首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The activated carbon was prepared using industrial solid waste called sago waste and physico-chemical properties of carbon were carried out to explore adsorption process. The effectiveness of carbon prepared from sago waste in adsorbing Rhodamine-B from aqueous solution has been studied as a function of agitation time, adsorbent dosage, initial dye concentration, pH and desorption. Adsorption equilibrium studies were carried out in order to optimize the experimental conditions. The adsorption of Rhodamine-B onto carbon followed second order kinetic model. Adsorption data were modeled using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacity Q0 was 16.12 mg g(-1) at initial pH 5.7 for the particle size 125-250 microm. The equilibrium time was found to be 150 min for 10, 20 mg l(-1) and 210 min for 30, 40 mg l(-1) dye concentrations, respectively. A maximum removal of 91% was obtained at natural pH 5.7 for an adsorbent dose of 100mg/50 ml of 10 mg l(-1) dye concentration and 100% removal was obtained when the pH was increased to 7 for an adsorbent dose of 275 mg/50 ml of 20 mg l(-1) dye concentration. Desorption studies were carried out in water medium by varying the pH from 2 to 10. Desorption studies were performed with dilute HCl and show that ion exchange is predominant dye adsorption mechanism. This adsorbent was found to be both effective and economically viable.  相似文献   

2.
褐煤对废水中酸性红B的吸附去除   总被引:1,自引:0,他引:1  
选用褐煤作为廉价吸附剂,脱除模拟废水中染料酸性红B。研究了褐煤对废水中酸性红B的吸附动力学、等温吸附模式,考察了pH、褐煤投加量以及离子强度(NaCl)对吸附效果的影响。结果表明,吸附动力学较好地符合准二级速率方程(R2=1.000),并且以化学吸附为主;吸附等温式满足Langmuir方程(R2=0.986),最大单分子层吸附量为42 mg/g;废水中染料的去除率随溶液pH的减小而明显增加,在pH=1时,去除效果最好,证实吸附过程存在静电吸引及化学键合;在一定条件下,溶液中酸性红B的去除率随褐煤投加量增加而增加;吸附效果随溶液中离子强度(NaCl)的增加而增强。说明褐煤可以作为一种廉价吸附材料,用于处理含染料废水。  相似文献   

3.
Dyestuff production units and dyeing units have always had pressing need techniques that allow economical pre-treatment for colour in the effluent. The effectiveness of adsorption for dye removal from wastewaters has made it an ideal alternative to other expensive treatment options. Removal of acid green 25 and acid red 183 from aqueous solution by different adsorbent such as shells of almond and hazelnut, and poplar and walnut sawdust were investigated. Equilibrium isotherms have been determined and analysed using the Freundlich equations. Parameters of Freundlich isotherm have been determined using adsorption data. Capacities of adsorbent follow as walnut > poplar > almond > hazelnut for AG25 and almond > walnut > poplar > hazelnut for AR183, respectively.  相似文献   

4.
为了有效地处理活性黑染料废水,对离子液体负载型分子筛去除水中的活性黑染料进行了研究。首先制备了离子液体负载型吸附材料,分别考察了分散剂种类、离子液体加入量、浸渍时间3种因素对离子液体负载率的影响,确定负载工艺条件为:二氯甲烷作为分散剂、[OMim]BF4离子液体与分子筛质量比1∶2,浸渍时间12 h。其次研究了负载型吸附材料对染料废水的处理效果,考察了吸附材料添加量、溶液pH值、吸附时间对模拟废水活性黑染料去除率的影响,确定吸附工艺条件为:[OMim]BF4离子液体为最佳离子液体、吸附材料添加量0.40 g、pH=6、吸附时间12 h。在此最佳工艺条件下,染料去除率达98.23%。  相似文献   

