共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
利用NaOH对聚氨酯泡沫塑料进行碱解扩孔处理,研究其作为微生物膜载体应用于曝气生物滤池,处理高氨氮模拟废水的效果。泡沫经ω=8%NaOH溶液处理0.5、1和1.5 h,结果表明:扩孔后的聚氨酯载体在孔隙率、持水倍率等方面都有所提高。碱解0.5 h对聚氨酯处理效果最好,孔隙率达到93.4%,持水倍率达到31.4。碱解扩孔处理聚氨酯泡沫载体亲水性能良好,微生物负载量达到264.35 mg/g,具有较高的微生物负载量。使用扩孔前后的聚氨酯泡沫作为微生物固定化载体用于模拟废水处理时,对于污水各指标的去除效果表明,对COD、NH4+-N等均具有较好的降解性能。 相似文献
3.
以普通的絮状污泥为接种污泥,保持COD不变,通过逐渐提高进水氨氮浓度,同时缩短沉淀时间,在SBR反应器中快速培养出具有短程硝化特性的好氧颗粒污泥。结果表明:保持ρ(COD)为300 mg/L,将进水ρ(NH+4-N)从50 mg/L逐渐提高至500 mg/L,沉淀时间从40 min逐渐缩短至2 min,并控制曝气量为200 L/h,pH值为8.0,温度为30℃,在第50天成功培养出了粒径为1.0~2.0 mm,SVI为20.1 mL/g的好氧颗粒污泥。在ρ(NH+4-N)为500 mg/L,碳氮比为3∶5时,对氨氮和COD去除率分别达到了90%和99%,亚硝态氮的积累率达到了92%,出水COD和氨氮均达到了理想的去除效果。 相似文献
4.
5.
在社会经济不断发展的背景下,我国制药行业得到极大发展,但由于工业行业日常生产过程中会产生大量废水,进而带来较为严重的环境污染问题,不利于我国生态环境的建设.基于此,文章通过对处理含磷工业废水的必要性进行分析,重点研究含磷工业废水的处理方法,以期促进我国制药行业可持续发展,保护我国环境. 相似文献
6.
将高浓度纯化凹凸棒土(HCPA)投加至UF-MBR中,形成HCPA-UF-MBR组合工艺,研究HCPA-UF-MBR、UF-MBR两平行系统对低温高色高氨氮水源水的除污效果、反应器内活性污泥性能及膜污染情况,考察HCPA的作用机理与效能.结果表明,HCPA-UF-MBR对色度、CODMn、NH -N、TN的平均去除率为94.60%、81.61%、98.44%、58.30%,出水NO -N、NO -N浓度均较低;HCPA投加后,UF-MBR的除污效果与抗冲击负荷能力增强,污泥总活性与硝化活性分别提高了9.09%、105.88%,反应器达到稳定时间短且波动小,内部活性污泥硝化反硝化过程更充分;此外,HCPA吸附混合液中部分有机物,改善了污泥混合液性能,使膜表面滤饼层较疏松且透水性较好,有效地减轻了膜污染程度. 相似文献
7.
8.
曝气生物滤池处理高氨氮含铍废水研究 总被引:1,自引:0,他引:1
含铍废水具有较高的毒性,目前关于其处理方法的研究较少。文章针对铍冶炼废水中铍超标以及高氨氮浓度的问题,选取接种有微生物的曝气生物滤池(BAF)工艺同时去除氨氮和铍,并分析其去除铍的机理。反应器系统的长期运行结果表明,BAF对高氨氮含铍废水具有较好的处理效果。在进水氨氮浓度200 mg/L,铍浓度50~100μg/L,停留时间24 h条件下,处理出水氨氮浓度稳定在1.8~10.0 mg/L,铍浓度小于5μg/L。BAF主要通过系统中的微生物去除铍,载体对铍的吸附量较小,用Langmuir模型对吸附数据进行拟合,得到微生物对铍的吸附容量为684.9μg/g。形态提取实验表明,被微生物去除的铍主要以有机结合态存在,且微生物细胞表面对铍的吸附量有限,大量的铍富集于微生物细胞内,为此,BAF对铍有长期稳定的处理效果。 相似文献
9.
