首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 967 毫秒
1.
在好氧条件下,向反应器添加悬浮填料进行同时硝化反硝化的试验研究,研究影响生物膜同时硝化反硝化脱氮性能的因素。结果表明,在填料填充率为30%~40%、溶解氧为2~3 mg/L、停留时间为6~8h时,系统对污染物的去除效果较好。  相似文献   

2.
固体碳源填料床生物反应器去除水中硝酸盐的研究   总被引:1,自引:0,他引:1  
采用室内试验装置,研究了以可生物降解聚合物材料(BDPs)变性淀粉为碳源和生物膜载体的填料床反应器对水体中硝酸盐的去除效果及其影响因素.结果表明,反应器能有效去除水中的硝酸盐且试验过程中未发现亚硝酸盐积累;温度对反应器的反硝化速率有很大的影响,在14~30 ℃范围内,反硝化温度常数K=0.03;水力停留时间对反硝化反应起重要作用,硝酸盐去除率随水力停留时间的延长而提高,但反硝化速率则随水力停留时间的延长而降低.变性淀粉扫描电子显微镜的观察结果表明,变性淀粉表面形成许多空洞结构,扩大了微生物附着生长的表面积,有利于微生物的生长.  相似文献   

3.
间歇曝气对膜生物反应器影响的试验研究   总被引:2,自引:0,他引:2  
膜生物反应器是生物处理和膜分离相结合的一种高效的废水处理方法.通过研究,膜生物反应器具有较好的硝化能力.主要通过间歇曝气的运行方式来考察MBR对有机物和氨氮的去除效果.试验结果表明:合理的间歇时间能提高反应器对有机物和氨氮的去除效果.  相似文献   

4.
为了研究厌氧-微氧-好氧系统对垃圾渗滤液厌氧出水高效生物脱氮性能,基于短程硝化反硝化技术,设置5个阶段分析DO质量浓度(0. 2~1. 5 mg/L)、进水C/N(4~8)和亚硝化液回流比(300%~1 500%)对系统的影响,同时,通过快速提高进水NH_4~+-N负荷进一步研究反应器抗负荷冲击能力。结果表明,微氧区添加5 mmol/L KClO_3,能够快速提升系统亚硝化率;微氧区DO质量浓度保持0. 5~1. 0mg/L,亚硝化率高于90%。提高进水C/N和亚硝化液回流比(R)有利于反硝化过程充分进行,好氧池的设置能够使系统保持较高的COD和NH_4~+-N去除率,整个过程系统COD、NH_4~+-N和TN的平均去除率分别达89. 2%、98. 6%和82. 3%。此外,系统在短期负荷冲击下污染物去除率降低,当进水NH_4~+-N负荷快速提升时,TN去除率由90%下降到76%。然而,经过10 d的恢复期,系统可以恢复到原来的状态,并具有较高的性能。  相似文献   

5.
使用缓释碳源生态基质颗粒开展了高氨氮废水脱氮效果实验,比较了装填缓释碳源生态基质的反应器与装填普通砾石填料的反应器对高氨氮废水中各种形态氮的去除效果。生态基质组出水NH3-N和TN去除率分别为49. 08%和58. 32%,明显高于砾石组38. 69%和28. 67%的去除率,硝态氮和亚硝态氮浓度也明显低于砾石组,说明缓释碳源生态基质可显著增强反硝化作用强度。高通量分析结果表明,生态基质组的物种丰富度高于砾石组,其中反硝化菌属相对丰度达到30%以上,生态基质释放的碳源有利于异养反硝化微生物的生长繁殖,使反应器内的微生物群落结构发生显著改变,提高了脱氮效率。  相似文献   

