首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang F  Goulet RR  Chapman PM 《Chemosphere》2004,57(11):1713-1724
The freshwater amphipod, Hyalella azteca, is widely used in laboratory sediment toxicity and bioaccumulation tests. However, its responses in the laboratory are probably very different from those in the field. A review of the literature indicates that in its natural habitat this species complex is primarily epibenthic, derives little nutrition from the sediments, and responds primarily to contaminants in the overlying water column (including water and food), not sediment or porewater. In laboratory sediment toxicity tests H. azteca is deprived of natural food sources such as algal communities on or above the sediments, and is subjected to constant light without any cover except that afforded by burial into the sediments. Under these constraining laboratory conditions, H. azteca has been reported to respond to sediment or porewater contamination. In nature, contamination of overlying water from sediment is less likely than in the laboratory because of the large, generally non-static sink of natural surface water. H. azteca does not appear to be the most appropriate test species for direct assessments of the bioavailability and toxicity of sediment contaminants, though it is probably appropriate for testing the toxicity of surface waters. Toxic and non-toxic responses will be highly conservative, though the latter are probably the most persuasive given the exposure constraints. Thus H. azteca is probably a suitable surrogate species for determining sediments that are likely not toxic to field populations; however, it is not suitable for determining sediments that are likely toxic to field populations.  相似文献   

2.
Rapid screening methods can improve the cost effectiveness, throughput, and quality of risk assessments of contaminated sites. In the present case study, the objective was to evaluate a combination of pressurized liquid extraction and 2 in vitro bioassays for the hazard assessment of surface soil sampled from 46 points across a pyrotechnical industrial site. Pressurized liquid extraction was used to rapidly produce soil-water extracts compatible with 2 high-capacity bioassays. Hazard assessment using combined toxicological and chemical screening revealed zones with relatively high potential risks of metal pollution. Multivariate data analysis provided indications that significant inhibition in the bioassays was correlated with levels of metals in the extracts, suggesting an elevated toxic potential from certain metals. Low pH and high concentrations of dissolved organic carbon were associated with increased cytotoxicity of extracts, indicating that these factors influence metal bioavailability. The cytotoxicity observed was more strongly correlated to metal concentrations in the extracts than in the soil, suggesting that measurements of total metal concentrations in soils do not provide good indications of the soil's potential toxicity.  相似文献   

3.

Background, aim, and scope  

Freshwater reservoirs can be impacted by several hazardous substances through inputs from agricultural activity, sewage discharges, and groundwater leaching and runoff. The water quality assessment is very important for implementation of the monitoring and remediation programs to minimize the risk promoted by hazardous substances in aquatic ecosystems. Evaluation of the degree of contamination of aquatic environments must not take in account only its chemical characterization but it must be complemented with biological assays, which determine potential toxic effects and allows an integrated evaluation of its effects in populations and aquatic ecosystem communities. The application of this type of strategy has clear advantages allowing a general evaluation of the effects from all the water components, including those due to unknown substances and synergic, antagonistic, or additive effects. There are only a few studies that reported ecotoxicological acute end points, for the assessment of surface water quality, and the relationship among toxicity results and the anthropogenic pollution sources and the seasonal period. The aim of this study was to assess the ecotoxicological characterization of the surface water from Alqueva reservoir (South of Portugal) and to evaluate the influence of anthropogenic sources of pollution and their seasonal variation in its toxicity. The construction of Alqueva reservoir was recently finished (2002) and, to our knowledge, an ecotoxicological assessment of its surface water has not been performed. Because of that, no information is available on the possible impact of pollutants on the biota. The surface water toxicity was assessed using acute and chronic bioassays. The results are to be used for developing a monitoring program, including biological methods.  相似文献   

