首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the effects of size of adsorbent, temperature, pH of solution, ionic strength, presence of inorganic substances such as calcium ion, magnesium ions, chloride ions, fertilizers and presence of organic substances such as dissolved organic matter, surfactant, other herbicides on sorption of 2,4-D and atrazine onto rubber granules were investigated. The removal efficiency was more for fine adsorbent particles. Temperature played an important role in sorption process. Temperature effect was endothermic for 2,4-D and exothermic for atrazine, respectively. The removals were maximum at pH 4 for 2,4-D and at pH 6 for atrazine. The presence of other herbicide (butachlor) reduced sorption capacity of rubber granules by approximately 10% for both 2,4-D and atrazine. All other factors had insignificant effect on sorption capacity. The mathematical expressions were developed for predicting the overall percentage removal of 2,4-D and atrazine on the basis of major four controlling factors viz. adsorbent size, temperature, pH and presence of other herbicide.  相似文献   

2.
Smalling KL  Aelion CM 《Chemosphere》2006,62(2):188-196
The degradation and distribution potential of atrazine, a persistent triazine herbicide, into three chemical fractions were measured in coastal aquatic sediments in the laboratory over time. Sediments with varying organic carbon contents were extracted with an organic solvent followed by an alkali hydrolysis reaction, and atrazine, deethylatrazine (DEA) and deisopropylatrazine (DIA) were quantified in the aqueous, solvent, and basic fractions using gas chromatography-mass spectrometry. The total amount of atrazine and its metabolites recovered after 95 days varied by site and ranged from 5% to 30% in which 95% was atrazine found primarily in the solvent fraction. Sediment organic carbon was positively correlated with the distribution of atrazine into the basic fraction and the decline in the total amount recovered. No DIA was detected in laboratory spiked sediments and transformation to DEA was limited in all sediments and made up less than 1% of the mass balance. The production and persistence of DEA were inversely correlated to organic carbon; sediments with less carbon and limited binding sites had increased formation and persistence of DEA. A secondary metabolite, methylated atrazine (M-ATR) not previously documented to be derived from atrazine, was chemically produced, detected in all sediments and time points, and concentrations were an order of magnitude higher than DEA. Based on results from spiked estuarine sediments, atrazine and M-ATR may have the potential to persist in the environment while DEA and DIA may not be an ecological threat due to their limited formation.  相似文献   

3.
Displacement of lindane presorbed on the pristine and OH-functionalized multiwalled carbon nanotubes (MWCNTs) by phenanthrene, naphthalene, and atrazine, and competition of these compounds with lindane on the aforementioned sorbents were investigated. Displacement of lindane presorbed on MWCNTs by atrazine, naphthalene, and phenanthrene, and competitive sorption effect of these chemicals with lindane on MWCNTs followed the same order: atrazine > naphthalene > phenanthrene. The lowest competition and displacement of lindane by phenanthrene were mainly because of the strong interactions between these two chemicals, whereas interaction of lindane with atrazine and naphthalene was quite low. The more pronounced displacement of lindane by atrazine than naphthalene and higher competitive sorption of lindane with atrazine than with naphthalene can be ascribed to the larger molecular volume of atrazine; thus, the steric hindrance effect is higher relative to naphthalene. This study is valuable for evaluating influence of the coexisting organic compounds on sorption of primary solute towards MWCNTs in the environment.  相似文献   

4.
Atrazine and metolachlor were more strongly retained on earthworm (Lumbricus terrestris L.) castings than on soil, suggesting that earthworm castings at the surface or at depth can reduce herbicide movement in soil. Herbicide sorption by castings was related to the food source available to the earthworms. Both atrazine and metolachlor sorption increased with increasing organic carbon (C) content in castings, and Freundlich constants (Kf values) generally decreased in the order: soybean-fed > corn-fed > not-fed-earthworm-castings. The amount of atrazine or metolachlor sorbed per unit organic carbon (Koc values) was significantly greater for corn-castings compared with other castings, or soil, suggesting that the composition of organic matter in castings is also an important factor in determining the retention of herbicides in soils. Herbicide desorption was dependent on both the initial herbicide concentration, and the type of absorbent. At small equilibrium herbicide concentrations, atrazine desorption was significantly greater from soil than from any of the three casting treatments. At large equilibrium herbicide concentrations, however, the greater organic C content in castings had no significant effect on atrazine desorption, relative to soil. For metolachlor, regardless of the equilibrium herbicide concentration, desorption from soybean- and corn-castings treatments was always less than desorption from soil and not-fed earthworm castings treatments. The results of this study indicate that, under field conditions, the extent of herbicide retention on earthworm castings will tend to be related to crop and crop residue management practices.  相似文献   

