首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Twenty trace elements in fine particulate matters (i.e., PM2.5) at urban Chengdu, a southwest megacity of China, were determined to study the characteristics, sources and human health risk of particulate toxic heavy metals. This work mainly focused on eight toxic heavy metal elements (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn). The average concentration of PM2.5 was 165.1 ± 84.7 µg m?3 during the study period, significantly exceeding the National Ambient Air Quality Standard (35 µg m?3 in annual average). The particulate heavy metal pollution was very serious in which Cd and As concentrations in PM2.5 significantly surpassed the WHO standard. The enrichment factor values of heavy metals were typically higher than 10, suggesting that they were mainly influenced by anthropogenic sources. More specifically, the Cr, Mn and Ni were slightly enriched, Cu was highly enriched, while As, Cd, Pb and Zn were severely enriched. The results of correlation analysis showed that Cd may come from metallurgy and mechanical manufacturing emissions, and the other metals were predominately influenced by traffic emissions and coal combustion. The results of health risk assessment indicated that As, Mn and Cd would pose a significant non-carcinogenic health risk to both children and adults, while Cr would cause carcinogenic risk. Other toxic heavy metals were within a safe level.  相似文献   

2.
PM2.5 has become an important environmental issue in Taiwan during the past few years. Moreover, electricity increased significantly during the summertime and TTPP generated by coal burning base is the main electricity provider in central Taiwan. Therefore, summer season has become the main research target in this study. The ambient air concentrations of particulate matter PM2.5 and PM10 collected by using VAPS at a mixed characteristic sampling site were studied in central Taiwan. The results indicated that the average daytime PM2.5 and PM10 particulate concentrations were occurred in May and they were 44.75 and 57.77 µg/m3 in this study. The results also indicated that the average nighttime PM2.5 and PM10 particulate concentrations were occurred in June and they were 38.19 and 45.79 µg/m3 in this study. The average PM2.5/PM10 ratios were 0.7 for daytime, nighttime and 24-h sampling periods in the summer for this study. This value was ranked as the lowest ratios when compared to the other seasons in previous study. Noteworthy, the results further indicated that the metallic element Pb has the mean highest concentrations for 24-h, daytime and nighttime sampling periods when compared to those of the other metallic elements (Ni, Cu, Zn and Cd). The average mean highest metallic Pb concentrations in PM10 were 110.7, 203.0 and 207.2 ng/m3 for 24-h, daytime and nighttime sampling periods in this study. And there were 59.53, 105.2 and 106.6 ng/m3 for Pb in PM2.5 for 24-h, daytime and nighttime sampling periods, respectively. Moreover, the results further indicated that mean metallic element Pb concentrations on PM2.5 and PM10 were all higher than those of the other elements for 24 h, day and nighttime.  相似文献   

3.
The paucity of data on air pollution indices in Nigeria prompted us to commence a national screening exercise regarding particulate matter loads. Six potential megacities (Aba, Abuja, Lagos, Kano, Maiduguri, and Port-Harcourt) representing the six geographical zones in Nigeria were chosen for the study. Sampling was achieved using a ‘Gent’ stacked filter unit sampler capable of collecting fractions of particulate matter with sizes of <10-μm and <2.5-μm simultaneously. The mean values for PM10 are 550, 35, 87, 340, 246 and 130 μg m?3 while for PM2.5 the mean values are 100, 14, 25, 67, 20 and 30 μg m?3 respectively for Aba, Abuja, Lagos, Kano, Maiduguri, and Port-Harcourt. Except for Abuja, the daily PM10 mass loads exceeded the World Health Organization (WHO) guidelines daily limit where as the PM2.5 values were within the WHO guideline limit. Their correlation matrix result indicates that some PM2.5 fractions mass fractions were strongly correlated than the PM10 fractions probably due to their long range transport potentials. Further work is in progress to determine the elemental profiles of both particulate fractions collected.  相似文献   