4.
The Athabasca oil sands of Alberta, Canada contain an estimated 174 billion barrels of bitumen. During oil sands refining processes, an extraction tailings mixture is produced that has been reported as toxic to aquatic organisms and is therefore collected in settling ponds on site. Investigation into the toxicity of these tailings pond waters has identified naphthenic acids (NAs) and their sodium salts as the major toxic components, and a multi-year study has been initiated to identify the principal toxic components within NA mixtures. Future toxicity studies require a large volume of a NA mixture, however, a well-defined bulk extraction technique is not available. This study investigated the use of a weak anion exchanger, diethylaminoethyl-cellulose (DEAE-cellulose), to remove humic-like material present after collecting the organic acid fraction of oil sands tailings pond water. The NA extraction and clean-up procedure proved to be a fast and efficient method to process large volumes of tailings pond water, providing an extraction efficiency of 41.2%. The resulting concentrated NA solution had a composition that differed somewhat from oil sands fresh tailings, with a reduction in the abundance of lower molecular weight NAs being the most significant difference. This reduction was mainly due to the initial acidification of tailings pond water. The DEAE-cellulose treatment had only a minor effect on the NA concentration, no noticeable effect on the NA fingerprint, and no significant effect on the mixture toxicity towards Vibrio fischeri.  相似文献   

5.
Background, Aim and Scope The article is focused on dioxin, furan, PCB and organochlorine pesticide monitoring in the surface waters of the Central European, protected natural reserve Krivoklatsko, under the UNESCO programme Man and Biosphere. Persistent compounds are presently transported via different means throughout the entire world. This contamination varies significantly between sites. This raises the question of what constitutes the naturally occurring background levels of POPs in natural, unpolluted areas, but which are close to industrialised regions. Information of real background POP contamination can be of high value for risk assessment management of those sites evidently polluted and for the defining of de-contamination limits. Preserved areas should not be seen as isolated regions in which the impacts of human activities and natural factors are either unexpected or overlooked. Every ambient region, even those protected by a law or other means, are still closely connected to neighbouring human developed and impacted areas, and are therefore subject to this anthropogenic contamination. These areas adjacent to natural reserves are sources of diverse substances, via entry of air, water, soil and/or biota. After an extended period of industrial activities, organochlorine pollutants, even those emitted in trace concentrations have reached detectable levels. For future research and for the assessment of environmental changes, present levels of contamination would be of high importance. This work publishes data of the contamination with organochlorine pollutants of this natural region, where biodiversity and ecological functions are of the highest order. Materials and Methods: Semipermeable membrane devices (SPMDs) were utilised as the sampling system. SPMDs were deployed in two small creeks and one water reservoir selected in the central part of the Krivoklatsko Natural Reserve, where it could be expected that any possible contamination by POPs would be lowest. The exposed SPMDs were analysed both for chemical contents of POPs and for toxicity properties. The chemical analyses of dibenzo-dioxins, dibenzo-furans, PCBs and OCPs were analysed by GC/MS/MS on GCQ or PolarisQ (Thermoquest). Toxicity bioassays were performed on the alga Desmodesmus subspicatus, bacteria Vibrio fischeri and crustacean Daphnia magna. All toxicity data were expressed as the effective volume Vtox. Vtox is a toxicity parameter, the determination of which is independent of SPMD deployment time and pre-treatment dilution (unlike, for example, the EC50 of the SPMD extract). Results: The following chemical parameters were monitored: 1) tetra, penta, hexa and hepta dibenzo-p-dioxins and furans; 2) all those detectable from tri- through deca-polychloriated biphenyls (PCBs) and 3) a group of organochlorine pesticides: hexachlorobenzene and isomers of hexachlorocyclohexane, DDE, DDD and DDT. The concentrations of dioxins and furans on the assessed sites varied from under detection levels up to 7 pg.l-1; PCBs were detected in a sum concentration up to 2.8 ng.l-1; and organochlorine pesticides up to 346 pg.l-1. The responses of bioassays used were very low, with the values obtained for Vtox being under 0.03 l/d. Discussion: Toxicity testing showed no toxicity responses, demonstrating that the system used is in coherence with the ecological status of the assessed sites. Values of Vtox were under the critical value – showing no toxicity. The PCA of chemical analysis data and toxicity responses resulted in no correlations between these two groups of parameters. This demonstrated that the present level of contamination has had no direct adverse effects on the biota. Conclusions: The concentration values of six EPA-listed, toxic dioxins and sums of tetra-hepta dioxins; nine EPA toxic dibenzofurans and the sums of tetra-hepta bibenzofurans are presented together with all tri-deka PCBs and organochlorine pesticides (alfa-, beta-, gama-, delta-HCH, HCB, opDDE, ppDDE, opDDD, ppDDD, opDDT, ppDDT). These values represent possible current regional natural background values of these substances monitored within the Central European region, with no recorded adverse effects on the freshwater ecosystem (up until the present time). Recommendations and Perspectives: Assessment of dioxins, furans and other organochlorine compounds within natural reserves can be important for the monitoring of human-induced impacts on preserved areas. No systematic monitoring of these substances in areas not directly affected by industry has generally been realised. There is a paucity of data of the presence of any of these substances within natural regions. Further monitoring of contamination of both soil and biota by dioxins and furans in preserve regions is needed and can be used for future monitoring of man-made activities and/or accidents. Semipermeable membrane devices proved to be a very good sampling system for the monitoring of trace concentrations of ambient organochlorine compounds. Toxicity evaluation using the Vtox concept demonstrated that those localities assessed expressed no toxicity.  相似文献   