5.
To simulate runoff from agricultural lands, atrazine was applied to aquatic enclosures (112 m(3)) on 1 June 1983 at a concentration of 0.1 mg litre(-1). Thirty-five days later the nominal concentration was increased to 0.155 mg litre(-1). Treated enclosures became clearer with Secchi disc readings of 3.6 m compared to non-treated controls (2.9 m). Less than 5% of the first atrazine addition disappeared during the first 35 days and little effect on biological activity was observed. However, with the second enrichment the rate of loss of atrazine was rapid (t(1/2) = 150 days), ammonium, calcium, dissolved inorganic carbon and nitrate levels were higher, while oxygen, chlorophyll, dissolved organic carbon and particulate organic carbon concentrations were lower in the treated enclosures. These water quality changes cannot be explained by herbicide-water chemistry interactions alone, thereby suggesting an indirect effect as a consequence of atrazine inhibition on photosynthesis and possibly other microbial processes.  相似文献   

6.
Chung N  Alexander M 《Chemosphere》2002,48(1):109-115
Sixteen soils with markedly different properties were analyzed to determine their porosity in the range of 7 nm-10 microm, cation-exchange capacity (CEC), surface area and clay mineralogy. The extent of sequestration of phenanthrene and atrazine has been shown to differ markedly among these soils. Correlations were sought between soil characteristics and four methods of measuring sequestration. Simple correlation analysis showed that some but not all measures of phenanthrene and atrazine sequestration were highly correlated with organic C content, nanoporosity or CEC but not other properties of the soils. Multiple linear-regression analysis suggested an interaction of organic C content with soil texture, CEC or surface area in determining the extent of atrazine or phenanthrene sequestration. We conclude that organic C content, CEC and other properties of soil may be useful predictors of sequestration of some compounds.  相似文献   

7.
Atrazine and phenanthrene (Phen) sorption by nonhydrolyzable carbon (NHC), black carbon (BC), humic acid (HA) and whole sediment and soil samples was examined. Atrazine sorption isotherms were nearly linear. The single-point organic carbon (OC)-normalized distribution coefficients (KOC) of atrazine for the isolated HA1, NHC1 and BC1 from sediment 1 (ST1) were 36, 550, and 1470 times greater than that of ST1, respectively, indicating the importance of sediment organic matter, particularly the condensed fractions (NHC and BC). Similar sorption capacity of atrazine and Phen by NHC but different isotherm nonlinearity indicated different sorption domains due to their different structure and hydrophobicity. The positive relationship between (O + N)/C ratios of NHC and atrazine log KOC at low concentration suggests H-bonding interactions. This study shows that sediment is probably a less effective sorbent for atrazine than Phen, implying that atrazine applied in sediments or soils may be likely to leach into groundwater.  相似文献   

8.
Abstract

Atrazine and metolachlor were more strongly retained on earthworm (Lumbricus terrestris L.) castings than on soil, suggesting that earthworm castings at the surface or at depth can reduce herbicide movement in soil. Herbicide sorption by castings was related to the food source available to the earthworms. Both atrazine and metolachlor sorption increased with increasing organic carbon (C) content in castings, and Freundlich constants (Kf values) generally decreased in the order: soybean‐fed > corn‐fed > not‐fed‐earthworm‐castings. The amount of atrazine or metolachlor sorbed per unit organic carbon (Koc values) was significantly greater for corn‐castings compared with other castings, or soil, suggesting that the composition of organic matter in castings is also an important factor in determining the retention of herbicides in soils. Herbicide desorption was dependent on both the initial herbicide concentration, and the type of absorbent. At small equilibrium herbicide concentrations, atrazine desorption was significantly greater from soil than from any of the three casting treatments. At large equilibrium herbicide concentrations, however, the greater organic C content in castings had no significant effect on atrazine desorption, relative to soil. For metolachlor, regardless of the equilibrium herbicide concentration, desorption from soybean‐ and corn‐castings treatments was always less than desorption from soil and not‐fed earthworm castings treatments. The results of this study indicate that, under field conditions, the extent of herbicide retention on earthworm castings will tend to be related to crop and crop residue management practices.  相似文献   