5.
BACKGROUND: Wastewater from textile industry contains various contaminants such as dyes, surfactants and heavy metals. Textile dyes have synthetic origin and complex aromatic molecular structures that make them difficult to biodegrade when discharged in the ecosystem. The objective of this study was to examine the decolourisation of textile effluents containing cationic dyes by filtration-adsorption on wood sawdust from two different origins; fir as an example of a conifer tree, and beech as an example of a deciduous one, and to explain the adsorption mechanism. METHODS: The process of dye removal was applied to a synthetic effluent in batch mode. Adsorption experiments were performed by suspending sawdust in the effluent and analyzing the supernatant by spectrophotometry. The effectiveness of the treatment process was evaluated by measuring coloration. RESULTS AND DISCUSSION: Experimental results showed a significant potential for wood sawdust, especially coniferous sawdust, to remove cationic dyes from textile effluents. Adsorption kinetics was influenced by the initial dye concentration, nature and amount of sorbent as well as sorbent particle size. The adsorption followed a pseudo first-order kinetics. For both basic dyes, the Langmuir adsorption equation showed a better fit than the Freundlich equation. CONCLUSION: Filtration-adsorption using an inexpensive and readily available biosorbent provided an attractive alternative treatment for dye removal, and it does not generate any secondary pollution. Recommendations and Perspectives. Laboratory studies provide promising perspectives for the utilization of wood sawdust as renewable adsorbent for reducing pollution while enhancing the reuse of textile effluents. However, the treatment process needs to be applied to the other textile dye classes in order to be used on an industrial scale.  相似文献   

6.
摘要以自制的TiO2/活性炭复合纳米纤维膜作为吸附剂,以亚甲基蓝为目标污染物,研究了亚甲基蓝初始浓度、温度、TiO2/活性炭复合纳米纤维膜投加量、pH等对TiO2/活性炭复合纳米纤维膜吸附去除亚甲基蓝的影响,并研究了TiO2/活性炭复合纳米纤维膜的Zeta电位、接触角、光催化再生性能.结果表明:(1)静态吸附时,随着亚...  相似文献   

7.
The aim of the present research is to develop economic, fast, and versatile method for the removal of toxic organic pollutant phenol from wastewater using eggshell. The batch experiments are conducted to evaluate the effect of pH, phenol concentration, dosage of adsorbent, and contact time on the removal of phenol. The paper includes in-depth kinetic studies of the ongoing adsorption process. Attempts have also been made to verify Langmuir and Freundlich adsorption isotherms. The morphology and characteristics of eggshell have also been studied using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray fluorescence analysis. At ambient temperature, the maximum adsorption of phenol onto eggshells has been achieved at pH 9 and the contact time, 90 min. The experimental data give best-fitted straight lines for pseudo-first-order as well as pseudo-second-order kinetic models. Furthermore, the adsorption process verifies Freundlich and Langmuir adsorption isotherms, and on the basis of mathematical expressions of these models, various necessary adsorption constants have been calculated. Using adsorption data, various thermodynamic parameters like change in enthalpy (?H 0), change in entropy (?S 0), and change in free energy ?G 0 have also been evaluated. Results clearly reveal that the solid waste material eggshell acts as an effective adsorbent for the removal of phenol from aqueous solutions.  相似文献   

8.
It is well known that adsorption is an efficient method of removal of various pollutants from wastewater. The present study examines the phenol removal from water by adsorption on a new material, based on zeolitic volcanic tuff. This compound contains zeolitic tuff and cellulose, another known adsorbent, in a mass ratio of 4 to 1. The performances of the new adsorbent composite were compared with those of a widely used adsorbent material, zeolitic volcanic tuff. The adsorbent properties were tested on batch synthetic solutions containing 1–10 mg L?1 (1–10 ppm) phenol, at room temperature without pH adjustment. The influence of the adsorbent dose, pH and contact time on the removal degree of phenol from water was investigated. The experimental data were modeled using the Langmuir, Freundlich, and Temkin adsorption isotherms. The Langmuir model was found to best represent our data revealing a monolayer adsorption with a maximum adsorption capacity between 0.12 and 0.53 mg g?1 at 25 °C, for 2.00 g of adsorbent, depending on the initial phenol concentration. The adsorption kinetic study was performed using a pseudo-first- and pseudo-second-order kinetic models illustrating that phenol adsorption on zeolite composite is well described by pseudo-first kinetic equations. Our results indicated that phenol adsorption on the new adsorbent composite is superior to that on the classic zeolite.  相似文献   

9.

Background

In tropical countries, the palm tree is one of the most abundant and important trees. Date palm is a principal fruit grown in many regions of the world. It is abundant, locally available and effective material that could be used as an adsorbent for the removal of different pollutants from aqueous solution.

Review

This article presents a review on the role of date palm as adsorbents in the removal of unwanted materials such as acid and basic dyes, heavy metals, and phenolic compounds. Many studies on adsorption properties of various low cost adsorbent, such as agricultural waste and activated carbons based on agricultural waste have been reported in recent years.

Conclusion

Studies have shown that date palm-based adsorbents are the most promising adsorbents for removing unwanted materials. No previous review is available where researchers can get an overview of the adsorption capacities of date palm-based adsorbent used for the adsorption of different pollutants. This review provides the recent literature demonstrating the usefulness of date palm biomass-based adsorbents in the adsorption of various pollutants.  相似文献   

10.

