共查询到20条相似文献,搜索用时 0 毫秒
1.
Influences of metals on kinetics of methyl tert-butyl ether biodegradation by Ochrobactrum cytisi 总被引:1,自引:0,他引:1
The influence of zinc, manganese, and nickel on the degradation of MTBE (methyl tert-butyl ether), by an aerobic MTBE-degrading strain, Ochrobactrum cytisi, were investigated. The result showed that unlike previous findings, O. cytisi was able to degrade MTBE through direct metabolism when MTBE was present as the only carbon source. The degradation rate of MTBE was rapid, completed within 80 h. MTBE biodegradation by this strain was stimulated at low concentrations of Zn(2+) (1-5 mg l(-1)) and Mn(2+) (1-5 mg l(-1)) but inhibited at high concentrations of Zn(2+) (20 mg l(-1)) and Mn(2+) (20 mg l(-1)), and at low concentration of Ni(2+) (1-4 mg l(-1)). Kinetic parameters for MTBE degradation in the presence or absence of metals were obtained through nonlinear regression and a least-square minimization procedure. In all cases, a good agreement was achieved between kinetic simulations and experimental results. 相似文献
2.
Microbial degradation of methyl tert-butyl ether and tert-butyl alcohol in the subsurface 总被引:16,自引:0,他引:16
The fate of fuel oxygenates such as methyl tert-butyl ether (MTBE) in the subsurface is governed by their degradability under various redox conditions. The key intermediate in degradation of MTBE and ethyl tert-butyl ether (ETBE) is tert-butyl alcohol (TBA) which was often found as accumulating intermediate or dead-end product in lab studies using microcosms or isolated cell suspensions. This review discusses in detail the thermodynamics of the degradation processes utilizing various terminal electron acceptors, and the aerobic degradation pathways of MTBE and TBA. It summarizes the present knowledge on MTBE and TBA degradation gained from either microcosm or pure culture studies and emphasizes the potential of compound-specific isotope analysis (CSIA) for identification and quantification of degradation processes of slowly biodegradable pollutants such as MTBE and TBA. Microcosm studies demonstrated that MTBE and TBA may be biodegradable under oxic and nearly all anoxic conditions, although results of various studies are often contradictory, which suggests that site-specific conditions are important parameters. So far, TBA degradation has not been shown under methanogenic conditions and it is currently widely accepted that TBA is a recalcitrant dead-end product of MTBE under these conditions. Reliable in situ degradation rates for MTBE and TBA under various geochemical conditions are not yet available. Furthermore, degradation pathways under anoxic conditions have not yet been elucidated. All pure cultures capable of MTBE or TBA degradation isolated so far use oxygen as terminal electron acceptor. In general, compared with hydrocarbons present in gasoline, fuel oxygenates biodegrade much slower, if at all. The presence of MTBE and related compounds in groundwater therefore frequently limits the use of in situ biodegradation as remediation option at gasoline-contaminated sites. Though degradation of MTBE and TBA in field studies has been reported under oxic conditions, there is hardly any evidence of substantial degradation in the absence of oxygen. The increasing availability of field data from CSIA will foster our understanding and may even allow the quantification of degradation of these recalcitrant compounds. Such information will help to elucidate the crucial factors of site-specific biogeochemical conditions that govern the capability of intrinsic oxygenate degradation. 相似文献
3.
4.
以絮状活性污泥为接种污泥,以甲基叔丁醚(MTBE)为唯一碳源,通过调控运行参数,在SBR反应器中可成功培养出降解MTBE的好氧颗粒污泥.成熟的好氧颗粒污泥平均粒径为202.7 μm,污泥容积指数(SVI)为75 mg/L,污泥混合液挥发性悬浮固体(MLVSS)为1 311 mg/L,污泥表面可观察到球菌、短杆菌和长杆菌等不同菌落.反应器进水MTBE高达650 mg/L时,出水可维持在10 mg/L以下,去除率达98%以上(其中挥发部分约占25%).变性梯度凝胶电泳(DGGE)指纹图表明,稳定阶段污泥内微生物种群丰富,且种类与数量基本保持稳定. 相似文献
5.
《国际环境与污染杂志》2011,38(3):299-308
The anaerobic batch digestion of cattail with two substrate concentrations of 10 g and 30 g Volatile Solids (VS)/l was investigated in this study. The hydrolysis of cattail was not significantly affected by the substrate concentrations, and it was able to be described by a first-order kinetic model with hydrolysis constants of 0.298 d−1 and 0.294 d−1, respectively. The main aqueous products from cattail degradation were Volatile Fatty Acids (VFA), in which acetate, propionate and butyrate were dominant. The molar ratio of acetate to propionate (3.3) at 10 g VS/l was larger than that (2.3) at 30 g VS/l, when the acidogenesis phase was at the stationary period. The lag period of the methanogenic phase at 10 g VS/l was shorter than that at 30 g VS/l. A modified Gompertz equation could be adopted to describe the kinetics of products formation. 相似文献
6.