4.
Air pollution has a deleterious impact on public health and the environment. There is few knowledge on the effect of air pollution on terrestrial microbial communities, despite the major role of microbes in ecosystems. Here, we designed an in situ trial ecosystem to assess the impact of moderate atmospheric pollution, below World Health Organization (WHO) thresholds, on an indigenous microbial communities, including bacteria, fungi, ciliates, algae, cyanobacteria, testate amoebae, rotifers and nematodes, extracted from terrestrial bryophytes. These micro-ecosystems were placed at a rural, an urban and an industrial site in France and were thus exposed to various levels of nitrogen dioxide (NO2), from 6.6–67.9 μg·m?3, and particulate matter, from 0.7–7.9 μg·m?3. Microbial analysis was performed by microscopy. We determined atmospheric temperature, relative humidity and particulate matter with diameter lower than 10 µm (PM10), Cu, Cr, Fe, Ni, Pb, Zn in PM10, and (NO2). Results show a significant impact of chronic moderate exposure to NO2 and copper Cu-associated particulate matter on the global microbial network complexity. This is evidenced by a loss of about 40 % of microbial co-occurrence links during incubation. Most lost microbial links are ecologically positive links. Moreover, most changes in community co-occurrence networks are related to testate amoebae, a major top predator of microbes. Overall, our findings demonstrate that air pollution can have strong deleterious effects on microbial interactions, even at levels below WHO thresholds.  相似文献   

5.
Particulate matter concentrations were measured in an industrial region in the Ganjam district of Odisha. The average levels of suspended particulate matter (SPM) were measured to be 142 ± 8 and PM10 of particulate matter with a size of less than 10 micrometers (PM10) to be 50 ± 15 μg m?3. Out of the 14 elements determined, Ca, Na, Mg, Fe, and K contributed more than 95% of the total weight. In enrichment factors, the trace elements, i.e., Zn, Pb, Cd, and Hg were observed to be highly enriched in the SPM and PM10. Factor analysis indicates that more than 75% of the variance was due to five component factors, which have eigenvalues greater than 1. Intake of elements through inhalation route to adults has been estimated.  相似文献   

6.
Investigations on the fluctuation in PM10 air pollution in Volos, a medium-sized industrialized port city in the Mediterranean, are presented for the 5-year period between 2009 and 2014. The levels detected have been examined in relation to legislatively set limits, sampling year, and day of the week. A PM10 spring sampling campaign has been performed in 2014 and metals and other elements in the PM10 mass have been quantified. Source origin has been attempted for the latter sampling campaign and human health risk has been assessed. Results show compliance with the mean annual value of 40 μg m?3 of 2008/50/EC for the city; however, exceedances of the daily quality standard of 50 μg m?3 were frequently recorded. Shifts in PM10 concentrations and in contributing sources have been recorded; nevertheless, longer duration data series are needed for safe deductions. Element measurements have enabled source identification for early summer of 2014, with Earth's crust minerals and anthropogenic sources being the main factors. Cumulative non-carcinogenic risk may exceed the threshold value of 1. Possible involvement of sea salt aerosol and desert dust long-range transport has also been assessed. These results may furnish databases on PM pollution of Greek cities as well as other Mediterranean urban centers with similar characteristics.  相似文献   

7.
This is the first report on Pb in medicinal herbs from Jordan. Medicinal herbs may present a health risk due to the presence of toxic metals. Seventy-nine dry medicinal plant samples were collected from herbalist shops in Jordan. The plants were digested with acids and analyzed for total Pb concentration using atomic absorption spectrometry. Mean Pb concentration was 15.9 μg/g on a dry weight basis. Our results show that Pb concentrations in Jordan medicinal plants are higher than published data in other countries. The highest level of 33.4 μg Pb/g was determined in Inula viscosa, and the lowest level of 3.0 μg Pb/g was found in Nigella sativa. Calculated daily intakes of Pb of most analyzed herbs were high; most of them are higher than recommended values by the world health organization (WHO). Fortunately, the herbs that contain the highest Pb levels are the less commonly used medicinal herbs in Jordan. The mean Pb levels in the most commonly, commonly and less commonly used herbs in Jordan are 13.9, 13.1 and 16.9 μg Pb/g, respectively. The average dietary intake of Pb through a mixture of these medicinal herbs consumption, assuming 5.0 g herbs is consumed daily, is 79.5 μg Pb/day, which is higher than the maximum daily limit allowed by WHO. We conclude that most of the medicinal plants consumed in Jordan contain significant amount of Pb, and therefore, people of Jordan should not consume large amounts of these herbs.  相似文献   

