首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Migration distance is supposed to represent an important selection pressure shaping physiological and morphological properties. Previous work has focussed on this effect, while the importance of ecological barriers in this context has been rarely considered. We studied two subspecies of a migratory songbird, the northern wheatear (Oenanthe oenanthe oenanthe and O. o. leucorhoa L.), on an island in the North Sea. The former subspecies reaches their Scandinavian breeding areas after a short sea crossing, whereas leucorhoa northern wheatears cross the North Atlantic towards Iceland, Greenland or Canada. Physiological traits (fuel deposition rate) and wings’ aerodynamic properties (wing pointedness independent of body size), both affecting migration speed, were hypothesized to be more pronounced in leucorhoa than in oenanthe northern wheatears. Within subspecies, the physiological and aerodynamic properties were hypothesized to explain arrival date at the stopover site with “fast migrants” arriving early. Physiological and aerodynamic properties in leucorhoa northern wheatears lead to a faster and less costly migration, favouring a sea crossing, but in trade-off lower flight manoeuvrability than in oenanthe birds. Wings’ aerodynamic properties affected the seasonal occurrence of leucorhoa females, whereas the physiological traits significantly influenced arrival date in oenanthe individuals. The less risky migration route in oenanthe birds with few short sea crossings may have favoured higher flight manoeuvrability for foraging (less pointed wings), in trade-off an energetically more costly flight. Hence, not the migration distance itself, but the presence/absence of a sea barrier presents an important selection pressure in migratory land birds favouring low flight costs.  相似文献   

2.
In a field experiment on the island of Helgoland (southeast North Sea), we investigated whether migration strategy or competition between the sexes cause the differential timing of spring migration of male and female northern wheatears (Oenanthe oenanthe) (males migrating earlier). The study included two subspecies, heading towards Greenland/Iceland and Scandinavia, respectively, and is based on colour-ringing and remote weighing of individuals. Despite food offered ad libitum, most Scandinavian birds left the island on the day of arrival or stayed only 1–3 days, whereas more than half of Greenlandic/Icelandic birds stayed for up to 12 days and refuelled rapidly. In the latter subspecies, males showed a positive correlation of departure fuel load and fuel deposition rate, resembling time-minimizers in optimal migration theory. In contrast, females departed irrespective of fuel deposition rate, with an approximately constant level of fuel stores. This level was lower than in males, but sufficient to enable by-passing of stopover sites en route, allowing us to regard females as time-minimizers also. Since females are not able to reach Greenland without additional refuelling elsewhere and males appeared to have a larger potential for by-passing stopover sites, time-selection seems to be more pronounced in males and may be the reason for earlier migration of males. Intraspecific aggressive interactions between colour-ringed birds were predominantly won by the initiator, by males and by larger birds, whereas fuel load and subspecies did not affect the outcome. Although compared to females, males were more often dominant at the feeding stations or held territories, refuelling patterns could not be explained by dominance. Subordinate or non-territorial birds did not refuel at a lower rate or depart with lower fuel loads than dominant or territorial birds. In non-territorial birds, the restricted access to feeding stations was made up with larger doses of food taken per visit, leading to the same energy intake as that of dominant and territorial birds. Therefore, competition during stopover could be eliminated as the reason for differential timing of migration of male and female wheatears, but this result may be species-specific.Communicated by W. Wiltschko  相似文献   

3.
Most migrating birds alternate flight bouts with stopovers, during which they rest and replenish the fuel used during flight (refueling). The rate of refueling (fuel deposition rate, FDR) affects stopover duration, and hence is an important determinant of the overall time required for migration. Although environmental and endogenous factors affect FDR, the urge to refuel depends on the anticipated distance to be travelled and possibly also on the amount of fuel used during the flight preceding stopover. Combining a field study with a fasting–refueling experiment on long-term captive songbirds, we tested whether the extent of fuel loss prior to refueling indeed affects FDR. In the field study, we took a comparative approach and determined FDR in two subspecies of northern wheatear (Oenanthe oenanthe) that differ greatly in the distance flown, and thus the extent of fuel used to reach our study (stopover) site. As both winter in western sub-Sahelian Africa, they face the same remaining migration distance. We found that FDR was higher in the subspecies that uses more fuel to get to our study site. Solidifying this result, in the experiment on captive northern wheatears, we found that the extent of fuel loss as a consequence of fasting explained most of the variation in subsequent FDR. The observation that experimental birds losing little fuel did not maximize their FDR suggests there are costs to rapid refueling. Our study shows that FDR is shaped not just by current environmental and endogenous conditions but also by fuel loss prior to refueling.  相似文献   