9.
Effect of dye compounds on the adsorption of atrazine by natural sediment   总被引:2,自引:0,他引:2  
Tao QH  Tang HX 《Chemosphere》2004,56(1):31-38
The overall objective of this research is to investigate competitive adsorption between atrazine (AT) and dye compounds in the natural aquatic sediment. The sorbent was sediment obtained from Guanting Reservoir (Beijing, China), which contained 25% sand, 67% silt, 8% clay, and 2.06% organic carbon. Batch adsorption experiments were conducted at various Ca2+ concentration, pH levels, temperatures, and introducing conditions of dye compounds. Compared with the dye-free system, both of dyes including Congo red (CR) and methylene blue (MB) reduce the adsorption of atrazine over the range of dye concentrations examined, with the adsorption percentage of atrazine decreasing about 14-30%. And the competition between AT and MB is much stronger than that between AT and CR. The adsorption experimental data points have been fitted to the Freundlich equation in order to calculate the adsorption capacities (Kf) of the samples; Kf values range from 1.669 micromol/kg for the MB-AT sample up to 3.738 micromol/kg for the AT-alone sample. By contrast with the single-solute adsorption isotherm, both simultaneous adsorption and dye preloading inhibit the adsorption of atrazine. As for AT preloading, the impacts of CR and MB are different on the desorption of atrazine. As compared to the atrazine desorption without dye compounds, a certain amounts of atrazine molecules are replaced by MB in AT preloading system, while in CR solution AT is adsorbed strongly on the sediment and could not be replaced by CR. The result suggests that micropore constriction by CR reduces the desorption rate of atrazine.  相似文献   

10.
Reliable predictions of the fate and behaviour of pesticides in soils is dependent on the use of accurate ‘equilibrium’ sorption constants and/or rate coefficients. However, the sensitivity of these parameters to changes in the physicochemical characteristics of soil solids and interstitial solutions remains poorly understood. Here, we investigate the effects of soil organic matter content, particle size distribution, dissolved organic matter and the presence of crop residues (wheat straw and ash) on the sorption of the herbicides atrazine and isoproturon by a clay soil. Sorption Kd's derived from batch ‘equilibrium’ studies for both atrazine and isoproturon by <2 mm clay soil were approximately 3.5 L/kg. The similarity of Koc's for isoproturon sorption by the <2 mm clay soil and <2 mm clay soil oxidised with hydrogen peroxide suggested that the sorption of this herbicide was strongly influenced by soil organic matter. By contrast, Koc's for atrazine sorption by oxidised soil were three times greater than those for <2 mm soil, indicating that the soil mineral components might have affected sorption of this herbicide. No significant differences between the sorption of either herbicide by <2 mm clay soil and (i) <250 μm clay soil, (ii) clay soil mixed with wheat straw or ash at ratios similar to those observed under field conditions, (iii) <2 mm clay soil in the presence of dissolved organic matter as opposed to organic free water, were observed.  相似文献   

11.
In the Mezquital Valley, Mexico, crops have been irrigated with untreated municipal wastewater for more than a century. Atrazine has been applied to maize and alfalfa grown in the area for weed control for 15 years. Our objectives were to analyse (i) how wastewater irrigation affects the filtering of atrazine, and (ii) if the length of irrigation has a significant impact. We compared atrazine sorption to Phaeozems that have been irrigated with raw wastewater for 35 (P35) and 85 (P85) years with sorption to a non-irrigated (P0) Phaeozem soil under rainfed agriculture. The use of bromide as an inert water tracer in column experiments and the subsequent analysis of the tracers' breakthrough curves allowed the calibration of the hydrodynamic parameters of a two-site non equilibrium convection-dispersion model. The quality of the irrigation water significantly altered the soils' hydrodynamic properties (hydraulic conductivity, dispersivity and the size of pores that are hydraulically active). The impacts on soil chemical properties (total organic carbon content and pH) were not significant, while the sodium adsorption ratio was significantly increased. Sorption and desorption isotherms, determined in batch and column experiments, showed enhanced atrazine sorption and reduced and slower desorption in wastewater-irrigated soils. These effects increased with the length of irrigation. The intensified sorption-desorption hysteresis in wastewater-irrigated soils indicated that the soil organic matter developed in these soils had fewer high-energy, easily accessible sorption sites available, leading to lower and slower atrazine desorption rates. This study leads to the conclusion that wastewater irrigation decreases atrazine mobility in the Mezquital valley Phaeozems by decreasing the hydraulic conductivity and increasing the soil's sorption capacity.  相似文献   