8.
The estimated daily intakes (EDIs) of six trace elements (Cu, Zn, Pb, Cd, Hg, and As) in vegetables (leafy vegetable, i.e., bok choy, fruit vegetables, i.e., cucumber and tomato, and other categories, i.e., mushroom, kidney bean, and potato), cereals (rice and wheat flour), and meats (pork, mutton, and beef) most commonly consumed by adult inhabitants of Qiqihar, Northeastern China, were determined to assess the health status of local people. The average EDIs of Cu, Zn, Pb, Cd, Hg, and As were with 20.77 μg (kg bw)?1 day?1 of Cu, 288 μg (kg bw)?1 day?1 of Zn, 2.01 μg (kg bw)?1 day?1 of Pb, 0.41 μg (kg bw)?1 day?1 of Cd, 0.01 μg (kg bw)?1 day?1 of Hg, and 0.52 μg (kg bw)?1 day?1 of As, respectively, which are below the daily allowance recommended by FAO/WHO. However, the maximum EDIs of Pb and Cd were 4.56 μg (kg bw)?1 day?1 and 1.68 μg (kg bw)?1 day?1, respectively, which are above the recommended levels [i.e., 3.58 μg (kg bw)?1 day?1 for Pb and 1.0 μg (kg bw)?1 day?1 for Cd] by FAO/WHO. This finding indicates that the potential health risk induced by daily ingestion of Pb and Cd for the local residents should receive a significant concern. Similarly, we detected elevated Pb and Cd concentrations, i.e., with average of 13.58 and 0.60 mg kg?1 dw, respectively, in the adult scalp hairs. Consumption of rice, potato, bok choy, and wheat flour contributed to 75 and 82% of Pb and Cd daily intake from foodstuffs. Nevertheless, human scalp hair is inappropriate biological material for determination of the nutritional status of trace elements in this region.  相似文献   

9.
The mullet fish, Liza klunzingeri, commercially important and widely relished by Kuwaiti residents, and the stressed ecosystem in Kuwait Bay instigated us to conduct toxicity and bioaccumulation tests on heavy metals (Pb, Ni, V, Cu and Fe). Among five metals, Pb had the lowest observed effect concentration (LOEC) at 1 μg?l ?1. Using multi-factor Probit analysis, toxicity tests (72 h) on L. klunzingeri reared in filtered sea water in the laboratory showed Pb with maximum effect at median lethal concentration (LC50) followed by V, Ni, Cu and Fe. Their bioaccumulation factor (BAF) was in the sequence Pb>V>Fe>Cu and Ni. For fish exposed for 30 d, bioaccumulation exhibited increasing metal levels in liver followed by gills and muscles. These results suggest the potential use of L. klunzingeri as a bioindicator of metal pollution in the future.  相似文献   

10.
Air quality in an urban atmosphere is regulated by both local and distant emission sources. For air quality management in urban areas, identification of sources and their relationships with local meteorology and air pollutants are essential. The critical condition of air quality in Indo-Gangetic plain is well known, but lack of data on both local and distant emission sources limits the scope of improving air quality in this region. Concentrations of particulate matter of size lower than 10 μm (PM10) were assessed in the highly urbanized Varanasi city situated in middle Indo-Gangetic plain of India from 2014 to 2017, to identify the distant air pollution sources based on trajectory statistical models and local sources by conditional bivariate probability function. Modifying effects of meteorology and air pollutants on PM10 were also explored. Mean PM10 concentration for the study period was 244.8 ± 135.8 μg m?3, which was 12 times higher than the WHO annual guideline. Several distinct sources of traffic as the major source of PM10 were identified in the city. Trajectory statistical models like cluster analysis, potential source contribution function and concentration-weighted trajectory showed significant contributions from north-west and eastern directions in the transport of polluted air masses to the city. Dew point, wind speed, temperature and ventilation coefficient are the major factors in PM10 formation and dispersion.  相似文献   