4.
How migratory birds decide when to leave a stopover site is important to the understanding of bird migration strategies. Our study looks at how body condition and the weather affect the decision to depart on nocturnal migratory flight. During two autumn migration seasons (2002–2003), we radio tracked 51 first-year European robins, Erithacus rubecula, at a stopover site on the Courish Spit (Eastern Baltic) from the first day after landing until their migratory departure. The tagged robins stopped over for 1–14 days. There was no clear relationship between stopover duration and energetic condition on arrival. Weather conditions (wind, precipitation, and cloud cover) on departure differed measurably between years. In 2002, robins took off mainly under following winds and clear skies. In 2003, there were mainly light head winds and partially cloudy or overcast skies. This could be explained by the year-specific role of weather factors in making the decision to depart. In both years, robins making short (1–2 days) stopovers took off in more varied weather situations than those individuals with long stopovers. This suggests that robins from the former group were more inclined to continue with migration than longer-stay birds that, apart from re-fuelling, could be waiting for favourable weather. The lack of a relationship between stopover duration and body condition and some departures under unfavourable weather conditions suggest that endogenous spatiotemporal programmes may play an important role in controlling stopover duration in robins.  相似文献   

5.
Behaviour on migration was often suggested to be selected for time-minimising strategies. Current optimality models predict that optimal fuel loads at departure from stopover sites should increase with increasing fuel deposition rates. We modified such models for the special case of the east Atlantic crossing of the Northern Wheatear (Oenanthe oenanthe). From optimality theory, we predict that optimal time-minimising behaviour in front of such a barrier should result in a positive correlation between fuel deposition rates and departure fuel loads only above a certain threshold, which is the minimum fuel load (f min) required for the barrier crossing. Using a robust range equation, we calculated the minimum fuel loads for different barrier crossings and predict that time-minimising wheatears should deposit a minimum of 24% fuel in relation to lean body mass (m 0 ) for the sea crossing between Iceland and Scotland. Fuel loads of departing birds in autumn in Iceland reached this value only marginally but showed positive correlation between fuel deposition rate (FDR) and departure fuel load (DFL). Birds at Fair Isle (Scotland) in spring, which were heading towards Iceland or Greenland, were significantly heavier and even showed signs of overloading with fuel loads up to 50% of lean body mass. Departure decisions of Icelandic birds correlated significantly with favourable wind situations when assuming a migration direction towards Spain; however, the low departure fuel loads contradict a direct non-stop flight.  相似文献   

6.
Whether or not a migratory songbird embarks on a long-distance flight across an ecological barrier is likely a response to a number of endogenous and exogenous factors. During autumn 2008 and 2009, we used automated radio tracking to investigate how energetic condition, age, and weather influenced the departure timing and direction of Swainson’s thrushes (Catharus ustulatus) during migratory stopover along the northern coast of the Gulf of Mexico. Most birds left within 1 h after sunset on the evening following capture. Those birds that departed later on the first night or remained longer than 1 day were lean. Birds that carried fat loads sufficient to cross the Gulf of Mexico generally departed in a seasonally appropriate southerly direction, whereas lean birds nearly always flew inland in a northerly direction. We did not detect an effect of age or weather on departures. The decision by lean birds to reorient movement inland may reflect the suitability of the coastal stopover site for deposition of fuel stores and the motivation to seek food among more extensive forested habitat away from the barrier.  相似文献   

7.
Time of departure and landing of nocturnal migrants are of great importance for understanding migratory strategy used by birds. It allows us to estimate flying time and hence the distance that migrants cover during a single night. In this paper, I studied the temporal schedule of nocturnal departures of European robins during spring migration. The study was done on the Courish Spit on the Baltic Sea in 1998–2003 by retrapping 51 ringed birds in high mist nets during nocturnal migratory departure. Take-offs of individual birds occurred between the first and tenth hour after sunset (median 176 min after sunset). Departure time was not related to fuel stores at arrival and departure, stopover duration and progress of the season. The results suggest that one reason for temporal variation in take-off time was differential response of European robins with high and low motivation to depart to such triggers as air pressure and its trend. If these parameters reach a certain minimum threshold shortly before sunset, robins with a high migratory motivation take off in the beginning of the night. When air pressure or its trend reaches a maximum, it may trigger to take off later during the night birds with lower initial motivation for departure, including those that have low refuelling efficiency. In regulation of timing of take-offs of robins, an important role is also played by their individual endogenous circadian rhythm of activity which is related to the environment in a complex way.  相似文献   

