首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
- Sustainable chemistry - Section editors: Klaus Günter Steinhäuser, Steffi Richter, Petra Greiner, Jutta Penning, Michael AngrickBackground, Aim and Scope Chemicals play a vital role in the day-to-day life of industrialised societies. Their use is not restricted to the chemical enterprises per se, but is a crucial part of production processes in a lot of industrial sectors. Traditional instruments of environmental policy (such as bans, restrictions) can only deal with the most hazardous substances. The Johannesburg Implementation Plan of 2002 calls for more sustainable patterns of production and consumption, and sets the year of 2020 as a goal to use chemicals in a way that human health and the environment are not endangered. Political instruments should not only gather more knowledge about the properties of chemicals, but should also stimulate the environmentally sound use of chemicals. Existing business models should therefore be reviewed in relation to this strategic approach to encourage marketing options with respect to the environmental focus.Main Features Business models were examined for their effects on the consumption of chemicals and amount of waste emissions in relation to their economic potential. Different possibilities for cooperation of supplier, user and disposal companies were elaborated and examined with a view to the specific situation in Austria.Results and Discussion A range of cooperative models – summarised under the term ‘chemical leasing’ - was identified, which can contribute to a more efficient use of resources. 12 main possible application areas (cleaning, lubrication, paint stripping and others) have been identified in Austria. If chemical leasing models were applied in these areas, the amounts of chemicals currently used could be reduced by one third (53,000 tonnes per year). Cost reductions of up to 15 % can be expected.Conclusion The application of chemical leasing models can contribute considerably to achieving more sustainable and resource-efficient patterns of production. The Austrian Ministry for Environment has therefore decided to subsidise the further practical implementation of these new service-oriented business models. Pilot projects in 4 enterprises, which are supervised by consulting companies, are currently being carried out. Recommendation and Outlook The experiences of the pilot projects will serve as valuable building blocks for the wider use of chemical leasing models. Furthermore, the UNIDO Cleaner Production Centres have expressed their clear interest and will examine the possibility to use chemical leasing as a part of their Cleaner Production Programmes.  相似文献   

2.
Chemical Leasing is a service-oriented business model that shifts the focus from increasing sales volume of chemicals towards a value-added approach. Recent pilot projects have shown the economic benefits of introducing Chemical Leasing business models in a broad range of sectors. A decade after its introduction, the promotion of Chemical Leasing is still predominantly done by the public sector and international organizations. We show in this paper that awareness-raising activities to disseminate information on this innovative business model mainly focus on the economic benefits. We argue that selling Chemical Leasing business models solely on the grounds of economic and ecological considerations falls short of branding it as a corporate social responsibility initiative, which, for this paper, is defined as a stakeholder-oriented concept that extends beyond the organization’s boundaries and is driven by an ethical understanding of the organization’s responsibility for the impact of its business activities. For the analysis of Chemical Leasing business models, we introduce two case studies from the water purification and metal degreasing fields, focusing on employees and local communities as two specific stakeholder groups of the company introducing Chemical Leasing. The paper seeks to demonstrate that Chemical Leasing business models can be branded as a corporate social responsibility initiative by outlining the vast potential of Chemical Leasing to improve occupational health and safety and to strengthen the ability of companies to protect the environment from the adverse effects of the chemicals they apply.  相似文献   