Purpose and aim

Amido Black 10B is an azo dye with very high toxicity. It is now established that the dye damages the reparatory system of humans and also causes skin and eye irritations. It is therefore considered worthwhile to develop a systematic procedure to eradicate Amido Black 10B from its aqueous solution using a waste material as adsorbent. Therefore, adsorption of the dye is achieved using hen feathers as adsorbent.

Materials and methods

Before using hen feather as adsorbent material, it is washed, cut into small pieces and activated using hydrogen peroxide. Detailed chemical and physical analysis of hen feather was also carried out by known analytical techniques. The adsorptive removal of the dye was made through batch experiments in 100 mL airtight flasks. The experiment is divided in three major categories, the preliminary investigations, adsorption isotherm measurements, and kinetic studies.

Results

Under preliminary investigations, the effect of pH, temperature, concentration of dye, and amount of adsorbent were carried out. It was found that with increase in pH, the adsorption of Amido Black 10B decreases; while with increasing the amount of hen feather, it increases. The isothermal studies indicate that the ongoing adsorption process is endothermic in nature and obeys Langmuir, Freundlich, Tempkin, and DubininRadushkevitch (D–R) adsorption isotherm models. The Gibb’s free energy and entropy of the adsorption were also calculated. The D–R isotherm model verified the involvement of chemisorption during the adsorption. The kinetic measurements indicate operation of pseudo second order process during the adsorption and dominance of film diffusion mechanism at all the temperatures.

Conclusions

The developed method is highly efficient and ecofriendly. It also ascertains a necessitous utilization of waste material hen feather for the benefit of the society.  相似文献   

11.

Purpose and aim

Removal of an anionic azo dye Brilliant Yellow has been carried out from its aqueous solutions by using hen feathers as potential adsorbent.

Materials and methods

Hen feathers procured from local poultry were cut, washed, and activated. Detailed chemical and physical analysis of hen feathers and its characterization through scanning electron microscopy, X-ray diffraction, and infrared measurements have been made. Procured dye has been adsorbed over under batch measurements and adsorption process is monitored using UV spectrophotometer.

Results

Optimum parameters for the adsorption of Brilliant Yellow over hen feathers have been determined by studying the effect of pH, temperature, concentration of dye, and amount of adsorbent. On the basis of Langmuir adsorption, isotherms feasibility of the ongoing adsorption has been ascertained and thermodynamic parameters have been calculated. Attempts have also been made to verify Freundlich, Tempkin, and Dubinin?CRadushkevich adsorption isotherm models. It is found that during adsorption, uniform distribution of binding energy takes place due to interaction of the dye molecules and the ongoing adsorption process is chemisorptions. The kinetic measurements indicate dominance of pseudo-second-order process during the adsorption. The mathematical treatment on the kinetic data reveals the rate-determining step to be governed through particle diffusion at 8?×?10?5?M and involvement of film diffusion mechanism at higher concentration at temperatures at all the temperatures.

Conclusions

The developed process is highly efficient and it can be firmly concluded that hen feather exhibits excellent adsorption capacity towards hazardous azo dye Brilliant Yellow.  相似文献   

12.
Removal of PAHs from water using an immature coal (leonardite)   总被引:1,自引:0,他引:1  
It has been studied an immature coal (leonardite) as an adsorbent for removing PAHs [fluorene, pyrene, benzo(k)fluoranthene, benzo(a)pyrene and benzo(g,h,i)perylene] from water. To determine the efficiency of leonardite as an adsorbent of PAHs, factors such as pH, contact time and equilibrium sorption were evaluated in a series of batch experiments. There were no significant differences in the removal percentages for the various pH values studied, except for fluorene. The adsorption of fluorene was higher at lower pH values. The equilibrium time was reached at 24h. At this time, more than 82% of the pyrene, benzo(k)fluoranthene, benzo(a)pyrene and benzo(g,h,i)perylene had been removed. During the first 2h, the adsorption rate increased rapidly. After that time, however, there was a minor decrease. Equilibrium data were fitted to Freundlich models to determine the water-leonardite partitioning coefficient. Physical adsorption caused by the aromatic nature of the compounds was the main mechanism that governed the removal process. The polarity of the humic substances in leonardite may also have influenced the adsorption capacity.  相似文献   

