首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concentrations of Cu and Pb were determined in the roots and shoots of six salt marsh plant species, and in sediment taken from between the roots of the plants, sampled from the lower salt marsh zone at four sites along the Suir Estuary in autumn 1997. Cu was mainly accumulated in the roots of monocotyledonous and dicotyledonous species. Pb was mainly accumulated in the roots of monocotyledons, while dicotyledons tended to accumulate Pb in the shoots. In the case of Aster tripolium there was a clear differentiation in the partitioning of Pb within the plant, between low and high salinity sites. At the low salinity sites, Pb accumulated only in the roots while at the high salinity sites there was a marked translocation to the shoots. The increase in Pb concentrations in roots and shoots of A. tripolium was accompanied by a concomitant decrease in sediment concentrations of Pb. This inverse correlation between sediment and plant concentrations of Pb was also recorded for Spartina spp. and Schoenoplectus tabernaemontani but in the case of these species the roots contained higher concentrations of Pb regardless of salinity levels. These differences in accumulation of Cu and Pb in various salt marsh species, and the influence of salinity on the translocation of Pb in A. tripolium in particular, should be taken into account when using these plants for biomonitoring purposes.  相似文献   

2.
In autumn 1986, plants and soil were collected from the lower and the higher salt marsh zones of salt marshes along the Dutch coast. The main purpose was to get an overview of Zn, Cu and Cd concentrations in six dominant species of salt marsh plants. The roots and shoots of the plants were analysed for Zn, Cu and Cd. The highest heavy metal concentrations were found in plants collected from salt marshes near harbour areas and/or that are known to receive contaminated fluvial sediment. Dicotyledonous plant species tended to have similar heavy metal concentrations in roots and shoots, whereas in monocotyledonous species the concentrations in the roots were two to three times higher than in the shoots. Differences in accumulation in the roots between elements and between plant species were found. Cd was accumulated more than Zn or Cu. Triglochin maritima shows a low Cd uptake by roots, whereas Spartina anglica and Scirpus maritimus tend to accumulate it. The fraction of soil particles smaller than 63 microm, loss on ignition and Zn, Cu and Cd concentrations were determined in soil samples. The highest Zn, Cu and Cd concentrations in the soil were found at salt marshes in the Western Scheldt area and were nine, five and 20 times higher than background levels, respectively.  相似文献   

3.
Yang B  Shu WS  Ye ZH  Lan CY  Wong MH 《Chemosphere》2003,52(9):1593-1600
The lead (Pb)/zinc (Zn) tailings contained high concentrations of heavy metals (total Pb, Zn, Cu and Cd concentrations 4164, 4377, 35 and 32 mg kg(-1), respectively), and low contents of major nutrient elements (N, P, and K) and organic matter. A field trial was conducted to compare growth performance, metal accumulation of Vetiver (Vetiveria zizanioides) and two legume species (Sesbania rostrata and Sesbania sesban) grown on the tailings amended with domestic refuse and/or fertilizer. It was revealed that domestic refuse alone and the combination of domestic refuse and artificial fertilizer significantly improved the survival rates and growth of V. zizanioides and two Sesbania species, especially the combination. However, artificial fertilizer alone did not improve both the survival rate and growth performance of the plants grown on tailings. Roots of these species accumulated similar levels of heavy metals, but the shoots of two Sesbania species accumulated higher (3-4 folds) concentrations of Pb, Zn, Cu and Cd than shoots of V. zizanioides. Most of the heavy metals in V. zizanioides were accumulated in roots, and the translocation of metals from roots to shoots was restricted. Intercropping of V. zizanioides and S. rostrata did not show any beneficial effect on individual plant species, in terms of height, biomass, survival rate, and metal accumulation, possibly due to the rather short experimental period of 5 months.  相似文献   