3.
Chemical leasing is a new and innovative approach of selling chemicals. It aims at reducing the risks emanating from hazardous substances and ensuring long-term economic success within a global system of producing and using chemicals. This paper explores how, through chemical leasing, the consumption of chemicals, energy, resources and the generation of related wastes can be reduced. It also analyses the substitution of hazardous chemicals as a tool to protect environmental, health and safety and hence ensure compliance with sustainability criteria. For this, we are proposing an evaluation methodology that seeks to provide an answer to the following research questions: (1) Does the application of chemical leasing promote sustainability in comparison to an existing chemicals production and management system? 2. If various chemical leasing project types are envisaged, which is the most promising in terms of sustainability? The proposed methodology includes a number of basic goals and sub-goals to assess the sustainability for eight different chemical leasing case studies that have been implemented both at the local and the national levels. The assessment is limited to the relative assessment of specific case studies and allows the comparisons of different projects in terms of their relative contribution to sustainable chemistry. The findings of our assessment demonstrate that chemical leasing can be regarded as promoting sustainable chemistry in five case studies with certainty. However, on the grounds of our assessment, we cannot conclude with certainty that chemical leasing has equivalent contribution to sustainable chemistry in respect of three further case studies.  相似文献   

4.
Successful integration of Cleaner Production concepts and technologies into businesses and industries requires effective education and training of the professionals. Cleaner Production, in spite of its conceptual simplicity, implies a new way of thinking about processes and products and a more sustainable approach to problem solving. Teaching university students about Cleaner Production is particularly challenging because many concepts depend on tools and experiences that are difficult to recreate in the typical classroom. Full understanding of the methodology and concepts of a Cleaner Production assessment can be achieved only by engaging students in practical application. To overcome the difficulties of providing a high number of students with a practical application, a very simple and useful exercise, based on the activities performed in the average kitchen, has been developed. The kitchen at home has all the elements of a factory, is available to everybody and can be used to supplement the theory provided in the classroom  相似文献   

5.
集约化畜禽养殖业的发展在提高人民生活水平的同时也给环境带来了巨大的压力。清洁生产是基于污染预防的一种环境保护的战略措施,它体现了废弃物的减量化、资源化、无害化原则。实施畜禽养殖业清洁生产是保证畜禽养殖业健康可持续发展的根本途径。分析了畜禽养殖业实施清洁生产的必要性.并根据当前畜禽养殖业清洁生产进展中存在的问题,提出了相应的对策。  相似文献   

6.
企业在建设项目决策时就应该按照清洁生产的原则,从源头控制污染。提出了在项目决策中,应从产品选择、工艺路线选择、主要设备选型和节能降耗4个方面进行清洁生产的分析方法,通过此分析方法的应用,可以避免项目决策中的环境失误和降低企业的环境风险。  相似文献   

7.
- Sustainable chemistry - Section editors: Klaus Günter Steinhäuser, Steffi Richter, Petra Greiner, Jutta Penning, Michael AngrickBackground, Aim and Scope Recent developments in European chemicals policy, including the Registration, Evaluation and Authorization of Chemicals (REACH) proposal, provide a unique opportunity to examine the U.S. experience in promoting sustainable chemistry as well as the strengths and weaknesses of existing policies. Indeed, the problems of industrial chemicals and limitations in current regulatory approaches to address chemical risks are strikingly similar on both sides of the Atlantic. We provide an overview of the U.S. regulatory system for chemicals management and its relationship to efforts promoting sustainable chemistry. We examine federal and state and examine lessons learned from this system that can be applied to developing more integrated, sustainable approaches to chemicals management.Main Features There is truly no one U.S. chemicals policy, but rather a series of different un-integrated policies at the federal, regional, state and local levels. While centerpiece U.S. Chemicals Policy, the Toxic Substances Control Act of 1976, has resulted in the development of a comprehensive, efficient rapid screening process for new chemicals, agency action to manage existing chemicals has been very limited. The agency, however, has engaged in a number of successful, though highly underfunded, voluntary data collection, pollution prevention, and sustainable design programs that have been important motivators for sustainable chemistry. Policy innovation in the establishment of numerous state level initiatives on persistent and bioaccumulative toxics, chemical restrictions and toxics use reduction have resulted in pressure on the federal government to augment its efforts.Results and Conclusions It is clear that data collection on chemical risks and phase-outs of the most egregious chemicals alone will not achieve the goals of sustainable chemistry. These alone will also not internalize the cultural and institutional changes needed to ensure that design and implementation of safer chemicals, processes, and products are the focus of the future. Thus, a more holistic approach of ‘carrots and sticks’ – that involves not just chemical producers but those who use and purchase chemicals is necessary. Some important lessons of the US experience in chemicals management include: (1) the need for good information on chemicals flows, toxic risks, and safer substances.; (2) the need for comprehensive planning processes for chemical substitution and reduction to avoid risk trade-offs and ensure product quality; (3) the need for technical and research support to firms for innovation in safer chemistry; and (4) the need for rapid screening processes and tools for comparison of alternative chemicals, materials, and products.  相似文献   