6.
不同类型反应器好氧颗粒污泥培养过程研究   总被引:1,自引:0,他引:1  
在SBR、非理想PF及CSTR反应器中接种普通活性污泥,控制反应条件:溶解氧DO 2.0 mg/L左右,pH值8.0左右,温度(25±0.2)℃,经过80 d左右时间,3个反应器中均成功培养出好氧颗粒污泥,最大颗粒污泥粒径达到2.5 mm左右。成熟好氧颗粒污泥具有较好的COD去除及脱氮能力。SBR反应器COD去除率稳定在95%~97%,氨氮去除率超过92%;PF反应器COD去除率达到95%~98%,氨氮去除率最高为98%;CSTR反应器COD去除率稳定在88%~90%,氨氮去除率超过90%。SBR反应器TN去除率最高,达到70%~78%,PF反应器TN去除率为65%~70%,CSTR反应器TN去除率达到55%~62%。3个反应器均发生全程同步硝化反硝化。  相似文献   

7.
采用SBR反应器,以人工模拟高浓度氨氮废水为进水,研究DO质量浓度和碳源投加方式对同步硝化反硝化的影响.结果表明,在连续投加碳源的条件下,当SBR内的DO质量浓度分别为3 mg/L、0.9 mg/L、0.5 mg/L、0.3 mg/L时,都发生了同步硝化反硝化,TN的去除率分别为24.87%、33.80%、37.07%及29.06%;DO质量浓度为0.5mg/L时,TN去除效率最高.SBR内的氨氮负荷可以达到0.64kg N/(m3·d),即使在0.3 mg/L的低溶解氧环境下,COD和氨氮的去除率都可以达到90%以上.控制SBR内DO质量浓度恒定为0.5mg/L,采用一次性投加碳源方式时,TN去除率仅有30.31%;当采用连续投加碳源方式时,TN去除率为50% - 60%;采用半连续投加碳源方式时,TN的去除率可达81.48%.试验过程中,活性污泥絮体粒径为0.2~0.5 mm,大于普通的活性污泥工艺中的絮体.较大的絮体使得絮体内存在较大的缺氧区,有利于取得较高的脱氮效率.  相似文献   

8.
应用MSBR硝化反硝化和UASB厌氧氨氧化串联工艺进行养殖废水处理研究。通过控制pH值8.0,溶解氧1.5 mg/L、游离氨10~20 mg/L,实现了曝气池亚硝氮积累率在60%以上;同时,UASB出水100%回流比至MSBR反应池,实现废水有机质、氮、磷循环有效去除。MSBR对系统COD,TN,TP去除贡献率分别为93%,75%~85%,70%~85%,UASB对系统COD,TN,TP去除贡献率分别为3%~7%,15%~30%,10%~20%。  相似文献   

9.
采用特异性移动床生物膜反应器(SMBBR)结合后置反硝化技术处理高氨氮农药废水,SMBBR选用亲水性更强的SDC-03型填料和特异性DNF409混合菌种,可以实现同步硝化反硝化脱氮。试验考察了DNF409菌种对填料挂膜的影响,不同C/N比对脱氮的影响以及对COD、氨氮、TN的去除率的影响。结果显示,当水力停留时间为8 d,进水COD质量浓度为2 408~7 440 mg/L,氨氮质量浓度为160.21~433.84 mg/L,TN质量浓度为208.27~537.65 mg/L,pH值为7.0~8.5时,AF中外加碳源C/N比值为5时,出水COD质量浓度平均为341.9 mg/L,平均去除率高达92.3%,氨氮质量浓度保持在3.0 mg/L以内,去除率在98%以上,TN质量浓度稳定在40~45 mg/L,去除率在80%以上,达到了《污水综合排放标准》(GB 8978—1996)的三级标准。  相似文献   

10.
以不同碳源(PBS、PHB和陈米)条件下的反应器为研究对象,投加PBS和PHB后,系统对NH3-N的去除效果明显,去除率分别为PBS-14.29%~96.55%和PHB-57.89%~96.55%,而投加陈米后,出水NH3-N浓度比原水有所增加,均小于《城镇污水处理厂污染物排放标准》(GB18918—2002)一级A标准。投加PBS和PHB的TN去除效果不佳,去除率分别为-35.49%~69.42%和-26.12%~64.64%,而投加陈米后对TN的去除效果显著,TN去除率为33.43%~93.37%。结果表明,采用陈米作为低C/N污水生物处理中反硝化的碳源是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号