4.
Fritioff A  Greger M 《Chemosphere》2007,67(2):365-375
Elodea canadensis is a submersed macrophytes, widely distributed in stormwater treatment ponds and able to remove heavy metals from water. This study examines the Cd uptake, translocation, and efflux patterns in Elodea. Several experiments were set up in a climate chamber. To study the root and shoot Cd uptake, living and dead roots and shoots were treated with (109)Cd in one- and two-compartment systems. Furthermore, to examine Cd translocation and distribution, either roots or shoots were treated with (109)Cd. Finally, the efflux of Cd from roots and shoots, respectively, to the external solution was studied after loading whole plants with (109)Cd. Results from the two compartment studies show that Cd is accumulated via direct uptake by both roots and shoots of Elodea. The Cd accumulation proved not to be metabolically dependent in Elodea, and the apoplastic uptake in particular was decreased by Cd pretreatment. In one week, up to 23% of the root uptake was translocated to the shoots, while about 2% of the Cd accumulated by shoots was translocated to the roots. Thus, slight dispersion of Cd is possible, while metal immobilization will not be directly mediated via the Elodea plant. The efflux experiment proved that both shoots of dead plants and roots of living plants had a faster efflux than did shoots of living plants. This information is relevant for an understanding of the fate of Cd in stormwater treatment ponds with Elodea.  相似文献   

5.
Fritioff A  Greger M 《Chemosphere》2006,63(2):220-227
A better understanding of metal uptake and translocation by aquatic plants can be used to enhance the performance of constructed wetland systems for stormwater treatment. Specifically, this study examines whether the uptake of Zn, Cu, Cd, and Pb by Potamogeton natans is via the leaves, stems, or roots, and whether there is translocation from organs of uptake to other plant parts. Competition between the metals at uptake and at the level of the cell wall-bound part of the metals accumulated in stem and leaf tissue was also examined. The results show that Zn, Cu, Cd, and Pb were taken up by the leaves, stems, and roots, with the highest accumulation found in the roots. At the elevated metal concentrations common in stormwater the uptake of Cu, but not of Zn, Cd, or Pb, by the roots was somewhat limited at uptake due to competition with other metals. Between 24% and 59% of the metal content was bound to the cell walls of the plant. Except in the case of Pb, the cell wall-bound fraction was generally smaller in stems than in leaves. No translocation of the metals to other parts of the plant was found, except for Cd which was translocated from leaf to stem and vice versa. Dispersion of metals from sediment to water through P. natans is therefore unlikely.  相似文献   

6.
Phenanthrene uptake by Medicago sativa L. was investigated under the influence of an arbuscular mycorrhizal fungus. Inoculation of lucerne with the arbuscular mycorrhizal fungus Glomus etunicatum L. resulted in higher phenanthrene accumulation in the roots and lower accumulation in the shoots compared to non-mycorrhizal controls. Studies on sorption and desorption of phenanthrene by roots and characterization of heterogeneity of mycorrhizal and non-mycorrhizal roots using solid-state 13C nuclear magnetic resonance spectroscopy (13C NMR) demonstrated that increased aromatic components due to mycorrhizal inoculation resulted in enhanced phenanthrene uptake by the roots but lower translocation to the shoots. Direct visualization using two-photon excitation microscopy (TPEM) revealed higher phenanthrene accumulation in epidermal cells of roots and lower transport into the root interior and stem in mycorrhizal plants than in non-mycorrhizal controls. These results provide some insight into the mechanisms by which arbuscular mycorrhizal inoculation may influence the uptake of organic contaminants by plants.  相似文献   

