首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
为了揭示桂林市大气中开放源组分特征,本研究在桂林采集了土壤扬尘、道路扬尘、建筑扬尘、堆场扬尘样品,分析了多种无机元素和水溶性离子含量,构建了桂林市开放源源谱。结果表明:桂林市土壤扬尘、道路扬尘、建筑扬尘、堆场扬尘中主量成分主要包含Ca、Fe、Al,主要为地壳元素和建筑标志元素。所有开放扬尘源元素中Ca,道路扬尘中Cu、Zn,堆场扬尘Pb、Zn富集程度极强,这些元素受人为污染影响,主要来自建筑施工、机动车、燃煤等。桂林市开放扬尘源之间分歧系数大于0.2,各开放扬尘源之间化学组成相似度不高;建筑扬尘与道路扬尘、土壤扬尘之间的分歧系数相对较小(分别为0.37、0.39),相互影响较大。桂林市各开放扬尘源与上海市扬尘源之间的分歧系数高(分别为0.46、0.50、0.51),化学组分差异大,可能与两个城市主要产业、人为污染源的差异相关。  相似文献   

2.
结合我国目前面临的PM2.5污染严重问题,采用CMAQ 4.7.1模式模拟我国东部各省PM2.5浓度分布,并探索了其输送、沉降规律.结果表明:综合空气质量模式CMAQ模拟结果与观测结果较为一致,可以较好地模拟PM2.5质量浓度变化特征;我国东部PM2.5呈现明显的季节分布特征,且PM2.5质量浓度分布与污染源的位置分布有较好的对应,呈现由城市边缘向城市中心推移递增的趋势,区域性PM25高值中心可达120 μg/m3以上;湿沉降是细颗粒物的主要去除方式,且湿沉降量至少为干沉降量5倍以上;PM2.5夏季沉降通量最大,冬季最小,我国东部地区沉降通量高值中心可达30 mg/(m2·d)以上;模拟区域湿沉降量占总沉降量的91%以上,模拟计算区域的总沉降量为4.67×106 t/a,其中京津冀地区细颗粒物总沉降量为1.65 × 106 t/a.  相似文献   

3.
<正>所谓PM2.5,是指由固体粒子与液态粒子混合所组成的粒径﹤2.5μm(空气动力学直径)的细粒子。PM2.5主要来源于直接排放与二次颗粒物,包括火电与工业锅炉、石油炼制、钢铁、有机化工、水泥、涂料、建筑施工、道路扬尘、垃圾焚烧以及秸秆露天焚烧等等。分析PM2.5的主要来源,不难发现,在PM2.5中,极有可能存在多种有毒有害物质,如重金属氧化物、致癌物质等,直接影响环境质量,对人体健康产生一定威胁。同时,  相似文献   

4.
<正>随着我国经济的不断发展,城市化建设日益壮大,随之产生的建筑业也得到了蓬勃发展。面对如此快速的城市建设速度,对处理建筑扬尘污染又有了新的挑战。本文主要简单地介绍了PM2.5及建筑扬尘的相关概念,分析了建筑扬尘的排放源种类,并以某市的具体监测数据来说明建筑扬尘对城市空气中PM2.5浓度的影响情况,结果表明城市建设中建筑扬尘对城市环境中PM2.5浓度的影响较大。这在今后为建筑扬尘污染的治理提供了  相似文献   

5.
为探索PM2.5的分布规律及其影响因素,对2013年西安市13个监测站点的全年ρ(PM2.5)数据进行了统计与整理.分析了ρ(PM2.5)的时空分布,采用聚类分析、小波变换研究了ρ(PM2.5)的区域分布特征与年际变化及突变特征,并对相关因素进行了探讨.结果表明,西安市ρ(PM2.5)在时间分布上具有冬高夏低的特点,而在空间分布上则以市人民体育场和草滩监测点所在区域为ρ(PM2.5)高值中心;ρ(PM2.5)在空间上可分为3大类,纺织城监测点单独为1类,经开区与草滩监测点为2类,另外10个监测点为3类,聚类效果的相关系数为0.7994,显示聚类效果较好;在ρ(PM2.5)年际变化中,除了6月和7月以外,其他月份ρ(PM2.5)均值为147.29 μg/m3,日照时间短和静风是导致ρ(PM2.5)发生突变的主要气象因素.  相似文献   

6.
为了了解齐齐哈尔市大气细粒子PM2.5单颗粒的形貌、组成及粒度分布特征,选取齐齐哈尔市大学校园和商业市中心两个采样点,针对春季和秋季大气中PM2.5单颗粒,应用场发射扫描电镜(FESEM)和配带X射线能谱的扫描电镜(SEM-EDX)对其微观形貌和元素组成进行了研究。利用图像分析系统对其粒径分布进行统计。结果表明,此地区PM2.5颗粒分为4种类型,即烟尘集合体、飞灰、矿物颗粒和未知颗粒,分别来源于机动车尾气排放、煤炭等燃料燃烧及地壳扬尘。其中春季烟尘集合体数量最多,秋季由于燃煤以飞灰为主。来源于地壳扬尘的矿物颗粒以硅铝酸盐类和碳酸盐类矿物为主。此地区大气中PM2.5颗粒空气动力学直径约90%小于1.0μm,属大气细粒子。其中烟尘集合体平均粒径大于矿物颗粒,飞灰平均粒径最小。  相似文献   