8.
We studied foraging activity of giant petrels during the incubation period, by simultaneously deploying activity recorders and satellite transmitters on northern (Macronectes halli) and southern giant petrels (Macronectes giganteus) at Bird Island (South Georgia, Antarctica) between 29 October and 26 December 1998. Satellite tracking showed two types of trips: (1) coastal trips, all undertaken by male northern giant petrels, to the nearby South Georgia mainland, presumably foraging on seal and penguin carcasses on beaches, and (2) pelagic trips, foraging at sea for marine prey or potentially scavenging on distant archipelagos (e.g. South Sandwich, Falkland or South Orkney Islands). Activity recorder data were consistent with the types of trip defined by the satellite tracking data, with median wet activity (time spent at the sea surface) during pelagic trips being 41%, but only 14% on coastal trips. On pelagic trips, there was a significant negative correlation between the duration of wet periods and the speed of travel between satellite uplinks. Mean travelling speed between uplinks was greater during day than night for both types of trips, suggesting that giant petrels prefer to travel during daylight and are less active at night. The scarcity of wet periods during the night in giant petrels foraging to the South Georgia coast (median=3%, range=1-9%) indicates that such birds spent almost all night on land. Likewise, the scarcity of wet periods at night for three birds foraging 700-1,000 km south of Bird Island, where there is no land but abundant icebergs, suggests these birds were resting on the icebergs at night. In addition to the adaptations to scavenging on carrion, pelagic trips by giant petrels contain elements similar to those of albatrosses, indicating a complexity to giant petrel lifestyle hitherto unrecognised.  相似文献   

9.
Migrating birds often alternate between flight steps, when distance is covered and energy consumed, and stopover periods, when energy reserves are restored. An alternative strategy is fly-and-forage migration, useful mainly for birds that hunt or locate their prey in flight, and thus, enables birds to combine foraging with covering migration distance. The favourability of this strategy in comparison with the traditional stopover strategy depends on costs of reduced effective travel speed and benefits of offsetting energy consumption during migration flights. Evaluating these cost-benefit effects, we predict that fly-and-forage migration is favourable under many conditions (increasing total migration speed), both as a pure strategy and in combination with stopover behaviour. We used the osprey (Pandion haliaetus) as test case for investigating the importance of this strategy during spring and autumn migration at a lake in southern Sweden. The majority, 78%, of passing ospreys behaved according to the fly-and-forage migration strategy by deviating from their migratory track to visit or forage at the lake, while 12% migrated past the lake without response, and 10% made stopovers at the lake. Foraging success of passing ospreys was almost as good as for birds on stopover. Timing of foraging demonstrated that the birds adopted a genuine fly-and-forage strategy rather than intensified foraging before and after the daily travelling period. We predict that fly-and-forage migration is widely used and important among many species besides the osprey, and the exploration of its occurrence and consequences will be a challenging task in the field of optimal migration.  相似文献   

10.
It has been argued that the body mass levels achieved by birds are determined by the trade-off between risks of starvation and predation. Birds have also been found to reduce body mass in response to an increased predation risk. During migration, the need of extra fuel for flights is obvious and crucial. In this study, migratory blackcaps (Sylvia atricapilla) were subject to an experimental stopover situation where the predation risk was manipulated by exposure to a stuffed predator. Blackcaps that perceived an imminent risk of predation increased their food intake and fuel deposition rate during the first period of stopover compared with a control group. The pattern of night activity indicates that birds that were exposed to the predator also chose to leave earlier than birds in the control group. Since there was no cover present at the stopover site, birds might have perceived the risk of predation as higher regardless of whether they were foraging or not. Under such circumstances it has been predicted that birds should increase their foraging activity. The findings in this study clearly indicate that birds are able to adjust their stopover behaviour to perceived predation risk. Received: 8 January 1997 / Accepted after revision: 11 April 1997  相似文献   