7.
Wetland plants are biological filters that play an important role in maintaining aquatic ecosystem and can take up toxic metals from sediments and water. The present study investigated the seasonal variation in the accumulation potential of heavy metals by Cyperus articulatus in contaminated watercourses. Forty quadrats, distributed equally in 8 sites (six contaminated sites along Ismailia canal and two uncontaminated sites along the River Nile), were selected seasonally for sediment, water, and plant investigations. Autumn was the flourishing season of C. articulatus with the highest shoot density, length, and diameter as well as aboveground biomass, while summer showed the least growth performance. The photosynthetic pigments were markedly reduced under contamination stress. C. articulatus plants accumulated concentrations of most heavy metals, except Pb, in their roots higher than the shoots. The plant tissues accumulated the highest concentrations of Fe, Cd, Ni, and Zn during autumn, while Cu and Mn during spring, and Cr and Co during winter. It was found that Cd, Cu, Ni, Zn, Pb, and Co had seasonal bioaccumulation factor (BF) > 1 with the highest BF for Cd, Ni, and Zn during autumn, Co, Cu, and Pb in winter, spring, and summer, respectively. The translocation factor of most heavy metals, except Pb in spring, was <1 indicating potential phytostabilization of these metals. In conclusion, autumn is an ideal season for harvesting C. articulatus in order to monitor pollution in contaminated wetlands.  相似文献   

8.
Hu X  Ding Z  Chen Y  Wang X  Dai L 《Chemosphere》2002,48(6):621-629
Through short-term exposure (7-d exposure), long-term exposure (16-d exposure) and exposure-recovery (7-d exposure + 9-d recovery), the bioaccumulation and distribution of La and Ce and their effects on growth of wheat seedlings were studied. Addition of La (0.5-25 mg/l) and Ce (0.5-25 mg/l) to the culture medium individually and in combination inhibited primary root elongation, reduced the dry weight of roots and shoots and the content of mineral elements (Ca, Mg, K, Cu, Zn). The damage increased with an increase in the concentrations of La and Ce in culture medium. Relative damage ratio increased with an increase in concentrations of La and Ce in the culture medium and with exposure time. Comparing exposure-recovery groups with long-term exposure groups, primary root lengths, dry weight of roots and shoots and the content of five mineral elements were higher. The accumulation of La and Ce in the seedlings was positively correlated with the concentrations of La and Ce in the culture medium and with exposure time. Bioaccumulation factors of La and Ce in roots were much higher than those of shoots. The uptake rates of La and Ce by the plants were much higher than the translocation rates from roots to shoots. The accumulation and distribution of La and Ce in the seedlings in exposure-recovery groups showed that there was very little excretion through metabolism during the recovery period, but redistribution occurred throughout the whole plant. No apparent selective uptake was found between La and Ce by the plants when they were applied in combination.  相似文献   

9.

Polycyclic aromatic hydrocarbons as byproducts of carbon-based fuel combustion are an important group of pollutants with wide distribution in the environment. Polycyclic aromatic hydrocarbons are known as toxic compounds for almost all organisms. Different plant species can uptake polycyclic aromatic hydrocarbons by roots and translocate them to various aerial parts. The aim of this study is to investigate the uptake, translocation, and accumulation of pyrene and phenanthrene in maize under controlled conditions. Seeds were cultivated in perlite containing 25, 50, 75, and 100 ppm of phenanthrene and pyrene, and their concentrations in the roots and shoots of the plants were measured using high-performance liquid chromatography technique after 7, 14, and 21 days. The results revealed that phenanthrene naturally existed in maize and its concentration showed a time-dependent decrease in shoots and roots. In contrast, the concentration of pyrene was increased in the roots and reduced in the shoots. Although pyrene had higher uptake than phenanthrene in roots of maize, the translocation factor value for pyrene was lower than for phenanthrene. According to these findings, phenanthrene could be metabolized in maize in the shoot and root tissues, but pyrene had more tendency to be accumulated in roots.

