首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
王红娟  齐飞  封莉  张立秋 《环境科学》2012,33(5):1591-1596
以城市污水处理厂脱水污泥和玉米芯为原料,氯化锌为活化剂制备污泥基活性炭(SAC),考察其催化臭氧氧化去除水中稳定性药物布洛芬(IBP)的效能.试验中对比考察了单独臭氧氧化、单独SAC吸附、SAC催化臭氧氧化这3种工艺对水中IBP(初始浓度为500μg.L-1)的去除效果,同时研究了臭氧与SAC投加量对催化效果的影响.结果表明,单独臭氧氧化对IBP的去除率随臭氧浓度的增加而增加,当臭氧浓度由0.75 mg.L-1增加至3.0 mg.L-1时,IBP的去除率由44.4%提高到100%;单独SAC对IBP的吸附去除效果较差,即使SAC投加量增至100 mg.L-1,吸附时间为40 min时,IBP的吸附去除率仅为44.56%;SAC催化臭氧氧化工艺中,IBP去除速率大大加快,在反应的初始阶段(0~5 min)SAC催化臭氧氧化对IBP的去除率要远远高于单独臭氧氧化和单独SAC吸附二者作用之和.臭氧与SAC的投加量对IBP的催化氧化去除效果具有较大影响.SAC催化臭氧氧化IBP分为瞬时需氧阶段反应(0~5 min)和慢速反应(5~40 min)两阶段.快速反应阶段以.OH与IBP反应为主,慢速反应阶段残余臭氧浓度很低,此时主要以SAC吸附去除IBP为主.  相似文献   

2.
以污泥基活性炭为基质,采用化学共沉淀法制备了不同过渡金属(Mn、Co和Cu)掺杂的铁磁污泥基活性炭(T-FMSAC,T=Mn、Co、Cu),重点考察了过渡金属种类及其掺杂比例对T-FMSAC催化臭氧氧化去除水中对氯苯甲酸(p-CBA)效能的影响,并对臭氧与T-FMSAC催化剂的最佳投量进行了研究确定.结果表明,在臭氧投加量为1mg/L,催化剂投加量为40mg/L条件下,反应进行40min后,Mn-FMSAC的催化活性最高,其催化臭氧氧化对p-CBA的去除率为76%,高于Co-FMSAC(72%)及Cu-FMSAC(65%).并且,随着金属掺杂比例的增加(100:1,50:1,25:1,10:1(污泥量:金属掺杂量,W:W)),T-FMSAC催化臭氧氧化对p-CBA的去除率逐渐降低.在100:1掺杂比例下,催化剂不仅能够简单地通过磁铁分离,且具备最佳催化活性.100:1Mn-FMSAC催化臭氧氧化工艺对p-CBA的去除率随臭氧浓度的增加而增加;当臭氧投加量为1mg/L时,100:1Mn-FMSAC催化剂的最佳投量为40mg/L.叔丁醇的加入显著抑制了100:1Mn-FMSAC催化臭氧氧化降解p-CBA的效能,表明该反应过程遵循羟基自由基反应机制.  相似文献   

3.
为了提高苯胺废水处理效果,采用臭氧氧化静态试验处理模拟苯胺废水,分析了污染物去除效果和反应机理.结果表明:苯胺去除率随臭氧投加量增加而提高,当臭氧投加量116 mg/L时,苯胺去除率、COD去除率和TOC去除率分别达到99.9%、64.5%和10.8%;最佳反应pH值为7.在臭氧投加量逐步增加至116 mg/L时,氨氮...  相似文献   

4.
采用自制催化剂催化臭氧氧化处理煤化工高盐废水,考察了催化剂性能、催化臭氧氧化影响因素,并进行了催化臭氧氧化机理研究。实验结果表明:自制催化剂抗压强度为1 685 N,45 d磨损率为1.67%;在p H=8.1,催化剂投加量为7 g/L,臭氧投加量为13 mg/min的条件下,COD去除率为45%,色度去除率为85%。由傅里叶红外光谱分析可知,催化剂表面存在羟基基团,催化臭氧分解速率比单独臭氧分解速率快,在相同时间内催化剂可促进臭氧分解产生更多·OH,由此表明催化臭氧氧化机理遵循羟基自由基反应机理。  相似文献   

5.
采用非均相催化臭氧氧化工艺深度处理化工废水二级生化出水,探索负载不同活性组分的活性炭催化剂及该工艺处理化工废水的影响因素。结果表明:当进水COD为85~110 mg/L,臭氧投加量为60 mg/L,催化剂投加量为200 mg/L Cr时,臭氧氧化、ACCA-1、ACCA-2和ACCA-3催化臭氧氧化对出水COD的平均去除率分别为22.46%、32.7%、40.5%和35.7%,3种催化剂均可强化臭氧氧化效果。活性炭催化剂能提高臭氧利用率,叔丁醇对ACCA-2抑制效果最明显。  相似文献   