7.
在pH值7.2~8.5、温度25℃、DO≥5 mg/L的条件下,用含有甲基叔丁基醚(MTBE)的模拟废水对Methylibium petroleiphilum PM1进行富集培养并在陶粒表面挂膜,进而对其特性、性能等进行了研究。填料表面生物膜MTBE降解的序批实验和电镜照片分析均表明陶粒表面已成功附着PM1高效降解菌形成的生物膜。在挂膜后期,当起始MTBE浓度为100~110 mg/L时,经过24 h,MTBE的去除率达到65%以上并基本稳定,其中挥发占4.6%,生物降解起主导的作用。 相似文献
8.
The kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE) in aqueous solutions at various pH, temperature, oxidant concentration and ionic strength levels was studied. The MTBE degradation was found to follow a pseudo-first-order decay model. The pseudo-first-order rate constants of MTBE degradation by persulfate (31.5 mM) at pH 7.0 and ionic strength 0.11 M are approximately 0.13 x 10(-4), 0.48 x 10(-4), 2.4 x 10(-4) and 5.8 x 10(-4) S(-1) at 20, 30, 40 and 50 degrees C, respectively. Under the above reaction conditions, the reaction has an activation energy of 24.5 +/- 1.6 kcal/ mol and is influenced by temperature, oxidant concentration, pH and ionic strength. Raising the reaction temperature and persulfate concentration may significantly accelerate the MTBE degradation. However, increasing both pH (over the range of 2.5-11) and ionic strength (over the range of 0.11-0.53 M) will decrease the reaction rate. Reaction intermediates including tert-butyl formate, tert-butyl alcohol, acetone and methyl acetate were observed. These intermediate compounds were also degraded by persulfate under the experimental conditions. Additionally, MTBE degradation by persulfate in a groundwater was much slower than in phosphate-buffer solutions, most likely due to the presence of bicarbonate ions (radical scavengers) in the groundwater. 相似文献
9.
甲基叔丁基醚(MTBE)因作为汽油添加剂大量使用而广泛存在于不同环境介质中。通过调研中国部分城市大气、土壤和水体环境介质中的MTBE污染情况,分析了中国目前MTBE的污染现状及影响。结果显示,中国城市区域附近不同环境介质中普遍存在MTBE污染,一般区域MTBE污染程度较轻,加油站周边环境中MTBE污染相对较重。部分加油站区域大气中的MTBE浓度已经超过可接受的健康风险水平;加油站周边地下水中的MTBE检出率较高,对地下水水质安全具有一定威胁。最后,对中国MTBE污染防治工作进行了总结并给出了相关建议。 相似文献
10.
甲基叔丁基醚(MTBE)在不同粘性土壤中的吸附特性 总被引:3,自引:0,他引:3
土壤对有机物的吸附是污染土壤及地下水原位修复技术中的重要参数.通过静态间歇吸附实验研究了甲基叔丁基醚(MTBE)在不同粘性土壤中的吸附特性.结果表明,MTBE在粘性土壤中的吸附行为均可用线性方程很好描述,粘粒是土壤对MTBE吸附的主要影响因素,吸附常数与土壤粘粒含量呈y=4.382×10-3x-0.817 ×10-3直线关系.对不同温度下的吸附数据分析发现,粘性土壤对MTBE的平衡吸附量随温度的升高而降低,由吸附热力学推导可得等量吸附焓变△H与平衡吸附量无关,且△H<0,表明该吸附为故热过程. 相似文献
11.
12.
Chemical oxidative degradation of methyl tert-butyl ether in aqueous solution by Fenton's reagent 总被引:12,自引:0,他引:12
Degradation of methyl tert-butyl ether (MTBE) in aqueous solution by Fenton's reagent (Fe2+ and H2O2) was investigated. Effects of reaction conditions on the oxidation efficiency of MTBE by Fenton's reagent were examined in batch experiments. Under optimum conditions, 15 mM H2O2, 2 mM Fe2+, pH 2.8 and room temperature, the initial 1 mM MTBE solution was reduced by 99% within 120 min. Results showed that MTBE was decomposed in a two-stage reaction. MTBE was first decomposed swiftly based on a Fe2+/H2O2 reaction and then decomposed somewhat less rapidly based on a Fe3+/H2O2 reaction. The detection of Fe2+ also supported the theory of the two-stage reaction for the oxidation of MTBE by Fenton's reagent. The dissolved oxygen in the solution decreased rapidly in the first stage reaction, but it showed a slow increase in the second stage with a zero-order kinetics. A reaction mechanism involving two different pathways for the decomposition of MTBE by Fenton's reagent was also proposed. Chemicals including tert-butyl formate, tert-butyl alcohol, methyl acetate and acetone were identified to be the primary intermediates and by-products of the degradation processes. 相似文献
13.