11.
Recent experiments exposing migratory birds to altered magnetic fields simulating geographical displacements have shown that the geomagnetic field acts as an external cue affecting migratory fuelling behaviour. This is the first study investigating fuel deposition in relation to geomagnetic cues in long-distance migrants using the western passage of the Mediterranean region. Juvenile wheatears (Oenanthe oenanthe) were exposed to a magnetically simulated autumn migration from southern Sweden to West Africa. Birds displaced parallel to the west of their natural migration route, simulating an unnatural flight over the Atlantic Ocean, increased their fuel deposition compared to birds experiencing a simulated migration along the natural route. These birds, on the other hand, showed relatively low fuel loads in agreement with earlier data on wheatears trapped during stopover. The experimental displacement to the west, corresponding to novel sites in the Atlantic Ocean, led to a simulated longer distance to the wintering area, probably explaining the observed larger fuel loads. Our data verify previous results suggesting that migratory birds use geomagnetic cues for fuelling decisions and, for the first time, show that birds, on their first migration, can use geomagnetic cues to compensate for a displacement outside their normal migratory route, by adjusting fuel deposition.  相似文献   

12.
There is a large literature dealing with daily foraging routines of wild birds during the non-breeding season. While different laboratory studies have showed that some bird activity patterns are a persistent property of the circadian system, most of field studies preclude the potential role of an endogenous circadian rhythm in controlling bird’s foraging routines. In this study we compared the patterns of diurnal foraging activity and intake rates of migrating black-tailed godwits, Limosa limosa (radio-tagged and non-tagged individuals) at two stopover sites (habitats) with different environmental characteristics, aiming at identifying proximate factors of bird activity routines. To gain insights into the role of food availability in control of such foraging routines, we also estimated foraging activity patterns in captive godwits subjected to constant food availability. Captive and wild black-tailed godwits showed a persistent bimodal activity pattern through daylight period. Food availability had a significant effect on the intake rates, but had a subtler effect on foraging and intake rate rhythms. Temperature and wind speed (combined in a weather index) showed non-significant effects on both rhythms. Although we could not discard a role for natural diurnal changes in light intensity, an important timing cue, our findings support the idea that an endogenous circadian rhythm could be an important proximate factor regulating foraging activity and food items taken per unit time of wild black-tailed godwits during migration.  相似文献   

13.
A new mandibular sensor is presented here based on the use of a Hall sensor, attached to one mandible, opposite a magnet, attached to the other mandible. Changes in sensor voltage, proportional to magnetic field strength, and thus inter-mandibular angle, are recorded in a logger. This system was tested on seven captive Adélie penguins (Pygoscelis adeliae) and three gentoo penguins (Pygoscelis papua) during: (1) feeding trials on land, where birds were given known quantities and types of food; and (2) trials in water where birds were allowed to swim and dive freely. In addition, six free-living Magellanic penguins (Spheniscus magellanicus) were equipped with the system for single foraging trips. Angular signatures were looked for in instances when both captive and free-living birds might open their beaks, and it was discovered that five major behaviours could be identified: ingestion, breathing, calling, head shaking and preening. Captive feeding trials showed that prey mass could be determined with reasonable accuracy (r2=0.92), and there was some indication that prey type could be resolved if recording frequency were high enough. Vocalisations in Adélie penguins (arc calls) took <0.7 s for mean maximum beak angles of 4.2° (SD 1.3), and were distinguished by their relatively gradual change in beak angle and by their high degree of symmetry. Beak shakings were distinguishable by their short duration (multiple peaks of <0.5 s) and minimal maximum angle (<0.5°). Preening behaviour was apparent due to multiple decreasing peaks (angles <8°). Breathing could be subdivided into that during porpoising, where a characteristic double peak in beak angle was recorded, and that during normal surface rests between dives. During porpoising, only the primary peak (mean maximum beak angle 25.1°, SD 4.7) occurred when the bird was out of the water (mean maximum for second peak 5.9°, SD 4.1). During normal surface rests in free-living birds, breaths could be distinguished as a series of beak openings and closures, showing variation in amplitude and frequency according to an apparent recovery from the previous dive and preparation for the subsequent dive to come. The mandibular measuring system presented shows considerable promise for elucidating many hitherto intractable aspects of the behaviour of free-living animals.  相似文献   