6.
Scott AC  Young RF  Fedorak PM 《Chemosphere》2008,73(8):1258-1264
The extraction of bitumen from the oil sands in Canada releases toxic naphthenic acids into the process-affected waters. The development of an ideal analytical method for quantifying naphthenic acids (general formula C(n)H(2n+Z)O(2)) has been impeded by the complexity of these mixtures and the challenges of differentiating naphthenic acids from other naturally-occurring organic acids. The oil sands industry standard FTIR method was compared with a newly-developed GC-MS method. Naphthenic acids concentrations were measured in extracts of surface and ground waters from locations within the vicinity of and away from the oil sands deposits and in extracts of process-affected waters. In all but one case, FTIR measurements of naphthenic acids concentrations were greater than those determined by GC-MS. The detection limit of the GC-MS method was 0.01 mg L(-1) compared to 1 mg L(-1) for the FTIR method. The results indicated that the GC-MS method is more selective for naphthenic acids, and that the FTIR method overestimates their concentrations.  相似文献   

7.
A copper-cadmium-nickel-zinc mixture was assessed in seven different river waters to study metal toxicity to the ciliate protozoan Colpidium campylum, the interactions occurring between metals, and the influence of the receiving water on toxicity. In the range of concentrations tested, which are representative of electroplating industry wastes, the main part of the toxicity can be attributed to copper and to cadmium-copper synergy. A classification of waters, based on a principal component analysis (PCA), was used to examine the main parameters of the water, which can affect the toxicity of metal mixtures. It appears that the mineralization of the water, more than the total organic carbon (TOC), is an important parameter for the expression of toxicity. A strategy for the estimation of ecotoxicological hazard assessment, based on a simplified factorial experiment is proposed. It enables one to study, in a two-step bioassay, the toxicity of an effluent, the influence of river water on its toxicity, and the effects of contact time and dilution. By applying PCA to data from very different waters, it may be possible to estimate the ecotoxicological risk associated with the discharge of an effluent, on the basis of the chemistry of the receiving water.  相似文献   

8.
A bioassay-directed fractionation and identification (toxicity identification evaluation procedure) was performed on extracts of 10 1 River Elbe water samples. The experimental method included a SDB-1 solid phase extraction followed by RP-HPLC fractionation and subfractionation. Chemical analysis by GC-MS as well as acute toxicity testing using a luminescent bacteria assay were conducted in the respective fractions. Many substances were identified, among which were pesticides and pharmaceuticals, but many compounds remained unknown.  相似文献   

9.
Toxic substances in rivers and streams   总被引:1,自引:0,他引:1  
Many of the toxic substances entering freshwaters today are those which were present several decades ago, but others have become significant recently. The effects of toxicants in flowing waters are modified by unidirectional transport and dispersion which afford the potential for a degree of 'self-purification'. The chemical quality of the receiving water also affects toxicity. Biological factors also contribute to the ultimate effect of pollutants. The potential for accumulation of toxic substances within tissues increases the significance of certain pollutants which may be present in water even though ambient concentrations are very low. The biota of flowing waters may be restored, following catastrophic entry of pollutants, by drift from unaffected regions upstream. The range of potential toxic substances is very extensive and includes inorganic poisons, organic poisons, heavy metals, pesticides and PCBs. Metals, pesticides and PCBs have the greatest potential for bioaccumulation. Few generalisations can be made regarding the effects of toxic substances on the biota. Each species tends to respond to different toxicants in different ways and even at different stages in its life-history. Toxicity tests conducted under controlled laboratory conditions sometimes produce conflicting results: it is not then to be unexpected that field observations should sometimes vary widely. Determinations of toxicity in laboratory tests must be applied with caution to field conditions and it is not wise to extrapolate findings to other species or environments.  相似文献   