Simultaneous decontamination of hexavalent chromium and methyl tert-butyl ether by UV/TiO2 process 总被引:1,自引:0,他引:1
Hexavalent chromium and methyl tert-butyl ether (MTBE) are two important environmental pollutants. Simultaneous decontamination of Cr(VI) and MTBE was studied by UV/TiO2 process. The influences of pH and the concentrations of pollutants on the kinetics of the photocatalytic reactions were evaluated. Dark adsorption tests showed that the acidic pH favored the adsorption of Cr(VI) while neutral pH favored the adsorption of MTBE. Under UV irradiation, Cr(VI) reduction was observed in Cr(VI)/TiO2 system, and MTBE oxidation was observed in MTBE/TiO2 system. The system containing Cr(VI) and MTBE by UV/TiO2 process demonstrated the synergistic effect between oxidation of MTBE and reduction of Cr(VI). The results demonstrated that two pollutants Cr(VI) and MTBE could be eliminated simultaneously by UV/TiO2 process. tert-Butyl formate, tert-butyl alcohol and acetone were identified as primary degradation products of MTBE by gas chromatography-mass spectrometry in the degradation of MTBE by UV/TiO2 process. 相似文献
14.
Toxicity of methyl tert-butyl ether to marine organisms: ambient water quality criteria calculation 总被引:3,自引:0,他引:3
In response to increasing concerns over the detection of methyl tert-butyl ether (MTBE) in groundwater and surface water and its potential effects in aquatic ecosystems, industry and the United States Environmental Protection Agency (USEPA) began to collaborate in 1997 to develop aquatic toxicity databases sufficient to derive ambient water quality criteria for MTBE consistent with USEPA requirements. Acute toxicity data for seven marine species, chronic toxicity data for an invertebrate, and plant toxicity data were developed to complete the saltwater database. The species tested were Cyprinodon variegatus, Gasterosteus aculeatus, Callinectes sapidus, Mytilus galloprovincialis, Palaemonetes pugio, Rhepoxynius abronius, Americamysis bahia, and Skeletonema costatum. The toxicity tests were conducted in accordance with USEPA and American Society for Testing and Materials testing procedures and Good Laboratory Practice guidelines. Data developed from this study were consistent with existing data and showed that MTBE has low acute and chronic toxicity to the marine species tested. Based upon measured MTBE concentrations, acute effects were found to range from 166 mg MTBE/l for the grass shrimp to 1950 mg MTBE/l for marine mussel. The no-observed effect concentration for the reproduction and growth of mysids was 26 mg MTBE/l during the life cycle test. The toxicity of MTBE to saltwater organisms is comparable to its toxicity to the freshwater species tested. Reported MTBE concentrations in coastal waters are several orders of magnitude lower than concentrations observed to cause effects in marine organisms. 相似文献
15.
An earthworm assay was used to assess the toxicity of two main gasoline components. Ecotoxicities of toluene and methyl tert-butyl ether (MTBE) were compared for Asian earthworm Perionyx excavatus separately and in combination. Sum of toxic unit (TU) at 50% mortality for the mixture (LC50mix) was estimated from the dose (TU-based)-response relationships by the Trimmed Spearman-Karber method. Toluene was shown to be about five and two times more toxic to P. excavatus than MTBE in filter paper contact test and natural soil tests, respectively. This is primarily due to the adsorption of toluene to soil particles, leading to less bioavailability of toluene to the earthworm in soil. The combined effect of toluene and MTBE was investigated using toxic unit model, and it was found to be almost additive and synergistic responses to P. excavatus in filter paper contact test and soil tests, respectively. The combined effect of toluene and MTBE in filter paper contact test was not consistent with the results in soil toxicity tests. This phenomenon may be associated with the interaction of soil salts with pollutants. Treatment with toluene and MTBE also affected the behavior and morphology of P. excavatus. It indicates that the VOCs induce metabolic and functional damages in earthworms. Combined effects of gasoline components should be taken into account to soil risk assessment. 相似文献
16.
17.