11.
The highly populated Indian regions are currently in a phase of rapid economic growth resulting in high emissions of carbonaceous aerosols. This leads to poor air quality and impact on climate. The chemical composition of carbonaceous aerosols has rarely been studied in industrial areas of India. Here, we investigated carbonaceous aerosols in particulate matter (PM) monthly in the industrial area of Delhi in 2011. The concentrations of organic C and elemental C in PM10 fraction were analyzed. Results show a clear seasonal variability of organic and elemental C. PM10 ranged 95.9–453.5 μg m?3, organic C ranged 28.8–159.4 μg m?3, and elemental C ranged 7.5–44.0 μg m?3; those values were higher than reported values. Organic and elemental C were correlated with each other in pre-monsoon and winter seasons, implying the existence of similar emission sources such as coal combustion, biomass burning and vehicular exhaust. The annual average contribution of total carbonaceous aerosols in PM10 was estimated as 62 %.  相似文献   

12.
The concentrations of suspended particulate matter in the air of the Orissa Sand Complex had an average value of 128 ± 10 µg m?3 in residential areas and 170 ± 8 µg m?3 in mining areas. PM10 levels in residential areas were found to have an average of 35 ± 10 µg m?3, in mining areas 45 ± 10 µg m?3. The distribution of some elements is also discussed here. Inhalation doses were observed to be higher in summer than in winter and the rainy season. The highest dose rate was for the age group of 1 year, and health risks were found to be highest for the same. For adults, inhalation dose and health risk are 1.3 times higher in mining than in residential areas.  相似文献   

13.

Intense mining, smelting, and tailing activities of polymetallic ore deposits have affected the environment in Nandan County, Guangxi, China. Samples of particulates with aerodynamic diameters low or equal 10 μm (PM10) were collected in Nandan County to investigate the concentrations of and health risks posed by 17 metals and metalloids in the PM10. The metal and metalloid concentrations were lower than those found in other industrial cities. The mean Cr concentration was 7.48 ng/m3. Significant higher metal and metalloid concentrations were found in PM10 from mining areas (Dachang and Chehe) than from the control area (Liuzhai) (p < 0.05). Principal component analysis indicated that the main sources of Ba, Co, Cr, Fe, K, Mg, Mo, Na, and Sr were resuspension of the soil produced through mineral erosion, the main sources of As, Cd, Cu, Pb, Sb, and Zn were smelting and mining activities, and the main source of Ni was fossil fuel combustion. Higher non-carcinogenic and carcinogenic risks were posed in Dachang and Chehe than in Liuzhai. The non-carcinogenic risks posed to adults and children by individual metals and metalloids in PM10 at all the sites were low, but the non-carcinogenic risks posed to children by all the metals and metalloids together exceeded the safe level (i.e., risk value > 1). The carcinogenic risks posed by Cd, Ni, and Pb were negligible at all sites, while As, Co, and Cr posed potential carcinogenic risks to the residents.

  相似文献   

14.
To assess the exposure doses of PM2.5 and to investigate its chemical components for the subpopulation (i.e., school children and industrial downwind residents), simultaneous sampling of indoor and outdoor PM2.5 was conducted at an elementary school close to traffic arteries and a residence located in the downwind area of a steel plant in metropolitan Guangzhou in 2010. Chemical components, i.e., organic carbon, elemental carbon and 6 water soluble ions were analyzed in PM2.5. A survey was also conducted to investigate the time-activity patterns of the school children and the industrial downwind residents. Indoor and outdoor PM2.5 were 63.2 ± 20.1 and (76.7 ± 35.8) μg/m3 at the school, and 118.8 ± 44.7 and 125.7 ± 57.1 μg/m3 in the community, respectively. Indoor PM2.5 was found to be highly related to outdoor sources, and stationary sources were the significant contributors to PM2.5 at both sites. The daily average doses of PM2.5 for the school children at the school (D children) and the industrial downwind residents in the community (D residents) were (7.6 ± 1.9) and (36.1 ± 36.8) μg/kg-day, respectively. The daily average doses of particulate organic mass and SO4 2? were the two most abundant chemical components in PM2.5. PM2.5 exposure for the school children was contributed by indoor and outdoor environments by 48.8 and 51.2 %, respectively; for the industrial downwind residents, the contributions were 66.0 and 34.0 %, respectively. Age and body weight were significantly and negatively correlated with D children, while age, body weight and education level were significantly and negatively correlated with D residents; gender was not a significant factor at both cases.  相似文献   

