (43%). All subjected amendments also led to a decrease in NHO4Ac-extractable As in the soils, indicating the high capacity of As immobilisation. Soil amended with NRE showed a lower ratio of cy19:0 to 18:1ω7c, indicating decreased microbial stress. The toxicity characteristic leaching procedure produced results similar to the NHO4Ac extraction for As and Pb. The NRE addition is recommended for immobilising heavy metals and maintaining biological soil properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号