14.
The Hipposideridae and Rhinolophidae are closely related families of bats that have similar echolocation (long-duration pure-tone signal, high duty cycle) and auditory systems (Doppler-shift compensation, auditory fovea). Rhinolophid bats are known to forage in highly cluttered areas where they capture fluttering insects, whereas the foraging habitat of hipposiderid bats is not well understood. Compared to rhinolophids, hipposiderid calls are shorter in duration, have lower duty cycles, and they exhibit only partial Doppler-shift compensation. These differences suggest that the foraging habitat of the two families may also differ. We tested this hypothesis by studying foraging and echolocation of Hipposideros speoris at a site with a range of vegetation types. Bats foraged only while in flight and used all available closed and edge habitats, including areas adjacent to open space. Levels of clutter were high in forest and moderate in other foraging areas. Prey capture (n=42) occurred in edge vegetation where it bordered open space. Echolocation signals of H. speoris lacked an initial upward frequency-modulated sweep and were of moderate duration (5.1-8.7 ms). Sequences had high duty cycles (23-41%) and very high pulse repetition rates (22.8-60.6 Hz). Variation in signal parameters during search phase flight across foraging habitats was low. H. speoris showed a greater flexibility in its use of foraging habitat than is known for any rhinolophid species. Our study confirmed that there are differences in habitat use between hipposiderid and rhinolophid bats and we suggest that this divergence is a consequence of differences in their echolocation and auditory systems.  相似文献   

15.
Successful migration for passerine birds depends largely on the quality of stopover habitats, but we still lack complete knowledge of how migrants search for habitats en route and how they behave when landing at poor quality stopover sites. We compared the distance of exploratory movements and stopover durations of the reed warbler Acrocephalus scirpaceus, a reedbed habitat specialist, released at suitable (reed bed) and unsuitable (sand dune) stopover sites. Birds tape-lured during nocturnal migration to a sand dune were captured, radio-tagged, released and tracked at two sites of contrasting habitat quality. Lean birds were found to move further in the dunes (max. 300 m) than in reeds (max. 200 m), whereas ‘fat’ individuals at both sites remained stationary. Birds spent just 1 day in the dunes and up to 13 days in the reeds. Our results suggest that some nocturnal migrants with restricted diurnal exploratory movements depend on stopover site selection when ceasing nocturnal flight.  相似文献   

16.
Bauer S  Gienapp P  Madsen J 《Ecology》2008,89(7):1953-1960
The timing of life-cycle events crucially influences fitness, particularly in migratory birds, which visit chains of sites with varying seasonality. Here, we used a proportional hazards model to identify local environmental factors, which a long-distance migrant, the Pink-footed Goose (Anser brachyrhynchus), uses for departure decisions on multiple sites along its spring flyway from Denmark via Norway to Svalbard. Our results not only identified day length, local accumulated temperature, and their interaction as likely candidates, but also (more importantly) showed for the first time that their relevance changes en route. The results suggest that the birds switch on a "migratory program" in their wintering grounds, with day length providing general information on time of the year and integrated temperatures providing information on larger scale climate trends. Thereafter, on the stopover sites, local accumulated temperatures allow the geese to infer information on the advancement of spring, which is then used to adjust the speed of progressing northward.  相似文献   

17.
We used both field and flight cage observations to investigate the echolocation and foraging behavior of the seldom studied, small, aerial insectivorous bat Myotis nigricans (Vespertilionidae) in Panama. In contrast to its temperate congeners, M. nigricans foraged extensively in open space and showed an echolocation behavior well adapted to this foraging habitat. It broadcast narrowband echolocation signals of 7 ms duration that enhance the chance of prey detection in open space. Because of rhythmical alternations of signal amplitude from signal to signal in our sound recordings of search signals in open space, we conclude that the bats scanned their environment with head movements, thereby enlarging their search volume. In edge-and-gap situations, and in the flight cage, M. nigricans introduced an initial broadband component to its search calls. In the field and in the flight cage, M. nigricans hawked for prey in aerial catches; gleaning was never observed. M. nigricans demonstrates call structures, such as narrow bandwidth and rather long signals adapted to foraging predominantly in open space. Moreover, call structure is highly plastic, allowing M. nigricans to forage in edge-and-gap situations also. These adaptations in call structure and plasticity have evolved convergently at least twice within the genus Myotis. Finally, M. nigricans echolocation and foraging behavior parallels that of the small, aerial, insectivorous pipistrelle bats (Vespertilionidae), which are not closely related to M. nigricans but forage in similar habitats.  相似文献   