8.
PISCES, Power Plant Integrated Systems: Chemical Emissions Studies, is a multimedia chemical species project on plant emissions. Products generated in the PISCES project will help utilities design and operate their plants to minimize chemical species emissions. PISCES takes a holistic approach to the control of toxics by acknowledging that a chemical removed from a gas stream will appear in a liquid or solid stream.  相似文献   

9.
BACKGROUND, AIM AND SCOPE: With respect to the enormous increase of chemical production in the last decades and the tens of thousands of individual chemicals on the market, the permanent improvement of chemical management is a permanent target to achieve the goals of sustainable consumption and production set by the WSSD in Johannesburg 2002. MAIN FEATURES: Several approaches exist to describe sustainability of chemistry. However, commonly agreed criteria are still missing. There is no doubt that products of modern chemistry help to achieve important goals of sustainability and that significant improvements have occurred regarding direct releases from production sites, but several facts demonstrate that chemistry is far from being sustainable. Still too many chemicals exhibit hazardous characteristics and pose a risk to health and environment. Too many resources are needed to produce chemicals and finished products. RESULTS AND CONCLUSION: Therefore, a strategy for sustainability of chemistry should be developed which comprises the following main elements: 1. Sustainable chemicals: sustainable chemical management includes a regulatory framework which makes no difference between new and existing chemicals, contains efficient information flow through the supply chain which allows users to handle chemicals safely and offers an authorisation procedure and/or an efficient restriction procedure for substances of high concern. This regulatory scheme should promote the development of inherently safe chemicals. 2. Sustainable chemical production: Sustainable chemical production needs the development and implementation of emerging alternative techniques like selective catalysis, biotechnology in order to release less CO2 and less toxic by-products, to save energy and to achieve higher yields. Information exchange on best available techniques (BAT) and best environmental practices (BEP) may help to promote changes towards more sustainability. 3. Sustainable products: An integrated product policy which provides a framework for sustainable products promotes the development of products with a long-term use phase, low resource demand in production and use, low emission of hazardous substances and properties suitable for reuse and recycling. This may be promoted by eco-labelling, chemical leasing concepts and extended information measures to enhance the demand of consumers and various actors in the supply chain for sustainable products. RECOMMENDATION AND PERSPECTIVE: Important tools for the promotion of sustainable chemistry are the abolition of barriers for innovation in legislation and within the chemical industry, more transparency for all users of chemical products, a new focus on sustainability in education and research, and a new way of thinking in terms of sustainability.  相似文献   

10.
Barriers and bridges to implement policies about sustainable development and sustainability commonly depend on the past development of social–ecological systems. Production of metals required integration of use of ore, streams for energy, and wood for bioenergy and construction, as well as of multiple societal actors. Focusing on the Swedish Bergslagen region as a case study we (1) describe the phases of natural resource use triggered by metallurgy, (2) the location and spatial extent of 22 definitions of Bergslagen divided into four zones as a proxy of cumulative pressure on landscapes, and (3) analyze the consequences for natural capital and society. We found clear gradients in industrial activity, stream alteration, and amount of natural forest from the core to the periphery of Bergslagen. Additionally, the legacy of top-down governance is linked to today’s poorly diversified business sector and thus municipal vulnerability. Comparing the Bergslagen case study with other similar regions in Russia and Germany, we discuss the usefulness of multiple case studies.  相似文献   