10.
Naphthenic acids occur naturally in crude oils and in oil sands bitumens. They are toxic components in refinery wastewaters and in oil sands extraction waters. In addition, there are many industrial uses for naphthenic acids, so there is a potential for their release to the environment from a variety of activities. Studies have shown that naphthenic acids are susceptible to biodegradation, which decreases their concentration and reduces toxicity. This is a complex group of carboxylic acids with the general formula CnH(2n+Z)O2, where n indicates the carbon number and Z specifies the hydrogen deficiency resulting from ring formation. Measuring the concentrations of naphthenic acids in environmental samples and determining the chemical composition of a naphthenic acids mixture are huge analytical challenges. However, new analytical methods are being applied to these problems and progress is being made to better understand this mixture of chemically similar compounds. This paper reviews a variety of analytical methods and their application to assessing biodegradation of naphthenic acids.  相似文献   

11.
Yi AX  Leung KM  Lam MH  Lee JS  Giesy JP 《Chemosphere》2012,89(9):1015-1025
The state of scientific knowledge regarding analytical methods, environmental fate, ecotoxicity and ecological risk of triphenyltin (TPT) compounds in marine ecosystems as well as their exposure and health hazard to humans was reviewed. Since the 1960s, TPT compounds have been commonly applied as biocides for diverse industrial and agricultural purposes. For instance, they are used as active ingredients in antifouling systems on marine vessels and mariculture facilities, and as fungicides in agriculture. Due to their intensive use, contamination of coastal waters by TPT and its products of transformation has become a worldwide problem. The proportion of quantified TPT to total phenyltin compounds in the marine environment provides evidence that TPT is photodegradable in water and sediment but resistant to biotransformation. Concentrations of TPT in marine biota are consistently greater than concentrations in water and sediment, which implies potential of TPT to bioaccumulate. TPT is toxic to both marine plants and animals. The predicted no effect concentration (PNEC) for TPT, as determined by use of the species sensitivity distribution approach, is 0.64 ng L−1. In some parts of the world, concentrations of TPT in seawater exceed the PNEC, indicating that TPT can pose risks to marine life. Although there is negligible risk of TPT to average human consumers, TPT has been detected in blood of Finnish people and the concentration was greater in fishermen who ate more seafood. It is, therefore, advocated to initiate regular monitoring of TPT in blood and breast milk of populations that consume greater amounts of seafood.  相似文献   

12.
Fifteen sediment samples were analysed in order to determine their content of polybrominated diphenylethers (PBDEs), polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and biphenyls (PCBs). Samples were collected from several hot spots on the Spanish coast, such as the harbours of Almeria and Tarragona, and the mouths of the Besos and Llobregat rivers in Barcelona. A generic analytical procedure based on Soxhlet extraction followed by an automated cleanup system and gas chromatography-ion trap-mass spectrometry was employed for determining the toxic congeners of PCDDs and PCDFs, as well as dioxin-like PCBs. As regards PBDE determinations, a rapid method based on the use of selective pressurized liquid extraction followed by gas chromatography-negative ion chemical ionization-mass spectrometry was applied. Total toxicity equivalent (WHO-TEQ) values were calculated using the toxicity equivalent factors proposed by WHO for dioxin-like PCBs, PCDDs and PCDFs. WHO-TEQ values ranged from 0.3 to 75 pg/g dry weight (dw), with PCB contribution on the toxicity of the samples between 1 and 84%. Total PBDE levels ranged from 2.7 to 134 ng/g dw, with BDE-209 contribution on the total PBDE contamination between 50 and 99%.  相似文献   

13.