15.
An assessment of air quality of Belgrade, Serbia, was performed by determining the trace element content in airborne daily PM10 and PM2.5 samples collected from a central urban area. The ambient concentrations of Zn were the highest in PM2.5 (1,998.0 ng m−3). Multivariate receptor modelling (principal component analysis and cluster analysis) has been applied to determine the contribution of different sources of specific metallic components in airborne particles. The obtained results showed that vehicle traffic and fossil fuel combustion in stationary objects were the main sources of trace metals in Belgrade urban aerosols.  相似文献   

16.
The objective of this research was to investigate the effects of biosolids on the competitive sorption and lability of the sorbed Cd, Cu, Ni, Pb, and Zn in fluvial and calcareous soils. Competitive sorption isotherms were developed, and the lability of these metals was estimated by DTPA extraction following their sorption. Sorption of all metals was higher in the fluvial than in the calcareous soil. Sorption of Cu and Pb was stronger than that of Cd, Ni, and Zn in all soils. Biosolids application (2.5%) reduced the sorption of all metals especially Cu and Pb (28–43%) in both soils (especially the calcareous soil) at the lower added metal concentrations (50 and 100 mg L?1). However, it increased the sorption of all metals especially Pb and Cu in both soils (especially the calcareous soil; 15.5-fold for Cu) at the higher added concentrations (250 and 300 mg L?1). Nickel showed the highest lability followed by Cd, Zn, and Pb in both soils. Biosolids increased the lability of the sorbed Ni in the fluvial soils at all added concentrations and the lability of Cd, Pb, and Zn at 50 mg L?1, but decreased the lability of Cd, Pb, and Zn at 250 and 300 mg L?1 in both soils. We conclude that at low loading rate (e.g., 50 mg L?1) biosolids treatment might increase the lability and environmental risk of Cd, Cu, Pb, and Zn. However, at high loading rate (e.g., 300 mg L?1) biosolids may be used as an immobilizing agent for Cd, Cu, Pb, Zn and mobilizing agent for Ni.  相似文献   

17.
The pollution characteristics of PM2.5 and correlation analysis with meteorological parameters in Xinxiang during the Shanghai Cooperation Organization Prime Ministers’ Meeting were investigated. During the whole meeting, nine PM2.5 samples were collected at a suburban site of Xinxiang, and the average concentration of PM2.5 was 122.28 μg m?3. NO3 ?, NH4 +, SO4 2? accounted for 56.8% of the total water-soluble ions. In addition, with an exception of Cl?, all of water-soluble ions decreased during the meeting. Total concentrations of crustal elements ranged from 6.53 to 185.86 μg m?3, with an average concentration of 52.51 μg m?3, which accounted for 82.5% of total elements. The concentrations of organic carbon and elemental carbon were 7.71 and 1.52 μg m?3, respectively, lower than those before and after the meeting. It is indicated that during the meeting, limiting motor vehicles is to reduce exhaust emissions, delay heating is to reduce the fossil fuel combustion, and other measures are to reduce the concentration of PM2.5. The directly dispersing by mixing layerheight increase and the indirectly reducing the formation of secondary aerosol by low relative humidity, andthese are the only two key removing mechanisms of PM2.5 in Xinxiang during the meeting.  相似文献   