一体式MBR处理高氨氮小区生活污水中试研究 总被引:26,自引:0,他引:26
在一体式MBR处理高浓度有机废水研究的基础上 ,针对高氨氮城市小区生活污水进行中试研究。着重研究了不同运行状况下处理效果、影响因素及膜通量的衰减规律。试验表明 :通过增设泥水回流和缺氧区可将氨氮去除率从60 %提高到 95 %以上 ,在进水CODCr为 3 3 0mg L、NH3为 10 0mg L时 ,出水CODCr和NH3分别低于 2 5mg L、5mg L ,且其它指标均达到生活杂用水水质标准 (CJ2 5 1 89)。 相似文献
10.
11.
12.
厌氧氨氧化工艺处理高氨氮养殖废水研究 总被引:13,自引:2,他引:11
以典型高浓度养殖废水经UASB-短程亚硝化工艺处理后的出水为对象,采用厌氧氨氧化工艺进行脱氮处理研究.以反硝化污泥启动厌氧氨氧化反应器,在此基础上,通过试验确定最佳进水氨氮负荷应处于0.2 kg/(m3·d)左右,系统的HRT定为2 d;通过对系统运行条件研究发现,最佳运行条件为:pH为7.50左右,温度为30℃且系统不需投加有机碳源.在优化条件下,系统最终氨氮去除率能达到85%以上,亚硝态氮去除率达到95%以上,系统运行效果良好,且具有重现性.最后通过动力学理论分析得出氨氮的降解速率为0.012 6 d-1,亚硝态氮的降解速率为0.013 1 d-1.通过研究以期为后续工艺、神经网络模拟及“UASB-短程亚硝化-厌氧氨氧化-土地系统组合新工艺的工程推广应用提供一定的理论依据. 相似文献
13.
GAC-石英砂滤池处理高氨氮原水的生产研究 总被引:1,自引:0,他引:1
以广州市珠江流溪河下游为水源,采用GAC-石英砂滤池处理沉淀池出水,研究了该工艺对枯水期高氨氮原水的去除规律及其影响因素。结果表明:GAC-石英砂滤池滤与普通砂滤池相比氨氮的去除显著提高,滤后水氨氮平均值为2.08mg/L,去除量约为1.0mg/L,去除率为33.8%。研究显示氨氮处理效果受余氯的灭菌作用、溶解氧不足、原水水质下降、pH值不足、活性炭滤料吸附性能下降、空床接触时间短、反冲洗周期与强度的影响。建议降低前投氯而加强后投氯量,同时使用无氯水进行反冲洗;保持滤后水溶解氧在2~4mg/L且pH值7.5;延长反冲洗周期至36h;适当降低运行负荷可提高GAC-石英砂滤池对氨氮的去除效果。 相似文献
14.
15.
感光材料工业排出的异丙醇废水的BOD5CODcr 比值为0 .40 左右,可生化性良好;经水解酸化处理后该废水的BOD5CODcr 比值可提高至0 .50 左右,平均增加了25 % ,证实了水解酸化菌在该工艺条件下具有提高异丙醇废水可生化性的功能.水解酸化———好氧串联工艺对该废水总的处理效果表明:在异丙醇废水CODcr 进水浓度2000 ~3000mgL 范围内,CODcr 总去除率可达90 % 左右,BOD5 总去除率可达95 % 左右. 相似文献
16.
17.
18.
针对热电厂脱硫废水中的高浓度氨氮,采用吹脱-吸附工艺进行处理.试运行结果表明:在进水量为95.8 m3/d、pH 10~11、水温35~45℃的条件下,出水氨氮浓度为40.3~150.4 mg/L,满足《火电厂石灰石-石膏湿法脱硫废水水质控制指标》(DL/T 997—2006)要求,氨氮去除率为90%~96.54%,处... 相似文献
19.
采用MAP法处理化肥厂合成氨工序的高氨氮炭黑废水,结果表明选择Na_2HPO_4·12H_2O+MgCl_2·6H_2O药剂组合,按照n(Mg~(2+)):n(N):n(PO_4~(3-))=1.2:1:0.9投加比例投加,p H值为10.2,反应温度42℃,反应时间30min,对氨氮的去除率可达91%。该工艺可以将炭黑废水中的炭黑一起去除,具有简单、快速、高效的特点。 相似文献