Background, aim, and scope  

Quantitative risk comparison of toxic substances is necessary to decide which substances should be prioritized to achieve effective risk management. This study compared the ecological risk among nine major toxic substances (ammonia, bisphenol-A, chloroform, copper, hexavalent chromium, lead, manganese, nickel, and zinc) in Tokyo surface waters by adopting an integrated risk analysis procedure using Bayesian statistics.  相似文献   

14.
The ECHA Biocide Monitor, a dipstick procedure originally designed to test the effectiveness of in situ biocides, was evaluated as a possible environmental toxicity assessment procedure. The dipstick procedure was applied to 94 sediment extracts which were also tested by three well documented toxicant screening procedures; Microtox, Daphnia magna and Spirillum volutans. In these samples the Daphnia magna test proved to be the most sensitive indication of toxicant activity (63 of 94) with the ECHA Biocide Monitor easily being the second most sensitive procedure with 27 of 94 sediments indicating the presence of toxic substances. Results of the investigation are detailed.  相似文献   

15.

Estuaries in the world are affected by different contamination sources related to urbanisation and port/industrial activities. Identifying the substances responsible for the environmental toxicity in estuaries is challenging due to the multitude of stressors, both natural and anthropogenic. The Toxicity Identification and Evaluation (TIE) is a suitable way of determining causes of toxicity of sediments, but it poses difficulties since its application is labour intensive and time consuming. The aim of this study is to evaluate the diagnosis provided by a TIE based on microscale embryotoxicity tests with interstitial water (IW) to identify toxicants in estuarine sediments affected by multiple stressors. TIE showed toxicity due to different combinations of metals, apolar organic compounds, ammonia and sulphides, depending on the contamination source closest to the sampling station. The microscale TIE was able to discern different toxicants on sites subject to different contamination sources. There is good agreement between the results indicated in the TIE and the chemical analyses in whole sediment, although there are some disagreements, either due to the sensitivity of the test used, or due to the particularities of the use of interstitial water to assess the sediment toxicity. The improvement of TIE methods focused on identifying toxicants in multiple-stressed estuarine areas are crucial to discern contamination sources and subsidise management strategies.

  相似文献   

16.
Chang EE  Chiang PC  Lu PH  Ko YW 《Chemosphere》2001,45(1):91-99
The objective of this research was to evaluate three extraction tests, i.e., toxicity characteristic leaching procedures (TCLP), extraction procedure (EP), and American Society for Testing and Materials (ASTM) methods, for their ability to extract metals in chemical sludge and incineration bottom ash, in terms of the precision of analytical results. Typical chemical sludges, including the electroplating and dye-stuff sludges, the municipal solid waste incineration bottom ash, the leather debris, and the steel-mill bottom residue containing Cd, Cr, Cu, Pb, and Zn were prepared for the lysimetry test (dynamic testing) to compare with the extraction results. Results show that for bottom residue and dye-stuff sludge, the concentration of metal leached was almost the same between the lysimetry leaching and the TCLP tests. The metal concentration followed the order: TCLP approximately = EP > ASTM. TCLP and EP exhibited almost the same relative standard deviation (RSD) value. Therefore, the results of the TCLP tests for bottom residue and dye-stuff sludge, which have a low metal content and alkalinity, can be used to estimate the metal concentration leached by typical acid rain in Taiwan; whereas the ASTM extraction test may be a better indicator of the lysimetry test.  相似文献   