18.
Wind selectivity of migratory flight departures in birds   总被引:5,自引:0,他引:5  
Optimal migration theory predicts that birds minimizing the overall time of migration should adjust stopover duration with respect to the rate of fuel accumulation. Recent theoretical developments also take into account the wind situation and predict that there is a time window (a set of days) during which birds should depart when assisted by winds but will not do so if there are head winds. There is also a final day when birds will depart irrespective of wind conditions. Hence, the wind model of optimal migration theory predicts that birds should be sensitive to winds and that there should be a correlation between departures and winds blowing towards the intended migration direction. We tested this assumption by tracking the departures of radio-tagged passerines during autumn migration in southern Sweden. Our birds were moderately to very fat when released and therefore energetically ready for departure. There was a significant correlation between direction of departure and wind direction. We also found that during days when birds departed there was a significantly larger tail wind component than during days when birds were present but did not depart. Our results show that passerines do take the current wind situation into account when departing on migratory flights. We also briefly discuss possible clues that birds use when estimating wind direction and strength. The inclusion of wind is an important amendment to optimal migration theory of birds and should be explored further. Received: 1 March 1999 / Received in revised form: 4 October 1999 / Accepted: 16 October 1999  相似文献   

19.
Nectar foraging in honey bees is regulated by several communication signals that are performed mainly by foragers. One of these signals is the tremble dance, which is consistently performed by foragers from a rich food source which, upon return to the hive, experience a long delay before unloading their nectar to a nectar receiver. Although tremble dancing has been studied extensively using artificial nectar sources, its occurrence and context in a more natural setting remain unknown. Therefore, this study tests the sufficiency of the current explanations for tremble dancing by free-foraging honey bees. The main finding is that only about half of the observations of tremble dancing, referred to as delay-type tremble dancing, are a result of difficulty in finding a nectar receiver. In the remaining observations, tremble dancing was initiated immediately upon entering the hive, referred to as non-delay-type tremble dancing. Non-delay tremble dancing was associated with first foraging successes, both in a forager's career and in a single day. More than 75% of tremble dancing was associated with good foraging conditions, as indicated by the dancer continuing to forage after dancing. However, at least some of the other cases were associated with deteriorated foraging conditions, such as the end of the day, after which foraging was discontinued. No common context could be identified that explains all cases of tremble dancing or the subset of non-delay-type tremble dancing. This study shows that the current explanations for the cause of the tremble dance are insufficient to explain all tremble dancing in honey bees that forage at natural food sources.  相似文献   

20.
M. Mascaró  R. Seed 《Marine Biology》2001,139(6):1135-1145
Information concerning the way juvenile crabs choose their diet from a variety of prey types can be useful for a better understanding of community dynamics, as well as for the adequate management of natural resources. Prey size and species selection by juvenile Carcinus maenas (15-35 mm carapace width, CW) and Cancer pagurus (20-40 mm CW) feeding on four bivalves of contrasting shell morphology were investigated. When offered a wide size range of Mytilus edulis, Ostrea edulis, Crassostrea gigas, and Cerastoderma edule presented individually, crabs generally showed evidence of size-selective predation. Cancer pagurus selected larger mussels relative to the size of their chelae (relative prey size, RPS) than did Carcinus maenas of similar and even larger carapace width. However, the RPS of selected O. edulis and Cerastoderma edule were similar for all crabs, suggesting that certain prey features constitute effective barriers even to the powerful chelae of Cancer pagurus. When offered a wide size range of mussels and oysters simultaneously, all crabs consistently selected mussels. When offered O. edulis and Crassostrea gigas, crabs consumed both these oyster species in similar numbers. Carcinus maenas consumed similar numbers of mussels and cockles; Cancer pagurus, however, showed no preference for either prey in the smaller size classes but selected more mussels than cockles as prey increased in size. Although previous studies report that adult Carcinus maenas select prey species according to their profitability (amount of food ingested per unit of handling time, milligrams per second), consumption rates of the size classes of prey selected by juvenile shore crabs did not always parallel prey value. Although variations in crab strength can account for many of the differences between the foraging strategy of juvenile and adult C. maenas, our results suggest that juvenile crabs are less species selective than adults as a result of the restrictions imposed on small individuals that have limited access to larger prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号