  相似文献   

10.
The copper (Cu) resistance of 1-year-old seedlings of heather (Calluna vulgaris) was tested in a greenhouse experiment. The plant material originated from seeds collected from three peatland sites located 1.2 km to the NW, and 2.5 and 5.5 km to the NE of the Harjavalta Cu-nickel (Ni) smelter, SW Finland. The plants were watered with a nutrient solution containing five different levels of Cu (1, 10, 22, 46 and 100 mg l(-1)). Cu clearly decreased the length growth of shoots, shoot and root biomass of C. vulgaris. More than 50% of the seedlings exposed to the highest Cu treatment died. C. vulgaris accumulated high amounts of Cu, the living old roots containing a maximum of 2200 mg kg(-1) Cu and the living stems 1300 mg kg(-1) Cu. Discolouring leaves contained higher Cu concentrations than green leaves. The results indicate Cu accumulation in roots and root-to-shoot transport. Some differences were found between the responses of the three seed provenances, but none of the populations proved to be more resistant to Cu than the others in all the measured responses.  相似文献   

11.
Xue PY  Yan CZ 《Chemosphere》2011,85(7):1176-1181
Worldwide contamination of arsenic in aquatic systems requires the development of a cost-effective, in situ phytoremediation technology. Hydrilla verticillata (L.f.) Royle, a submerged macrophyte widely distributed throughout the world, has the potential to effectively remove heavy metals from water. In order to understand the potential of H. verticillata for As phytofiltration and its impacts on As cycling in the water system, we investigated As accumulation, speciation and translocation in H. verticillata plants. Plant shoots showed a significant accumulation of As, with a maximum of >700 μg g−1 dry weight (DW) after exposure to 20 μM arsenate [As(V)] or arsenite [As(III)] for 4 d, with no significant differences between the As(V) and As(III) treatments (P > 0.05). In addition, results of an in planta transport experiment showed that, after exposure of root and shoot to 2 μM As(V) and As(III) for 4 d, the bioconcentration factor (BCF) in roots for As(V) was almost twofold than that of As(III). Higher As BCFs in roots compared to shoots was also observed. Arsenic accumulated primarily in the cell walls of root cells (>73% of the total As in roots) and in the soluble parts of leaves (>60% of the total As in leaves). Regardless of the form of As supplied [As(III) or As(V)], As(V) was the dominant form in roots and As(III) was the dominant form in leaves. Further, basipetal translocation of As in this plant (?17%) was markedly higher than acropetal translocation (?3%). Because of accumulation of As in the shoot and immobilization of As below ground in roots, H. verticillata is a potential As phytofiltrator for bioremediation.  相似文献   

12.
As part of a study of the phytotoxic risk of spreading contaminated sediments "on soil", a laboratory experiment was carried out to assess the impact of water draining from sediments on peripheral vegetation. Drainage water was obtained in the laboratory by settling three sediments with different pollutants levels, and the supernatant solutions (respectively A1, B1, C1 drainage waters) were used as soaking water for maize (Zea ma?s L.) and ryegrass (Lolium perenne L.). The physicochemical characteristics of the supernatant water, particularly metal contents, showed a pattern of contamination, with C1>A1>B1. The plants tested were grown on soil for 21 days, before being soaked for another 21-day period with drainage water (treatments) and distilled water (control). Biomass parameters (fresh weight, length, etc.), enzymatic activity [glutamine synthetase (GS), phosphoenolpyruvate carboxylase (PEPc)] and Zn, Cu, Cd and Cr contents were measured on both the shoots and roots of each plant. Biomass parameters were stimulated by C1, not affected by A1 and decreased with B1 for maize, whereas they increased for ryegrass in all the treatments. Compared to the control, GS activity was stimulated by C1 in the shoots of both plants and inhibited by treatments B1 and C1 in maize roots. PEPc activity in ryegrass was 1.5-5 times higher with contaminated water treatment, while contrasting effects were observed in maize plants. Both plants showed greater accumulation of chromium and zinc than cadmium and copper. Treatment A1 was found to be less active on plant growth and have a lower impact on the physiological status (enzymatic activities) of both plants. Treatment C1 stimulated the growth and physiological status of the plants, especially in shoots, with higher metal accumulation values in both plants. Treatment B1 was found to show more variable effects on growth indices, enzymatic activity and metal accumulation according to plant species.  相似文献   