17.
Goal, Scope and Background In order to evaluate the estrogenic activity of sediments and XAD water extracts of selected sites of the catchment area of the River Neckar, a river system in Southern Germany, an integrative assessment approach was used to assess the ecological hazard potential of endocrine-disrupting compounds in sediment and water. Methods The approach is based on estrogen receptor-mediated vitellogenin synthesis induced in isolated hepatocytes of rainbow trout and quantified in a non-radioactive dot blot/RNAse protection-assay in parallel to comprehensive chemical analyses of estrogenic substances. Results and Discussion Numerous investigated extracts revealed an estrogen activity comparable to that of the positive control (1 nM 17?-estradiol corresponding to 270 ng/L in the test medium). Based on a concentration factor of 30 in the extracts and a recovery of XAD resins of approximately 80 %, 17?-estradiol equivalent concentrations between 20 and 26.7 ng/L could be calculated downstream of a sewage treatment plant (< 0.1 ng/L for a reference site). A comparison of the bioassay-derived Bio-TEQs (toxicity equivalents) and the Chem-TEQs revealed a high correlation with a Pearson coefficient of 0.85, indicating that the same ranking of the samples could be obtained with respect to the endocrine disrupting potential with both chemical and bioanalytical analysis. However, the TEQ concentrations computed from chemical analyses were significantly lower than the bioassay-derived TEQ concentrations. In fact, in none of the samples, more than 14 % of the vitellogenin-inducing potency could be attributed to the substances (steroids, alkylphenols, bisphenol A, diethylstilbestrol) analyzed. A comparison of the endocrine disrupting potential of sediments extracted by the solvents acetone and methanol revealed lower biological effects for acetone-extracted samples. Possible reasons may be a masking of endocrine effects in acetone extracts by cytotoxicity, a low extraction efficiency of the solvent acetone, or anti-estrogen potencies of some extracted sediment compounds. Using a mass balance approach, the contribution of the compounds analyzed chemically (Chem-TEQs) to the total endocrine activity (Bio-TEQs) was calculated. Based on the very low detection limits, particularly of the steroids with their high TEF factors, results revealed that a calculation of the Chem-TEQs is associated with considerable scale inaccuracy: Whereas only 7-15 % of the biological effectiveness (Bio-TEQs) could be explained by endocrine substances identified above the detection limits, the assumption of concentrations slightly below the given detection limits would result in a significant over estimation (137-197 %) of the Bio-TEQs. Even the interassay variation of the dot blot assay with different fish donors for primary hepatocyte (factor 2 - 2.5) is relatively low, when compared to the large range of the Chem-TEQ concentrations (factor 20) obtained when applying different modes of calculation. Conclusions and Outlook Overall, only a minor portion of the endocrine activity detected by bioassays could be linked to compounds identified by chemical analysis. In vitro assays for assessment of endocrine activities are useful as sensitive integrating methods that provide quantitative estimates of the total activity of particular receptor-mediated responses. Although discrepancies may also result from different bioanalytical approaches, it is overall likely that bioanalytical and not chemical analytical approaches give the correct estimate of endocrine disrupting potencies in environmental samples. As a conclusion, assessment of endocrine disruption based on chemical analysis alone does not appear sufficient and further research into the spectrum of substances with potential endocrine activity as well as into additive or even synergistic effects in complex environmental samples is urgently needed.  相似文献   

18.
Pharmaceutical concentration data for Indian surface waters are currently scarce. Sewage often enters Indian rivers without prior treatment, and so previously reported environmental concentrations from regions with routinely implemented sewage treatment cannot simply be used to predict concentrations in Indian surface water. Improved knowledge of pharmaceutical concentrations in Indian waters would enable determination of potential risks posed to aquatic wildlife and human health in this region. The concentrations of five common non-steroidal anti-inflammatory drugs (NSAIDs; diclofenac, ketoprofen, naproxen, ibuprofen, and acetylsalicylic acid) were determined in surface waters from 27 locations of the Kaveri, Vellar, and Tamiraparani Rivers in southern India. The samples were extracted by solid-phase extraction and analyzed by GC-MS. The measured concentrations of four of the five drugs in this reconnaissance were relatively similar to those reported elsewhere (ND–200 ng/l); however, acetylsalicylic acid, the most readily degradable of the investigated drugs, was found at all sites and at considerably higher concentrations (up to 660 ng/l) than reported in European surface waters. This is the first report on the occurrence of NSAIDs in Indian rivers. The finding of elevated concentrations of acetylsalicylic acid is most likely a result of direct discharges of untreated sewage. Therefore, readily degradable pharmaceuticals may present larger concern in regions without consistent sewage treatment. Based on measured environmental concentrations, the risks of direct toxicity to aquatic wildlife and of humans consuming the water are discussed.  相似文献   

19.
20.
In recent years growing attention has been paid toward the discharge, presence and potential adverse effects of pharmaceuticals in the environment. Using different existing analytical methods several studies have already identified a variety of drugs in waste-, surface- and drinking water. The monitoring of surface waters for drugs is of great importance because drugs are designed to be biological very active substances. A capillary LC/ES-MS-MS method has been developed that enables the sensitive and specific detection of diazepam in water samples up to 0.1 ng/ml (LOD). It requires neither multiple extraction steps, nor the use of large volumes of organic solvent. Applying this assay we have detected diazepam in 'in/effluent samples' collected in Belgium and demonstrated the applicability for water analysis without off-line pre-concentration of the analyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号