11.
A new predictive toxicokinetics model was developed to estimate subacute toxicity (target organs, severity, etc.) of non-congeneric industrial chemicals, where the chemical structures and physico-chemical properties are only available. Thus, a physiological pharmacokinetics model, which consists of blood, liver, kidney (these were experimentally found as major toxicological targets), muscle and fat compartments , was established to simulate the chemical concentrations in organs/tissues with pharmacokinetic parameters by means of Runge-Kutta-Gill algorithm. The pliarmacokinetic parameters, i.e. absorption rate, absorption ratio, hepatic extraction ratio of metabolism and renal clearance were calculated by using separately established Quantitative Structure-Pharmacokinetics Relationship equations. The developed predictive model was then applied to simulations of 43 non-congeneric industrial chemicals. The chemical concentrations in organs/tissues after single oral administration were simulated, and their maximum concentrations (Cmax's) and area tinder the concentration-time curves (AUC's) were calculated.Fast Inverse Laplace Transform was newly applied for the purpose of simulation of 28-day repeated dose toxicity.Simulated concentrations of 28 days repeated dose were, however, found to be the same as those of simple repetitions of a single administration per day because of the short half-lives of non-congeneric industrial chemicals.A comparison of subacute toxicity data with Cmax's and AUC's in a single dose scenario suggested that the organs/tissues with relatively high concentrations of tested chemical substances were the most sensitive targets within a chemical.Chemical concentrations in liver, for instance, were correlated with the severity of hepatotoxicity among the chemicals. It was also suggested that to improve and widen the present approach, data of metabolite and reactivity of non-congeneric industrial chemicals to organs/tissues, receptors, etc. should be incorporated into the model.  相似文献   

12.
13.
Decisions in ecological risk management for chemical substances must be made based on incomplete information due to uncertainties. To protect the ecosystems from the adverse effect of chemicals, a precautionary approach is often taken. The precautionary approach, which is based on conservative assumptions about the risks of chemical substances, can be applied selecting management models and data. This approach can lead to an adequate margin of safety for ecosystems by reducing exposure to harmful substances, either by reducing the use of target chemicals or putting in place strict water quality criteria. However, the reduction of chemical use or effluent concentrations typically entails a financial burden. The cost effectiveness of the precautionary approach may be small. Hence, we need to develop a formulaic methodology in chemical risk management that can sufficiently protect ecosystems in a cost-effective way, even when we do not have sufficient information for chemical management. Information-gap decision theory can provide the formulaic methodology. Information-gap decision theory determines which action is the most robust to uncertainty by guaranteeing an acceptable outcome under the largest degree of uncertainty without requiring information about the extent of parameter uncertainty at the outset. In this paper, we illustrate the application of information-gap decision theory to derive a framework for setting effluent limits of pollutants for point sources under uncertainty. Our application incorporates a cost for reduction in pollutant emission and a cost to wildlife species affected by the pollutant. Our framework enables us to settle upon actions to deal with severe uncertainty in ecological risk management of chemicals.  相似文献   

14.
Considerable effort and expense have been devoted to the estimation and acquisition of Toxics Release Inventory (TRI) data. To reduce the effort required and the number of reporting mistakes in the calculation of emissions, we developed an estimation program named TRIWIN after standardization of emission estimation techniques. The program was distributed to 6 petroleum and 150 chemical manufacturing companies, and emission data for 62 chemicals were collected and analyzed. From the TRIWIN-based results obtained, it was found that more than 90% of releases from petroleum and chemical manufacturing industries in Korea were emitted to atmosphere in 1999. Volatile organic compounds are major aerial contaminants and are released primarily via fugitive emission sources such as valves, pumps, or flanges. In addition, the effect of the application of point-source management was noticeable on the emission quantities. Consequently, TRIWIN not only helped reporters to implement TRI easily and accurately, but also identified emission sources, major pollutants in facilities, and provided a standard method of assessing the environmental impact of facilities.  相似文献   