13.
Intention, Goal, Scope, Background Aquatic plants have a great potential to function as in situ, on-site biosinks and biofilters of pollutants. They are used for phytoremediation and phytotoxicity studies. Pesticide uptake studies are very important to predict contaminant accumulation, translocation, and transformation. There are a lot of models which have been developed for emergent plants, but there are not any existing models for submerged aquatic plants for assessing pesticide uptake. Objective In this study, uptake of selected pesticides in parrotfeather (Myriophyllum aquaticum) were studied and the results were modeled with the aid of Log Kow and the concentration of pesticides. At the end, the developed model was compared to other existing models. Methods The test was conducted with parrotfeather as a model plant. The bioassay and cultivation of this plant were examined. Pesticide uptake by roots and shoots was determined using 14C-radiolabeled materials. Results and Discussion The results were fitted with an equation that showed a relationship between uptake and lipophilicity of pesticides. The model was compared with other pesticide uptake models developed for other plants. Atrazine and cycloxidim were taken up more by roots than by shoots in comparison to other pesticides used. The total uptake, both in shoots and roots, was lower than for terbutryn and trifluralin. The best appropriate model was developed from the results against the other models seen in the literature. The concentration factors (Root Concentration Factor (RCF) and Submerged Shoot Concentration Factor (SSCF)) increased with a higher Kow of the substances. The Submerged Shoot Concentration Factor (SSCF) revealed a better relationship of the chemicals than did the Root Concentration Factor (RCF). Conclusions In this study, an uptake model was developed for rooted, submerged aquatic plants. Further studies are necessary to develop and compare models with different plants and pesticides. Recommendation and Outlook Such studies as this one may be extended to other environmental pollutants in the aquatic ecosystem and may be employed to evaluate the possibility of using different plants in phytoremediation studies.  相似文献   

14.

Background

This work focuses on the accumulation and mobility properties of arsenic (As) and the effects of phosphate (P) on its movement in Pennisetum clandestinum Hochst (kikuyu grass), grown hydroponically under increasing arsenate (As(V)) concentrations. The uptake of both ions and the relative kinetics show that phosphate is an efficient competitive inhibitor of As(V) uptake. The P/As uptake rate ratios in roots indicate that P is taken up preferentially by P/As transporters. An arsenite (As(III)) efflux from roots was also found, but this decreased when the arsenate concentration in the solution exceeded 5???M.

Methods

Increases in both arsenite and arsenate concentrations in roots were observed when the arsenate concentration in the solution was increased, and the highest accumulation of As(III) in roots was found when plants were grown at 5???M As(V). The low ratios of As accumulated in shoots compared to roots suggest limited mobility of the metalloid within Kikuyu plants.

Results

The results indicate that arsenic resistance in kikuyu grass in conditions of moderate exposure is mainly dependent on the following factors: 1) phosphate nutrition: P is an efficient competitive inhibitor of As(V) uptake because of the higher selectivity of membrane transporters with respect to phosphate rather than arsenate; and 2) a detoxification mechanism including a reduction in both arsenate and arsenite root efflux.

Conclusions

The As tolerance strategy of Kikuyu limits arsenate uptake and As translocation from roots to shoots; therefore, this plant cannot be considered a viable candidate for use in the phytoextraction of arsenic from contaminated soils or water.  相似文献   