7.
北京市交通扬尘对大气环境质量的影响   总被引:4,自引:0,他引:4  
利用中尺度气象模式ARPS与空气质量模式Models-3/CMAQ的耦合模式,模拟2002年4个季节代表月份(1月、4月、8月和10月)北京市PM10浓度的时空分布.与监测数据对比分析表明,该耦合模式有很好的可靠性.设计了2种污染源情景方案,分析了北京市2002年4个季节代表月份交通扬尘对市区大气PM10的影响.结果表明,在4个代表月中,交通扬尘对北京市PM10的逐时贡献率波动较大,最高可达33%,最低为3%;交通扬尘对北京市大气PM10影响显著,4个月平均贡献率分别为16.73%、12.92%、18.56%和18.17%,平均贡献浓度分别为27.61 μg/m3、32.80 μg/m3、25.20 μg/m3和24.40 μg/m3.此外,依据模拟结果,结合交通扬尘污染特征与治理现状,提出了北京市交通扬尘的初步治理方案.  相似文献   

8.
北京典型污染过程PM2.5的特性和来源   总被引:2,自引:0,他引:2  
通过采集北京2010年12月—2011年3月冬春季节大气细颗粒物PM2.5样品,分析了冬春季典型污染时段灰霾和沙尘期间大气细颗粒物PM2.5的质量浓度和其中元素、水溶性离子、有机组分OC和EC特性,及其季节变化和来源.结果表明,北京灰霾和沙尘期间PM2.5日均质量浓度分别高达301.8 μg/m3和284.8 μg/m3,是美国EPA PM2.5日均质量浓度限值(35 μg/m3)的8.62倍和8.14倍.灰霾时段,人为污染元素(S、Cu、Zn、As、Se、Cd、Sb、Pb)、二次无机离子(NH4+、NO3-、SO42-)和二次有机碳(SOC)的质量浓度均高于沙尘天气和非污染天气.沙尘天气时地壳元素(Na、Mg、Al、Ca、Fe等)的质量浓度高于灰霾天气和非污染天气.北京冬春季节PM2.5主要来源于燃煤和工业过程、二次转化、地面扬尘、机动车尾气和生物质燃烧.灰霾污染时段二次转化贡献率较高,沙尘污染时段地面扬尘贡献率较高.  相似文献   

9.
为了研究唐山市PM2.5理化特征及来源,分别于2012年7月和2013年1月对唐山市夏、冬季PM2.5样品进行了采集,应用电感耦合等离子体质谱仪(ICP-MS)、离子色谱仪(IC)和DRI碳质分析仪对PM2.5样品中化学组分元素、水溶性离子及有机碳和元素碳(OC/EC)进行了分析。应用CAMx-PSAT数值模型对采样时段PM2.5进行模拟,分析了夏、冬季PM2.5的主要来源。结果表明,唐山市PM2.5污染严重,夏、冬季质量浓度分别为国家环境II级标准的1.08倍和2.49倍。夏季PM2.5中二次组分质量浓度较高,占PM2.5总质量浓度的53.56%。SO2-4、NO-3和NH+4是PM2.5中重要的二次组分,占PM2.5质量浓度的31.49%~43.79%。一次组分中,矿物尘和POA占PM2.5质量浓度比例最高。唐山夏冬季节PM2.5未知组分比例分别为14.4%和24.86%。工业源是唐山市PM2.5污染的主要来源,夏、冬季节贡献率分别为74.1%和43.8%。由于居民燃煤采暖,冬季居民源对唐山市PM2.5贡献率增大。冬季唐山市主导风向为西北,外来源对PM2.5贡献率为31.2%;夏季主导风向为东南,外来源贡献率为15.0%。气象因素是导致外来源贡献季节变化的重要原因。  相似文献   

10.
当前,我国水陆交通事故严重,去年共发生事故约20多万起,死亡4万多人,受伤13万多人,经济损失2亿多元。今年上半年仍无根本好转。因此,有针对性地采取积极措施,改变这种严重局面,已成为迫在眉睫的重大问题。 造成水陆交通事故严重的原因是多方面的。 一是公路标准低,航道条件差,不能适应骤然增加的交通运输量。我国现有公路90多万公里,其中85%系简易公路和等外路,一级和二级公路仅1万多公里。干线公路和城市道路多属三级或四级公路,按国家标准规定,三级和四级公路每昼夜交通量分别为2,000车次和200车次。但现在城市繁华地段,进出口路段和干线…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号