13.
Carbonised beet pulp (BPC) produced from agricultural solid waste by-product in sugar industry was used as adsorbent for the removal of Remazol Turquoise Blue-G 133 (RTB-G 133) dye in this study. The kinetics and equilibrium of sorption process were investigated with respect to pH, temperature and initial dye concentration. Adsorption studies with real textile wastewater were also performed. The results showed that adsorption was a strongly pH-dependent process, and optimum pH was determined as 1.0. The maximum dye adsorption capacity was obtained as 47.0 mg g?1at the temperature of 25 °C at this pH value. The Freundlich and Langmuir adsorption models were used for describing the adsorption equilibrium data of the dye, and isotherm constants were evaluated depending on sorption temperature. Equilibrium data of RTB-G 133 sorption fitted very well to the Freundlich isotherm. Mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of adsorption and potential rate-controlling steps. It was found that both external mass transfer and intra-particle diffusion played an important role in the adsorption mechanisms of dye and adsorption kinetics followed the pseudo second-order type kinetic model. The thermodynamic analysis indicated that the sorption process was exothermic and spontaneous in nature.  相似文献   

14.
Increasing amount of dyes in an ecosystem has propelled the search of various methods for dye removal. Amongst all the methods, adsorption occupies a prominent place in dye removal. Keeping this in mind, many adsorbents used for the removal of hazardous anionic azo dye Congo red (CR) from aqueous medium were reviewed by the authors. The main objectives behind this review article are to assemble the information on scattered adsorbents and enlighten the wide range of potentially effective adsorbents for CR removal. Thus, CR sorption by various adsorbents such as activated carbon, non-conventional low-cost materials, nanomaterials, composites and nanocomposites are surveyed and critically reviewed as well as their sorption capacities are also compared. This review also explores the grey areas of the adsorption performance of various adsorbents with reference to the effects of pH, contact time, initial dye concentration and adsorbent dosage. The equilibrium adsorption isotherm, kinetic and thermodynamic data of different adsorbents used for CR removal were also analysed. It is evident from a literature survey of more than 290 published papers that nanoparticle and nanocomposite adsorbents have demonstrated outstanding adsorption capabilities for CR.
Graphical abstract ?
  相似文献   

15.
The aim of this study is to highlight the possibility of using powder magnetite adsorption-Fenton oxidation as a method for removal of azo dye acid red B (ARB) from water. The adsorption properties of magnetite powder towards ARB were studied. The oxidation of adsorbed ARB and regeneration of magnetite adsorbent at the same time by Fenton reagent (hydrogen peroxide [H2O2] + iron (II) [Fe2+]) in another treatment unit with a smaller volume was also investigated. The efficiency of Fenton oxidation of ARB was compared for the reaction carried out in solution and on magnetite. The magnetic separation method was used to recover magnetite after adsorption or regeneration. The results indicated that the adsorption rate was fast. The capacity was strongly dependent on pH and inorganic anions, and pH 3.8 was optimal for the adsorption of ARB. The adsorption can be described well using the Langmuir model. The oxidation was more efficient for ARB adsorbed on magnetite than in solution. The adsorption capacity of magnetite increased significantly after regeneration, which was the result of an increase in surface area of the adsorbent and change of elemental ratio (oxygen:iron [O:Fe]) on the surface. The maximum adsorption capacity for ARB was 32.4 mg/g adsorbent.  相似文献   

16.
采用溴化十六烷基吡啶(CPB)对天然沸石进行改性制备得到了CPB改性沸石,通过批量吸附实验考察了CPB改性沸石对水中阴离子染料甲基橙的去除作用。结果表明,天然沸石对水中甲基橙的吸附能力很差,而CPB改性沸石则可以有效吸附去除水中的甲基橙。CPB改性沸石对水中甲基橙的吸附能力随CPB负载量的增加而增加,CPB负载量最大的改性沸石对水中甲基橙的吸附能力最强。双分子层CPB改性沸石对水中甲基橙的去除率随吸附剂投加量的增加而增加,而CPB改性沸石对水中甲基橙的单位吸附量则随吸附剂投加量的增加而降低。双分子层CPB改性沸石对水中甲基橙的吸附平衡数据可以采用Langmuir等温吸附模型加以描述。根据Langmuir模型计算得到的CPB负载量为341 mmol/(kg沸石)的双分子层CPB改性沸石对水中甲基橙的最大吸附容量为63.7 mg/g(303 K和pH 7)。准二级动力学模型适合用于描述双分子层CPB改性沸石对水中甲基橙的吸附动力学过程。pH和反应温度对双分子层CPB改性沸石吸附水中甲基橙的影响较小。以上结果说明,双分子层CPB改性沸石适合作为一种吸附剂用于去除废水中的甲基橙。  相似文献   