15.
Luo C  Shen Z  Li X  Baker AJ 《Chemosphere》2006,63(10):1773-1784
Chemically enhanced phytoextraction is achieved by the application of chelates to soils. Using pot experiments, the effect of the combined application of EDTA and EDDS on the uptake of Cu, Pb, Zn and Cd by Zea mays L. was studied. Among the tested application ratios of 1:1, 1:2, and 2:1 (EDTA/EDDS), 2:1 of EDTA:EDDS was the most efficient ratio for increasing the concentrations of Cu, Pb, Zn and Cd in the shoots. The combined application of 3.33 mmol kg(-1) soil of EDTA+1.67 mmol kg(-1) soil of EDDS produced 650 mg kg(-1) of Pb in the shoots, which was 2.4 and 5.9 times the concentration of Pb in the shoots treated with 5 mmol kg(-1) of EDTA and EDDS alone, respectively. The total phytoextraction of Pb reached 1710 microg kg(-1) soil, which was 2.1 and 6.1 times the total Pb from 5 mmol kg(-1) EDTA and EDDS alone, respectively. The combined application of EDTA and EDDS also significantly increased the translocation of Pb from the roots to the shoots. The mechanism of enhancing the phytoextraction of Pb by the combined application of EDTA+EDDS did not involve a change in the pH of the soil. The increase in the phytoextraction of Pb by the shoots of Z. mays L. was more pronounced than the increase of Pb in the soil solution with the combined application of EDTA and EDDS. It was thought that the major role of EDDS might be to increase the uptake and translocation of Pb from the roots to the shoots of plants.  相似文献   

16.
The response of maize (Zea mays L.) to inorganic arsenic exposure was studied, at the seedling stage under hydroponic conditions, preliminarily in sixteen lines (fourteen hybrids and two inbred lines) and then, more deeply, in six of these lines, selected by showing contrasting differences in their sensitivity to the metalloid. The results indicated that (i) maize is rather tolerant to arsenic toxicity, (ii) arsenite is more phytotoxic than arsenate, (iii) roots are less sensitive than shoots to the metalloid, (iv) a great accumulation of non-protein thiols (probably phytochelatins), without substantial effect on the glutathione content, is produced in roots but not in shoots of arsenic-exposed plants and (v) maize is able to accumulate high levels of arsenic in roots with very low translocation to shoots. The study, thus, suggests that maize, for its very low rate of acropetal transport of arsenic from roots to shoots, may be a safe crop in relation to the risk of entry of metalloid in the food chain and, for being an important bioenergy crop capable of expressing high levels of arsenic tolerance and accumulation in roots, may represent an interesting opportunity for the exploitation of agricultural useless arsenic contaminated lands.  相似文献   

17.
Growth, accumulation and intracellular speciation and distribution of copper (Cu) in Sesbania drummondii was studied using scanning-electron microscopy (SEM), X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). The growth of seedlings was assessed in terms of biomass accumulation. The growth of the seedling was enhanced by 73.5% at a low Cu concentration (50 mg l−1) compared to the control treatment. Additionally, seedling growth was inhibited by 18% at 300 mg l−1 Cu with respect to the control. Copper concentration in roots and shoots was increased with increasing Cu concentration in the growth solution. The accumulation of Cu was found to be higher in roots than in the shoots. At a concentration of 300 mg l−1 Cu, the roots accumulated 27,440 mg Cu kg−1 dry weight (dw) while shoots accumulated 1282 mg Cu kg−1 dw. Seedlings were assessed for photosynthetic activity by measuring chlorophyll a fluorescence parameters: Fv/Fm and Fv/F0 values. Photosynthetic integrity was not affected by any of the Cu treatments. The X-ray absorption spectroscopic (XAS) studies showed that Cu was predominantly present as Cu(II) in Sesbania tissue. In addition, from the XAS studies it was shown that the Cu exists in a mixture of different coordination states consisting of Cu bound to sugars and small organic acids with some possible precipitated copper oxide. From the EXAFS studies, the coordination of Cu was determined to have four equatorial oxygen(nitrogen) ligands at 1.96 Å and two axial oxygen ligands at 2.31 Å. Scanning-electron microscopy studies revealed the distribution of Cu within the seedlings tissues, predominantly accumulated in the cortical and vascular (xylem) regions of root tissues. In the stem, most of the Cu was found within the xylem tissue. However, the deposition of Cu within the leaf tissues was in the parenchyma. The present study demonstrates the mechanisms employed by S. drummondii for Cu uptake and its biotransformation.  相似文献   