15.
European union system for the evaluation of substances: the second version   总被引:4,自引:0,他引:4  
This publication presents major changes in the assessment of the risks of chemicals to human health and the environment as implemented in the second version of the European Union System for the Evaluation of Substances, EUSES 2.0. EUSES is a harmonised quantitative risk assessment tool for chemicals. It is the PC-implementation of the technical guidelines developed within the framework of EU chemical legislation for industrial chemicals and biocides. As such, it is designed to support decision making by risk managers in government and industry and to assist scientific institutions in the risk assessment for these substances. The development of EUSES 2.0 is a co-ordinated project of the European Chemicals Bureau, EU Member States and the European chemical industry. Several model concepts, the technical background and the user interface of EUSES have been improved considerably. Major changes in the environmental assessment such as the implementation of emission scenario documents for industrial chemicals and biocides, the addition of the marine risk assessment, the enhancement of the regional model to include global scales, and improvements in the secondary poisoning and environmental effects modelling will be discussed. The update of the human risk assessment module in EUSES focuses on the risk characterisation for both threshold and non-threshold substances with, among others, the introduction of assessment factors. The performance of EUSES is illustrated in an example showing the human and environmental risk assessment of a sanitation disinfectant for private use.  相似文献   

16.
Physical and chemical properties which control the environmental distribution of five PCB replacement chemicals (di-isopropylnaphthalenes, phenylxylylethanes, butylated monochlorodiphenyl ethers, isopropylbiphenyls and tetrachloroethylene) have been obtained. These data are used to predict the distribution of these chemicals, a pentachlorobiphenyl and p,p′-DDE in an evaluative environment using a fugacity approach. This simple model gives no information about reactivity or persistence. More complex fugacity models are used to compare these additional features of a di-isopropylnaphthalene PCB replacement with those of a PCB.  相似文献   

17.
The sustainable management of chemicals and their associated wastes—especially legacy stockpiles—is always challenging. Developing countries face particular difficulties as they often have insufficient treatment and disposal capacity, have limited resources and many lack an appropriate and effective regulatory framework. This paper describes the objectives and the approach of the Egyptian–German Twinning Project under the European Neighbourhood Policy to improve the strategy of managing hazardous substances in the Egyptian Environmental Affairs Agency (EEAA) between November 2008 and May 2011. It also provides an introduction to the Republic of Egypt’s legal and administrative system regarding chemical controls. Subsequently, options for a new chemical management strategy consistent with the recommendations of the United Nations Chemicals Conventions are proposed. The Egyptian legal and administrative system is discussed in relation to the United Nations’ recommendations and current European Union legislation for the sound management of chemicals. We also discuss a strategy for the EEAA to use the existing Egyptian legal system to implement the United Nations’ Globally Harmonized System of Classification and Labelling of Chemicals, the Stockholm Convention and other proposed regulatory frameworks. The analysis, the results, and the recommendations presented may be useful for other developing countries in a comparable position to Egypt aspiring to update their legislation and administration to the international standards of sound management of chemicals.  相似文献   

18.
19.
20.
Bruce K. Hope 《Chemosphere》1995,30(12):2267-2287
In instances where empirical measurements are not practicable, ecological risk assessments may rely on site-specific exposure models for estimating uptake of chemical contaminants. This paper presents, based on a review of the literature, a compilation of relatively simple quantitative models that can be combined to produce site- and species-specific first-order estimates of uptake of chemicals from abiotic media. These models have proved useful in providing order-of-magnitude estimates for screening and sample program design purposes. This paper intended as both a practical guide for choosing models to estimate terrestrial wildlife exposures and as a step toward development of a more comprehensive and standard approach to exposure assessment in terrestrial ecological receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号