共查询到18条相似文献,搜索用时 125 毫秒
1.
为了研究不同形状障碍物对瓦斯爆炸传播的影响机理,对直径0.2 m、长6.5 m的密闭直管道内的瓦斯爆炸过程进行数值模拟。研究结果表明:在该实验条件下,对于火焰通过整个管道的时间,方形障碍物时间最长,球形障碍物与无障碍物时间接近,且用时最短;无障碍物时,在反射压力波作用下火焰传播速度存在明显的波动特性;有障碍物时,障碍物的诱导作用要大于反射压力波的作用,火焰传播的这种波动特性得到抑制,提升了火焰前锋向未燃区域传播的能力;压力波的波动频率与气流震荡、压力波反射叠加有关,波幅则主要与正向压力波和反射压力波的叠加效果有关。研究结果为煤矿瓦斯爆炸事故防治及隔抑爆技术应用提供技术支撑。 相似文献
2.
为探索瓦斯爆炸过程中温度变化规律,基于球形爆炸实验,研究不同初始瓦斯浓度条件下爆炸温度及爆炸温度与爆炸压力之间的相互作用关系。结果表明:随初始瓦斯浓度升高,在6.5%(低浓度)、9.5%(当量浓度)、12%(高浓度)时出现爆炸温度极大值,分别为995,932,1 153 K;爆炸过程中温度延迟时间及升温时间与初始瓦斯浓度曲线均呈U型变化,当初始瓦斯浓度约为9.5%(当量浓度)时,温度延迟时间及升温时间变化较小;当初始瓦斯浓度在爆炸上限浓度(16%)和下限浓度(5%)附近时,受瓦斯浓度影响变化较大;初始瓦斯浓度在9.5%时,瓦斯爆炸过程中的压力波促进火焰燃烧波的反向传播,出现二次升温现象。研究结果可为完善瓦斯爆炸温度变化机理、提高灾害防控技术提供依据。 相似文献
3.
司荣军 《中国安全科学学报》2008,18(10)
基于连续相、燃烧、颗粒相数理方程建立瓦斯煤尘爆炸传播数理模型,并应用连续相、颗粒相计算方法,依据大型巷道瓦斯爆炸、瓦斯煤尘爆炸传播实验数据,借助普遍应用的流场模拟平台,成功开发瓦斯、煤尘爆炸数值模拟系统。该系统可有效地模拟煤矿瓦斯、煤尘的爆炸事故过程,对瓦斯爆炸的爆燃转爆轰、煤尘是否参与爆炸、爆炸冲击传播速度、衰减规律以及爆炸灾害的波及范围都能进行较准确的模拟。 相似文献
4.
为研究高海拔矿井瓦斯爆炸火焰传播规律,运用数值模拟方法,建立矿井掘进巷道瓦斯气体爆炸数学及物理模型,并对海拔高度为0,1 000,2 000,3 000,4 000 m时的爆炸火焰传播速度、温度和冲击波压力进行研究。结果表明:瓦斯浓度和聚集体积量一定的掘进巷道发生瓦斯爆炸时,随着海拔高度的升高,火焰传播速度增大,且海拔每升高1 000 m,瓦斯气体聚集区和非聚集区的平均火焰传播速度分别增大4.7%和1.9%,掘进巷道内同一位置受到的瓦斯爆炸火焰最高冲击波压力随着海拔高度增加而显著降低,且呈二次函数关系,达到最大冲击波压力和最高火焰温度的时间缩短,最高爆炸火焰温度受海拔高度的影响较小。 相似文献
5.
6.
瓦斯爆炸传播过程中障碍物激励效应的数值模拟 总被引:1,自引:0,他引:1
笔者对瓦斯爆炸传播过程中的障碍物的激励效应的物理机制进行了分析 ,并构建了相应的物理模型 ,设计了 3种情况下 ,对冲击波经过障碍物附近时的变化特征进行了数值模拟。结论表明 ,非燃烧区的障碍物同样存在激励效应 ,激励效应取决于瓦斯爆炸冲击波的初始强度 ,即爆轰状态激励效应最为强烈。 相似文献
7.
9.
瓦斯爆炸过程中火焰传播的实验与数值模拟研究 总被引:1,自引:0,他引:1
为了研究矿井瓦斯爆炸火焰发展过程中结构与参数的动态变化特征,建立小尺寸管道气体爆炸实验平台,结合高速纹影摄影技术,探测了不同浓度的甲烷-空气预混气体火焰在管道内传播的结构变化特性,并得出速度变化特征曲线。同时建立相应的数学模型和物理模型,通过模拟实验研究管道内气体爆炸反应过程中火焰传播速度变化过程,计算图像和实验图像走向趋向一致。 相似文献
10.
为了研究大尺寸通风管网中的瓦斯爆炸传播规律,采用数值模拟方法,针对具有不同障碍物数量的大尺寸通风管网模型,利用Fluent分析管网中各个监测点的超压变化曲线以及障碍物附近的速度矢量图,分析爆炸冲击波传播规律。研究结果表明:初期瓦斯爆炸后,障碍物的存在改变了通风管网内未燃瓦斯的积聚区域;高温和高压发生耦合作用,在氧气相对充足的进气管道中形成二次爆炸;障碍物与火焰波以及管网自身结构变化等多种因素形成复合作用,改变了通风管网内瓦斯爆炸冲击波的传播路径和叠加区域的位置;无障碍物时高压区域出现在进气管道中,有障碍物时高压区域出现在中部直管与斜管的交汇处附近,且数值相对较大。 相似文献
11.