18.
The tolerance of Empetrum nigrum to copper and nickel   总被引:2,自引:0,他引:2  
The Cu and Ni tolerance of 3- to 5-year-old cuttings of crowberry (Empetrum nigrum) were tested in controlled conditions. Six levels of Cu (0.1-100 mg l(-1)), five levels of Ni (0-100 mg l(-1)) and nine levels of Cu+Ni were applied. The elongation of the shoots, new shoot and root dry weights indicated an adverse effect of increasing Cu and Ni concentrations. At low Cu levels the addition of Ni decreased the dry weights more than at high Cu levels. The results show that E. nigrum accumulated high concentrations of Cu and Ni mainly in old stem tissue, which contained a maximum of over 3000 mg kg(-1) Cu and 1000 mg kg(-1) Ni. The concentrations of Cu and Ni in E. nigrum were higher than those measured in plants growing in areas near to Cu-Ni smelters, but the accumulation pattern was similar. The survival of the cuttings was not affected suggesting that E. nigrum possesses an internal heavy metal tolerance.  相似文献   

19.
The concentrations of four macroelements (C, N, P, S) and eight trace metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn) were measured in the leaves and roots of the emergent plant, Phragmites communis Trin., and in the shoots and roots of the submersed Najas marina L., taken from Lake Averno (Naples, Italy). Phragmites communis leaves showed higher concentrations of carbon, nitrogen and phosphorus than roots, while the roots exhibited significantly higher concentrations of sulphur and trace metals. Najas marina roots also showed higher concentrations of sulphur and trace metals than shoots, but these differences were less marked than in Phragmites communis except for sulphur. Sulphur was the only macronutrient to show the highest concentrations in the roots. Phragmites communis roots had higher values of Cr, Cu, Fe, Mn and Ni than Najas marina roots. By contrast, Cd, Cr, Fe, Ni, Pb and Zn concentrations were higher in Najas marina shoots than in Phragmites communis leaves. Phragmites communis, available through the year, showing high capability to accumulate trace metals in the roots, appears a good monitor of lake contamination, better than Najas marina.  相似文献   

20.
Six plant species in the family Gramineae were used to investigate the relationship between Cs uptake, nutrient regime and plant growth strategy sensu Grime (1979: Plant Growth Strategies and Vegetation Processes, John Wiley). The roots of 66 day old Elymus repens (L.) Gould., Bromus sterilis L., Agrostis stolonifera L., Anthoxanthum odoratum L., Festuca ovina L. and Nardus stricta L. plants grown in acid-washed sand at high and low nutrient levels were exposed to a 96 h pulse of stable Cs at 0.05 mM, 0.15 mM, 0.3 mM, 1.0 mM and 3.0 mM concentrations. Different nutrient regimes induced large differences in dry wt in E. repens, B. sterilis and A. stolonifera plants but only small differences in N. stricta and F. ovina plants. At high nutrient concentrations, A. stolonifera, A. odoratum, F. ovina and N. stricta shoots showed significantly greater increases in internal Cs concentration with rising external Cs concentrations than did E. repens and B. sterilis shoots. The relationship between increases in shoot and external Cs concentrations was statistically indistinguishable between species in plants grown at the low nutrient concentration. These patterns of Cs uptake ensured that with long-term high K concentrations the more competitive plants (E. repens and B. sterilis) accumulated higher concentrations of Cs from low external concentrations than did non-competitive plants or competitive plants grown at low nutrient levels. It is suggested that the relationship between plant growth strategy sensu Grime (1979) and Cs accumulation patterns may help to explain the different concentrations to which species accumulate radiocaesium from the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号