12.
In the Mezquital Valley, Mexico, crops have been irrigated with untreated municipal wastewater for more than a century. Atrazine has been applied to maize and alfalfa grown in the area for weed control for 15 years. Our objectives were to analyse (i) how wastewater irrigation affects the filtering of atrazine, and (ii) if the length of irrigation has a significant impact. We compared atrazine sorption to Phaeozems that have been irrigated with raw wastewater for 35 (P35) and 85 (P85) years with sorption to a non-irrigated (P0) Phaeozem soil under rainfed agriculture. The use of bromide as an inert water tracer in column experiments and the subsequent analysis of the tracers’ breakthrough curves allowed the calibration of the hydrodynamic parameters of a two-site non equilibrium convection-dispersion model. The quality of the irrigation water significantly altered the soils’ hydrodynamic properties (hydraulic conductivity, dispersivity and the size of pores that are hydraulically active). The impacts on soil chemical properties (total organic carbon content and pH) were not significant, while the sodium adsorption ratio was significantly increased. Sorption and desorption isotherms, determined in batch and column experiments, showed enhanced atrazine sorption and reduced and slower desorption in wastewater-irrigated soils. These effects increased with the length of irrigation. The intensified sorption-desorption hysteresis in wastewater-irrigated soils indicated that the soil organic matter developed in these soils had fewer high-energy, easily accessible sorption sites available, leading to lower and slower atrazine desorption rates. This study leads to the conclusion that wastewater irrigation decreases atrazine mobility in the Mezquital valley Phaeozems by decreasing the hydraulic conductivity and increasing the soil's sorption capacity.  相似文献   

13.
The water quality parameters nitrate-nitrogen, dissolved organic carbon, and suspended solids were correlated with photodegradation rates of the herbicides atrazine and 2,4-D in samples collected from four sites in the Columbia River Basin, Washington, USA. Surface water samples were collected in May, July, and October 2010 and analyzed for the water quality parameters. Photolysis rates for the two herbicides in the surface water samples were then evaluated under a xenon arc lamp. Photolysis rates of atrazine and 2,4-D were similar with rate constants averaging 0.025 h−1 for atrazine and 0.039 h−1 for 2,4-D. Based on multiple regression analysis, nitrate-nitrogen was the primary predictor of photolysis for both atrazine and 2,4-D, with dissolved organic carbon also a predictor for some sites. However, at sites where suspended solids concentrations were elevated, photolysis rates of the two herbicides were controlled by the suspended solids concentration. The results of this research provide a basis for evaluating and predicting herbicide photolysis rates in shallow surface waters.  相似文献   

14.
For the first time, regulatory protocols defined in the OECD guidelines were applied to determine the fate properties of a nanopesticide in two agricultural soils with contrasting characteristics. The nanoformulation studied had no effect on the degradation kinetics of atrazine indicating that (1) the release of atrazine from the polymer nanocarriers occurred rapidly relative to the degradation kinetics (half-lives 36–53 days) and/or that (2) atrazine associated with the nanocarriers was subject to biotic or abiotic degradation. Sorption coefficients, derived from a batch and a centrifugation technique at a realistic soil-to-solution ratio, were higher for the nanoformulated atrazine than for the pure active ingredient. Results indicate that the nanoformulation had an effect on the fate of atrazine. However, since the protocols applied were designed to assess solutes, conclusions about the transport of atrazine loaded onto the nanocarriers should be made extremely cautiously. The centrifugation method applied over time (here over 7 days) appears to be a useful tool to indirectly assess the durability of nanopesticides under realistic soil-to-solution ratios and estimate the period of time during which an influence on the fate of the active ingredient may be expected. More detailed investigations into the bioavailability and durability of nanopesticides are necessary and will require the development of novel methods suitable to address both the “nano” and “organic” characteristics of polymer-based nanopesticides.  相似文献   