瓦斯爆炸过程中火焰瞬时传播规律研究 总被引:1,自引:2,他引:1
在改善后的瓦斯爆炸试验条件下,为了得到任意位置的火焰传播速度,对火焰通过各传感器所处的位置与其对应时间进行统计分析,发现可以用二次抛物线方程来表达火焰传播距离与其对应时间之间的关系,由此推导火焰瞬时传播速度随管道位置变化的关系式,得到管道任意位置及任意时刻的火焰速度计算公式。研究发现:瓦斯爆炸火焰传播运动过程近似于匀加速直线运动过程;当加螺旋环时火焰传播过程接近于匀速直线运动。随着管道长度的不断增大,火焰瞬时速度不断增加,但增加的幅度越来越小,当管道长度达到某值后,火焰速度将趋于某一定值。煤矿井下可根据各点计算得出的火焰速度大小,采用相应的预防措施,减少瓦斯爆炸造成的损失。 相似文献
12.
瓦斯爆炸引起沉积煤尘爆炸传播实验研究 总被引:3,自引:1,他引:3
运用井下大型实验巷道对瓦斯爆炸诱导沉积煤尘爆炸进行实验研究,并对几次实验结果进行对比分析。通过对爆炸压力以及火焰产生、发展、传播过程进行的分析,得出瓦斯爆炸引起沉积煤尘爆炸过程中压力波存在回传现象;在煤尘刚开始参与爆炸处,爆炸超压有一个较长的持续时间;爆炸火焰的传播速度在铺有煤尘段迅速上升,最后有一平缓的上升阶段,过了煤尘段开始下降;火焰区长度约为煤尘区长度的2倍等规律。实验研究发现的规律为有效的预防瓦斯煤尘爆炸事故提供了理论依据。 相似文献
13.
14.
小型管道中瓦斯爆炸火焰传播特性的实验研究 总被引:2,自引:7,他引:2
自行设计了内径88mm、壁厚6mm、总长1600mm、点火孔20mm的小型瓦斯爆炸实验管道,结构简单、操作方便,具有可观察性。采用高速摄录分析系统,对不同浓度瓦斯爆炸初期火焰传播特性进行了实验研究。结果表明:瓦斯爆炸初始阶段,火源引爆瓦斯到形成明显的、大强度的火焰传播的时间约为10~30ms;随着瓦斯浓度增大,爆炸感应期逐渐变短;瓦斯爆炸的火焰传播有一个突变过程,瓦斯浓度越大,达到突变的时间越短;当燃烧波在开始移动到5~10倍巷道宽度距离后,便开始明显加速,达到爆燃;当瓦斯爆炸火焰冲出管道时,爆炸火焰速度又一次加快。实验结果验证了该实验台研究瓦斯爆炸是可行的。 相似文献
15.
To study the occurrence conditions and propagation characteristics of deflagration to detonation transition (DDT) in linked vessels, two typical linked vessels were investigated in this study. The DDT of the methane–air mixture under different pipe lengths and inner diameters was studied. Results showed that the CJ detonation pressure of the methane–air mixture was 1.86 MPa, and the CJ detonation velocity was 1987.4 m/s. Compared with a single pipe, the induced distance of DDT is relatively short in the linked vessels. With the increase in pipeline length, DDT is more likely to occur. Under the same pipe diameter, the DDT induction distance in the vessel–pipe–vessel structure is shorter than that in the vessel–pipe structure. With the increase in pipeline diameter, the length of the pipe required to form the DDT is reduced. For linked vessels in which detonation formed, four stages, namely, slow combustion, deflagration, deflagration to detonation, and stable detonation, occurred in the vessels. Moreover, for a pipe diameter of 60 mm and a length of 8 m, overdriven detonation occurred in the vessel–pipe–vessel structure. 相似文献
16.
巷道中瓦斯爆炸诱导激波传播特性研究 总被引:2,自引:1,他引:2
利用AutoReaGas软件,数值模拟巷道中瓦斯浓度和火源对瓦斯爆炸传播的影响,其计算结果表明:爆炸静态超压随着传播距离的增加而减小,而爆炸动压随着传播距离的增加而增大;点火位置距离巷道封闭端越近,各测点得到的爆炸静态超压值越大;瓦斯浓度对爆炸峰值超压影响显著,当浓度为9.5%的氧化反应当量比浓度时,得到的最大峰值超压为70.95kPa,爆炸威力最大。 相似文献
17.
矿井瓦斯爆炸传播的尺寸效应研究 总被引:17,自引:7,他引:17
基于瓦斯爆炸传播过程的理论分析 ,确定了表征瓦斯爆炸传播过程的主要物理参数 ;通过在两条巷道中进行了瓦斯爆炸传播的对比实验 ,指出了瓦斯爆炸传播过程的尺寸效应存在的原因。笔者认为 :因为巷道支护设备使巷道有效面积的减少和壁面粗糙度的变化 ,尺寸效应使大断面巷道在可比条件下 ,发生瓦斯爆炸时 ,爆炸波的火焰、压力、冲量等在更大范围内形成破坏和伤害 相似文献
18.
借助高速摄像机及ProAnalyst软件,研究可燃气体体积分数和障碍物对可燃气体爆炸破坏力的影响。测定不同体积分数下的甲烷-空气预混气体爆炸冲击波超压,和爆炸火焰波在有无乒乓球方向传播的平均速度。试验结果表明:超压和平均速度均随着甲烷体积分数的增加呈现先增大后减小的变化趋势,其最大值均出现在甲烷体积分数为10%~11%之间;同一体积分数下的甲烷-空气预混气体爆炸火焰波在有乒乓球方向传播的平均速度比没有乒乓球方向传播的平均速度大。根据试验结果,推导出可燃气体爆炸冲击波超压和爆炸火焰波传播平均速度与可燃气体体积分数之间的函数关系,并得出障碍物对爆炸火焰波传播的加速作用随着体积分数的增加呈现先加强后减弱的变化趋势。 相似文献