18.
Over the past decade, ambient air particulate matter (PM) has been clearly associated with adverse health effects. In Brazil, small and poor communities are exposed to indoor dust derived from both natural sources, identified as blowing soil dust, and anthropogenic particles from mining activities. This study investigates the physicochemical and mineralogical composition of indoor PM10 dust samples collected in Minas Gerais, Brazil, and evaluates its cytotoxicity and inflammatory potential. The mean PM10 mass concentration was 206 μg/m3. The high dust concentration in the interior of the residences is strongly related to blowing soil dust. The chemical and mineralogical compositions were determined by ICP-OES and XRD, and the most prominent minerals were clays, Fe-oxide, quartz, feldspars, Al(hydr)oxides, zeolites, and anatase, containing the transition metals Fe, Cr, V, Ni, Cu, Zn, Ti, and Mn as well as the metalloid As. The indoor dust samples presented a low water solubility of about 6 %. In vitro experiments were carried out with human lung alveolar carcinoma cells (A549) to study the toxicological effects. The influence of the PM10 dust samples on cell viability, intracellular formation of reactive oxygen species (ROS), and release of the pro-inflammatory cytokine IL-8 was analysed. The indoor dust showed little effects on alamarBlue reduction indicating unaltered mitochondrial activity. However, significant cell membrane damage, ROS production, and IL-8 release were detected in dependence of dose and time. This study will support the implementation of mitigation actions in the investigated area in Brazil.  相似文献   

19.
Mine wastes and tailings are considered hazardous to human health because of their potential to generate large quantities of highly toxic emissions of particulate matter (PM). Human exposure to As and other trace metals in PM may occur via inhalation of airborne particulates or through ingestion of contaminated dust. This study describes a laboratory-based method for extracting PM2.5–10 (coarse) and PM2.5 (fine) particles from As-rich mine waste samples collected from an historical gold mining region in regional, Victoria, Australia. We also report on the trace metal and metalloid content of the coarse and fine fraction, with an emphasis on As as an element of potential concern. Laser diffraction analysis showed that the proportions of coarse and fine particles in the bulk samples ranged between 3.4–26.6 and 0.6–7.6 %, respectively. Arsenic concentrations were greater in the fine fraction (1680–26,100 mg kg?1) compared with the coarse fraction (1210–22,000 mg kg?1), and Co, Fe, Mn, Ni, Sb and Zn were found to be present in the fine fraction at levels around twice those occurring in the coarse. These results are of particular concern given that fine particles can accumulate in the human respiratory system. Our study demonstrates that mine wastes may be an important source of metal-enriched PM for mining communities.  相似文献   

20.
Fine particulate matter (PM2.5) levels, carbon dioxide (CO2) levels and particle-number concentrations (PNC) were monitored in train carriages on seven routes of the mass transit railway in Hong Kong between March and May 2014, using real-time monitoring instruments. The 8-h average PM2.5 levels in carriages on the seven routes ranged from 24.1 to 49.8 µg/m3, higher than levels in Finland and similar to those in New York, and in most cases exceeding the standard set by the World Health Organisation (25 µg/m3). The CO2 concentration ranged from 714 to 1801 ppm on four of the routes, generally exceeding indoor air quality guidelines (1000 ppm over 8 h) and reaching levels as high as those in Beijing. PNC ranged from 1506 to 11,570 particles/cm3, lower than readings in Sydney and higher than readings in Taipei. Correlation analysis indicated that the number of passengers in a given carriage did not affect the PM2.5 concentration or PNC in the carriage. However, a significant positive correlation (p < 0.001, R 2 = 0.834) was observed between passenger numbers and CO2 levels, with each passenger contributing approximately 7.7–9.8 ppm of CO2. The real-time measurements of PM2.5 and PNC varied considerably, rising when carriage doors opened on arrival at a station and when passengers inside the carriage were more active. This suggests that air pollutants outside the train and passenger movements may contribute to PM2.5 levels and PNC. Assessment of the risk associated with PM2.5 exposure revealed that children are most severely affected by PM2.5 pollution, followed in order by juveniles, adults and the elderly. In addition, females were found to be more vulnerable to PM2.5 pollution than males (p < 0.001), and different subway lines were associated with different levels of risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号