15.
Thin-layer chromatography plates were exposed at three different locations in Bavaria for 3-week periods during the growing season of maize. The adsorption of traces of atrazine was detected by thin-layer chromatography, GC-MS, and by an enzyme immunoassay. It was restricted to the sowing season, which coincides with the application of atrazine. The herbicide could not be detected after this time. The simplicity of the adsorption device, combined with a serological assay, render this procedure suitable for detecting airborne organic pollutants.  相似文献   

16.
The purpose of this study was to assess atrazine mineralization in surface and subsurface samples retrieved from vertical cores of agricultural soils from two farm sites in Ohio. The Defiance site (NW-Ohio) was on soybean-corn rotation and Piketon (S-Ohio) was on continuous corn cultivation. Both sites had a history of atrazine application for at least a couple of decades. The clay fraction increased at the Defiance site and the organic matter and total N content decreased with depth at both sites. Mineralization of atrazine was assessed by measurement of 14CO2 during incubation of soil samples with [U-ring-14C]-atrazine. Abiotic mineralization was negligible in all soil samples. Aerobic mineralization rate constants declined and the corresponding half-lives increased with depth at the Defiance site. Anaerobic mineralization (supplemented with nitrate) was mostly below the detection at the Defiance site. In Piketon samples, the kinetic parameters of aerobic and anaerobic biomineralization of atrazine displayed considerable scatter among replicate cores and duplicate biometers. In general, this study concludes that data especially for anaerobic biomineralization of atrazine can be more variable as compared to aerobic conditions and cannot be extrapolated from one agricultural site to another.  相似文献   

17.
Atrazine is a persistent organic pollutant in the environment which affects not only terrestrial and aquatic biota but also human health. Since its removal from the environment is needed, atrazine biodegradation is achieved in the present study using the bacterium Rhodococcus sp. BCH2 isolated from soil, long-term treated with atrazine. The bacterium was capable of degrading about 75 % atrazine in liquid medium having pH 7 under aerobic and dark condition within 7 days. The degradation ability of the bacterium at various temperatures (20–60 °C), pH (range 3–11), carbon (glucose, fructose, sucrose, starch, lactose, and maltose), and nitrogen (ammonium molybdate, sodium nitrate, potassium nitrate, and urea) sources were studied for triumph optimum atrazine degradation. The results indicate that atrazine degradation at higher concentrations (100 ppm) was pH and temperature dependent. However, glucose and potassium nitrate were optimum carbon and nitrogen source, respectively. Atrazine biodegradation analysis was carried out by using high-performance thin-layer chromatography (HPTLC), Fourier transform infrared spectroscopy (FTIR), and liquid chromatography quadrupole time-of-flight (LC/Q-TOF-MS) techniques. LC/Q-TOF-MS analysis revealed formation of various intermediate metabolites including hydroxyatrazine, N-isopropylammelide, deisopropylhydroxyatrazine, deethylatrazine, deisopropylatrazine, and deisopropyldeethylatrazine which was helpful to propose biochemical degradation pathway of atrazine. Furthermore, the toxicological studies of atrazine and its biodegraded metabolites were executed on earthworm Eisenia foetida as a model organism with respect to enzymatic (SOD and Catalase) antioxidant defense mechanism and lipid peroxidation studies. These results suggest innocuous degradation of atrazine by Rhodococcus sp. BCH2 in nontoxic form. Therefore the Rhodococcus sp.BCH2 could prove a valuable source for the eco-friendly biodegradation of atrazine pesticide.  相似文献   