6.
该文研究了臭氧氧化对印染废水中典型化学污染物聚乙烯醇(PVA)的降解效果,考察了臭氧投加量、PVA初始浓度、温度与pH对PVA去除效果的影响,探究了PVA臭氧化中的氧化机制。结果表明,当臭氧投加量为7 mg/L、PVA浓度为50 mg/L、pH为7、温度为20℃时,反应60 min后,PVA的去除率为99.7%。机理研究表明,臭氧的直接氧化在PVA降解过程中起主要作用,羟基自由基(·OH)的间接氧化对PVA的降解也有部分贡献,·OH淬灭实验显示,加入100 mg/L的叔丁醇后,PVA降解率下降至74.5%。紫外全波长扫描与傅立叶变换红外光谱结果表明,PVA分子的随机断链是PVA氧化降解的主要途径。  相似文献   

7.
传统工艺对含酚废水的处理效果有限,催化臭氧氧化技术能够有效处理含酚废水。α-Fe2O3在试验中表现出了高臭氧催化活性,催化产生的·OH可对苯酚及中间产物进行无选择性矿化,显著增强了污染物去除效果和臭氧利用水平。为明确催化臭氧氧化过程主要影响因素并优化工艺参数,以苯酚模拟含酚废水,设计了L16(44)正交试验。结果表明,臭氧投加量、催化剂投加量、pH、反应时间是COD去除率及单位臭氧COD降解量的主要影响因素,其中,臭氧投加量与反应时间的影响较为显著。方差分析与试验验证表明,催化剂投加量对COD去除率影响较小,pH对单位臭氧COD降解量影响较小。通过权矩阵计算得到优化后的反应条件:臭氧投加量为5 mg/(L·min),催化剂投加量为0.10 g/L,pH为9,反应时间为45 min。叔丁醇屏蔽试验表明,·OH显著促进了催化臭氧氧化进程。  相似文献   

8.
催化臭氧氧化预处理垃圾渗滤液   总被引:2,自引:0,他引:2  
采用浸渍法制备载铜活性炭催化剂,系统地研究了催化氧化法对垃圾渗滤液中的COD和氨氮去除效果,对臭氧氧化和催化臭氧氧化效率进行了对比。在该方法下制备的催化剂中,活性组分金属铜的含量为2.89%。结果表明:在投加催化剂的情况下,COD的去除效率可得到显著提高。实验结果表明:处理COD为4980mg/L,氨氮为2100mg/L的垃圾渗滤液废水,在室温、pH为3、反应时间为120min、催化剂投加量为150g/L、臭氧的流量为5.2mg/min的条件下,废水中的COD及氨氮的去除率分别达到达81.9%和99.04%。  相似文献   

9.
臭氧/纳米TiO2催化氧化去除水中微量硝基苯的研究   总被引:6,自引:1,他引:6  
在悬浮颗粒搅拌混合反应器中,研究了臭氧/纳米TiO2催化氧化去除水中微量硝基苯的性能,结果表明,纳米TiO2催化臭氧化去除硝基苯较单独臭氧氧化有明显的提高,反应20min硝基苯的去除率提高了44%.实验中分别考察了纳米TiO2热处理温度、催化剂投量、臭氧投量、硝基苯初始浓度、pH值对臭氧/纳米TiO2催化氧化去除硝基苯的影响.发现550℃烧结得到的纳米TiO2表现出最好的催化臭氧化活性,在较低的臭氧投量与催化剂用量条件下,硝基苯的去除率可达到56.57%;增大臭氧或者硝基苯的初始浓度,硝基苯的去除率随之提高;但是改变催化剂投量,硝基苯的去除效果几乎不受影响;中性或碱性pH环境利于纳米TiO2催化臭氧化反应的进行.通过研究叔丁醇对纳米TiO2催化臭氧化反应的影响,证明反应遵循羟基自由基(·OH)反应机理.  相似文献   

10.
Ru/AC催化剂催化臭氧氧化邻苯二甲酸二甲脂的实验结果表明:投加活性炭上负载Ru的催化剂可以显著提高臭氧氧化的效果,反应60min后,单纯由于Ru/AC催化臭氧氧化导致的TOC的去除率高达39%。实验还考察了制备条件对催化剂活性的影响并确定了催化臭氧氧化的最佳反应条件。在实验考查范围内:当焙烧温度为500℃,Ru的负载量为2.5%时催化剂活性最高;催化臭氧氧化最佳反应条件为:催化剂投加量为2g/L;气体流速为300mL/min;臭氧投加量为100mg/h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号