17.
商丹红  包敏 《环境工程学报》2014,8(5):1982-1986
采用铁盐改性制得铁基膨润土,研究了其对水中磷酸根的吸附性能及影响因素,结果表明,通过对膨润土的改性提高了磷的去除率,含磷废水初始pH值的大小对磷的去除率影响不大,初始浓度越低越有利于磷的去除。磷的去除率随改性膨润土的投加量增大而提高,随温度升高而增大。进一步研究表明,改性膨润土对磷的吸附是吸热反应,其吸附等温线可采用Langmuir等温吸附方程拟合;改性膨润土对磷的吸附是快速吸附,在20 min内,磷去除率达70%以上,符合准二级吸附动力学模型。  相似文献   

18.
This research involved the use of response surface methodology (RSM) to investigate the adsorption of Disperse Red 167 dye onto the bamboo-based activated carbon activated with H3PO4 (PBAC) in a batch process. F400, a commercially available activated carbon, was used in parallel for comparison. Analysis of variance showed that input variables such as the contact time, temperature, adsorbent dosage and the interaction between the temperature and the contact time had a significant effect on the dye removal for both adsorbents. RSM results show that the optimal contact time, temperature, initial dye concentration and adsorbent dosage for both adsorbents were found to be 15.4 h, 50 °C, 50.0 mg L?1 and 12.0 g L?1, respectively. Under these optimal conditions, the removal efficiencies reached 90.23 % and 92.13 % for PBAC and F400, respectively, with a desirability of 0.937. The validation of the experimental results confirmed the prediction of the models derived from RSM. The adsorption followed a nonlinear pseudo-first-order model and agreed well with the Freundlich and Temkin isotherm as judged by the levels of the AICc and the Akaike weight. Furthermore, the thermodynamics analysis indicated that, for both adsorbents, the adsorption was a physical process that was spontaneous, entropy-increasing and endothermic.  相似文献   

19.
In this study, the adsorption behavior of azo dye Acid Orange 7 (AO7) from aqueous solution onto macrocomposite (MC) was investigated under various experimental conditions. The adsorbent, MC, which consists of a mixture of zeolite and activated carbon, was found to be effective in removing AO7. The MC were characterized by scanning electron microscopy (SEM), energy dispersive X-ray, point of zero charge, and Brunauer–Emmett–Teller surface area analysis. A series of experiments were performed via batch adsorption technique to examine the effect of the process variables, namely, contact time, initial dye concentration, and solution pH. The dye equilibrium adsorption was investigated, and the equilibrium data were fitted to Langmuir, Freundlich, and Tempkin isotherm models. The Langmuir isotherm model fits the equilibrium data better than the Freundlich isotherm model. For the kinetic study, pseudo-first-order, pseudo-second-order, and intraparticle diffusion model were used to fit the experimental data. The adsorption kinetic was found to be well described by the pseudo-second-order model. Thermodynamic analysis indicated that the adsorption process is a spontaneous and endothermic process. The SEM, Fourier transform infrared spectroscopy, ultraviolet–visible spectral and high performance liquid chromatography analysis were carried out before and after the adsorption process. For the phytotoxicity test, treated AO7 was found to be less toxic. Thus, the study indicated that MC has good potential use as an adsorbent for the removal of azo dye from aqueous solution.  相似文献   

20.
Adsorption study for the removal of a basic dye: experimental and modeling   总被引:1,自引:0,他引:1  
Chakraborty S  De S  DasGupta S  Basu JK 《Chemosphere》2005,58(8):1079-1086
An effective adsorbent is developed from saw dust and its various adsorption characteristics are studied for removing a basic dye (crystal violet) from its aqueous solution. Equilibrium data are fitted to various adsorption isotherms. It is seen that about 341 mg of crystal violet can be removed using 1g of the adsorbent at 298 K. Kinetic study is also carried out to observe the effects of various process parameters viz. particle size of the adsorbent, initial concentration of the dye, temperature and adsorbent amount. A generalized two-resistance mass transfer model, which includes a film mass transfer coefficient (k(f)) and an internal effective diffusivity (Dp), is used to interpret the adsorption kinetic data. The model parameters (k(f) and Dp) are estimated by fitting the experimental data to the model. The evaluated parameters are used to predict the concentration profiles at various other operating conditions. The average deviation of the predicted values lies within 10% in all the cases. Sensitivity analysis is performed to observe the sensitivity of the model to the variations in the model parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号