18.
Solid state fermentation (SSF) was investigated as a means to dispose of two commonly used pesticides, chlorpyrifos (O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate) and atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine). SSF experiments were carried out in bench-scale bioreactors (equipped with CO2 and volatile organic traps) containing a mixture of lignocellulosic materials and a radiolabeled pesticide. Ethyl acetate-extractable, alkali soluble, and alkali insoluble fractions were evaluated for radioactivity following a 60-d incubation period at 40 degrees C. The majority of the [2,6-pyridyl-14C]chlorpyrifos was associated with the ethyl acetate extract (about 74%), 17% was trapped as organic volatiles by polyurethane foam traps and < 0.5% of the chlorpyrifos was mineralized to CO2. Only small amounts of the radioactivity were associated with alkali soluble (0.0003%) and alkali insoluble (0.3%) fractions. In the [14C-U-ring]atrazine bioreactors, very little of the radioactivity volatilized (<0.5%) and less than 0.5% was mineralized to CO2. Approximately 57% of the applied radioactivity was associated with the ethyl acetate extract while 9% and 24% of the radioactivity was associated with the alkali soluble (humic and fulvic acids) and alkali insoluble fractions, respectively. Possible reaction mechanisms by which covalent bonds could be formed between atrazine (or metabolites) and humic substances were investigated. The issue of bound atrazine residue (alkali soluble fraction) was at least partially resolved. Oxidative coupling experiments revealed that formation of covalent bond linkages between amino substituent groups of atrazine residue and humic substances is highly unlikely.  相似文献   

19.
This study examined the sorption of atrazine by hydroxy-Fe interlayered montmorillonite (FeMt) and its hydroquinone (FeMtHQ), citrate (FeMtCt) and catechol (FeMtCC) complexes as well as by hydroxy-Al interlayered montmorillonite (AlMt) and its hydroquinone (AlMtHQ) and citrate (AlMtCt) complexes. Found among the clays were sorption distribution coefficients (K(d)) ranging from 24 to 123 mL g(-1) and maximum sorption (M) ranging from 2.2 to 16.8 microg g(-1). Both K(d) and M decreased in the order of FeMtCC > FeMtHQ > AlMtHQ > (AlMt = FeMt) > (AlMtCt = FeMtCt). The pH was negatively correlated with both K(d) (r = -0.90, p < 0.001) and M (r = -0.81, p < 0.001). When interlayered clays were associated with humified material (FeMtCC, FeMtHQ, AlMtHQ), both K(d) (r > 0.96, p < 0.01) and M (r > 0.94, p < 0.01) were highly positively correlated with total organic C and alkali-soluble C. However, clays with non-humified organic compounds (FeMtCt and AlMtCt) sorbed less atrazine than clays without any organic C (FeMt and AlMt). This suggests that functional groups of Fe-OH and Al-OH in FeMt and AlMt reduced the available sorption sites for atrazine by making complexes with citrate ions while forming FeMtCt and AlMtCt. The atrazine was sorbed through the hydrophobic interactions with organic compound surfaces as well as through H-bonding and ionic bonding with clay-mineral surfaces.  相似文献   

20.
Macro-porosity and leaching of atrazine in tilled and orchard loamy soils   总被引:1,自引:0,他引:1  
Atrazine is the most commonly detected herbicide in the groundwater. Leaching of atrazine largely depends on soil management practices. The aim of this study was to examine leaching of atrazine in tilled and orchard silty loam soils. The experimental objects included: conventionally tilled field (CT) with main tillage operations including pre-plow (10 cm) + harrowing, mouldboard ploughing (20 cm), and a 35 year-old apple orchard (OR) with a permanent sward. To determine leaching of atrazine soil columns of undisturbed structure were taken with steel cylinders of 21.5 cm diameter and 20 cm high from the depth of 0–20 cm. All columns were equilibrated at water content corresponding to field capacity (0.21 kg kg−1). Atrazine suspended in distilled water was dripped uniformly onto the surface of each column. Then water was infiltrated and breakthrough times of leachates were recorded. Atrazine concentration in the leachates was determined by means of HPLC Waters. Macro-porosity and percolation rate were higher in OR than CT soil. Cumulative recovery % of the atrazine applied was 1.267% for OR and approximately one third more from the CT soil but the rate of leaching (per unit of time) was greater from the OR soil. The lower leaching under OR than CT can be due to a greater SOM and the presence of earthworm burrows with organic burrow linings that could adsorb atrazine and contribute to preferential flow allowing solutes to bypass parts whereas the greater rate of leaching due to a greater infiltration rate.The results indicate potential of management practices for minimizing atrazine leaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号