Wu TN 《Chemosphere》2007,69(2):271-278
This study utilized the electrocatalytic characteristics of nickel electrode to perform degradation of methyl tert-butyl ether (MTBE) in aqueous solution. Lab experiments were conducted in a spiltless bath type cell equipped with a nickel electrode as working electrode, a platinum wire as counter electrode, and an Ag/AgCl electrode as reference electrode. Effects of controlled potential, supporting electrolyte, and solution pH on the efficiency of MTBE removal were examined under the control of the constant-potential conditions. Experiment results showed that the optimum electrolytic condition was operated at 0.35 V in a 1M KOH electrolyte solution, and the initial 20 mgl(-1) MTBE was reduced by 73% within 180 min under the optimum control. As using 1M Na2SO4 and 1M KCl as electrolyte, the efficiency of MTBE removal dropped to 60% and 50% under the similar controls. Comparing with various pH controls, the strong basic condition is favorable for electrocatalytic oxidation of MTBE in the Ni-electrolytic system. The efficiency of MTBE removal showed a rising trend with increasing initial pH of the solution. The formation of a redox NiOOH/Ni(OH)2 layer on the anode surface, which was observed on the SEM image, can explain that nickel plays a mediator role on improving electrocatalytic oxidation of MTBE at 0.35 V in a strong basic condition. The by-products of MTBE degradation were identified as acetone and CO(2) by GC/MS, and the distributions of carbon atoms in acetone, CO2, and MTBE were found 22%, 51%, and 27% through the optimum control of electrochemical oxidation. 相似文献
18.
Determination of Henry's law constant for methyl tert-butyl ether (MTBE) at groundwater temperatures
The dimensionless Henry's law constant was determined for methyl tert-butyl ether (MTBE) at six temperatures (3, 5, 10, 15, 20 and 25 degrees C) by using a thermostatted flask (430 ml) containing an aqueous MTBE solution. The ratio between the gas phase and the water phase in the flask was approximately 1.7:1. The aim of this study was to acquire data needed to model the behaviour of MTBE at groundwater conditions. The dimensionless Henry's law constant at 10 degrees C is approximately 0.01 but is 0.03 at 25 degrees C. This is important for modelling MTBE because the variation of vaporization cannot be disregarded at groundwater temperatures. In a second experiment the water solubility of MTBE was determined to be 62.1 g/l at 5 degrees C and 35.5 g/l at 20 degrees C). The high solubility at low temperatures could cause MTBE plumes from spills (fuel accidents etc.) to spread rapidly. 相似文献
19.
Sources, distribution and behaviour of methyl tert-butyl ether (MTBE) in the Tamar Estuary, UK 总被引:1,自引:0,他引:1
Negligible information is currently available concerning levels of the fuel additive methyl tert-butyl ether (MTBE) in European estuaries or coastal environments. MTBE was measured at selected potentially contaminated harbours and marinas, and throughout an axial transect of the Tamar Estuary, UK. Headspace solid-phase microextraction was used in combination with GC-MS for its determination. MTBE was detected in water samples from all stations at concentrations ranging from a few ng/l to a maximum of 194 ng/l (in a semi-enclosed harbour). Elevated levels were generally associated with motor vehicle and boating activities. The Tamar road and rail bridges provided a major input to the lower estuary, downstream of which conservative mixing appeared depressed, probably through volatilisation and possibly through salting-out. The selected analytical system (using a Carboxen/PDMS fiber) proved both rapid and highly sensitive (with a detection limit of 6 ng/l). During method development, salinity was shown to have a major influence in controlling the extraction efficiency and it was found necessary to adjust salinity in all samples (to 75% saturation) prior to extraction. From these tests, we (for the first time) estimated the Setschenow ("salting-out") constant of MTBE to be 0.11 l/mol. 相似文献
20.
Water quality at five marinas in Lake Texoma as related to methyl tert-butyl ether (MTBE) 总被引:1,自引:0,他引:1
Water quality in five marinas on Lake Texoma, located on the Oklahoma and Texas border, was monitored between June 1999 and November 2000. Focus was to evaluate lake water associated with marinas for methyl tert-butyl ether (MTBE). Lake water was collected at locations identified as marina entrance, gasoline filling station, and boat dock. Occurrence of MTBE showed a direct seasonal trend with recreational boating activity at marina areas. There was a positive correlation with powerboat usage ratio, which was directly related to the gallons of gasoline sold. Sampling before and after the high boat use holiday weekends determined the apparent influence of powerboat activity on MTBE contamination. Boat dock locations were the most sensitive sites to MTBE contamination, possibly due to gasoline spillage during engine startup. The most common compound of the BTEX series found with MTBE was toluene and co-occurrence was most frequent at gasoline filling stations. 相似文献