首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
重金属镉(Cd)经过土壤-水稻系统富集,通过食物链进入人体,威胁人体健康。Cd在土壤-水稻系统中迁移转化规律越来越受到人们的关注。而土壤和水稻本身的差异及气候环境的不同是影响Cd在土壤-水稻系统中迁移、转化和积累的重要原因。因此在修复稻田Cd污染的土壤和降低稻米Cd含量时,需综合考虑这些因素。文章从外在环境因素和内在因素2个方面综述了土壤主要性质(质地、类型、p H、有机质、水分)、气候环境(温度、光照、雨水)、不同重金属间互作以及水稻类型(常规/杂交稻、籼/粳稻、早/中/晚稻)和不同器官、生育期对水稻吸收和积累Cd的影响,并提出稻米Cd污染防治提供相应的治理措施。其次,对该领域的研究方向进行了展望,为Cd污染稻田实现农业安全生产和Cd污染土壤修复提供理论依据。  相似文献   

2.
石灰对生物炭和腐殖酸阻控水稻Cd吸收的效应   总被引:1,自引:0,他引:1  
采用田间试验,研究了石灰-生物炭和石灰-腐殖酸两种联合修复剂及其不同施用量对酸性土壤中稻米Cd含量、产量和品质的影响,并对不同处理修复效果进行综合评估.结果表明,两种联合修复剂能显著降低稻米Cd含量17.39%~45.96%,降低土壤有效Cd含量18.29%~29.88%,.生物炭、腐殖酸施用量分别为5000,6000kg/hm2时,稻米Cd的降低效果最佳.石灰-生物炭处理中,降低稻米Cd含量的主要因子为土壤pH和土壤有效Cd含量(P<0.05),而石灰-腐殖酸处理则为土壤有机质含量与土壤有效Cd含量(P<0.05).施加修复剂后稻米产量可达6637~7890kg/hm2,直链淀粉含量达到19.47%~27.26%;当腐殖酸施用量为7500kg/hm2时可使稻米产量提高10.97%,而石灰-生物炭处理对稻米产量无显著影响;采用层次分析法确定了稻米Cd含量、稻米产量、稻米品质和修复费用在修复效应评估中所占权重为0.608、0.150、0.102、0.140,综合评估结果显示土壤-水稻系统Cd阻控效应的联合修复技术为:在施用1200kg/hm2石灰的基础上同时施加6000kg/hm2腐殖酸.  相似文献   

3.
调理剂+淹水措施对Cd污染稻田控Cd效果分析   总被引:2,自引:2,他引:2  
为探明淹水措施、基施湘润邦土壤调理剂、矿物硅肥+喷施叶面肥、石膏粉以及综合处理对不同污染土壤修复效果和作用机制,通过在3个不同类型Cd污染耕地布置小区试验,研究了单一处理及综合措施对阻控污染耕地稻米吸收累积Cd的影响.结果表明,淹水措施、单一施用调理剂、综合施用结合淹水处理能降低土壤有效态Cd和水稻各器官Cd含量,土壤有效态Cd降低6. 58%~30. 01%,糙米Cd含量降低12. 65%~68. 68%,降低效果为综合处理(T6)基施石膏粉(T5)基施湘润邦土壤调理剂(T3)矿物硅肥+喷施叶面肥(T4)淹水处理(T2)(以两季水稻糙米Cd含量降低效果平均值计算).试验中5个处理使水稻各部位富集系下降,是引起糙米Cd含量下降的主要原因之一.根据田间小区试验显示,基施湘润邦土壤调理剂、矿物硅肥+喷施叶面肥和石膏粉组配施用结合淹水措施可作为Cd污染耕地稻米Cd阻控的有效方法.  相似文献   

4.
水稻品种及典型土壤改良措施对稻米吸收镉的影响   总被引:9,自引:11,他引:9  
王美娥  彭驰  陈卫平 《环境科学》2015,36(11):4283-4290
水稻镉污染是我国当前重要的农产品安全问题,湖南攸县"镉大米"事件造成了严重的社会影响.针对南方酸性土壤镉污染特征,进行了"镉大米"治理技术研究.结果表明,当地主栽水稻品种株两优06的稻米Cd含量在大同桥和网岭镇的平均值分别为0.167 mg·kg-1和0.127 mg·kg-1,为其它品种的20%左右;石灰和矿物肥处理能够使稻米Cd含量降低到对照的20%~30%,覆膜处理使稻米Cd含量与对照相比降低约50%,而覆膜+生物炭+硅肥叶面肥处理能够降低80%左右,硅肥叶面肥单独施用及叶面肥和追肥配合施用能够显著降低稻米中的Cd含量90%以上;BCR法分析土壤Cd形态结果发现,供试大田土壤中Cd的弱酸可提取态比例较高,绝大多数样品达到55%以上,而施用石灰能够显著降低土壤中的弱酸可提取态和可还原态比例,增加残渣态比例,变化幅度达到20%左右;土壤Cd含量与p H值是影响稻米对Cd吸收的重要因素.  相似文献   

5.
魏玮  李平  郎漫 《环境科学》2021,42(9):4462-4470
本研究以铜(Cu)、镉(Cd)污染水稻土为对象,通过水稻盆栽试验研究聚丙烯酸(PAA)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)和腐殖酸(HA)这4种结构改良剂对水稻生长和重金属吸收的影响.结果表明,与对照处理相比,施用结构改良剂处理水稻株高和秸秆重分别增加了7.34%~22.0%和10.0%~32.2%,结构改良剂用量越高,增幅越大.施用0.4%的结构改良剂对水稻有一定的减产效应,籽粒重比对照处理降低了6.70%~32.6%.施用结构改良剂对土壤pH值无影响,但显著降低了土壤有效态Cu (5.38%~39.7%)和Cd含量(6.98%~59.6%),水稻根、秸秆和稻米中Cu含量分别降低了0.88%~27.2%、8.50%~45.2%和3.41%~31.2%,Cd含量分别降低了5.93%~20.5%、10.0%~51.4%和3.12%~50.7%,PAA处理的降幅最大、PVA处理的降幅最小.结构改良剂降低了Cu和Cd从根系向秸秆的转运系数,但增加了Cu和Cd从秸秆向稻米的转运系数.总体来看,施用结构改良剂促进了水稻生长,抑制了水稻对Cu和Cd的吸收,对重金属污染土壤具有一定的修复效果.  相似文献   

6.
镉污染大田条件下不同品种水稻镉积累的特征及影响因素   总被引:1,自引:0,他引:1  
选取适合当地种植的8个水稻品种为试验对象,开展大田试验,比较不同品种水稻对重金属Cd的积累、吸收和转运特征,筛选出适合当地种植的Cd低累积水稻品种,并分析水稻低累积程度及稳定性影响因素.结果表明:(1)根据综合积累指数(PN)评价方法筛选出对Cd综合积累能力低的水稻品种有:川优3203、川优6203、德粳6号和沈优17.(2)综合考虑稻米Cd含量和产量,适合在该地区种植的水稻品种为川优3203和川优6203,既能安全保障稻米Cd含量,又能保证水稻高产.(3)川优3203和川优6203在不同p H和不同总镉范围内稻米中Cd含量均显著低于其他品种,且在不同土壤条件下表现得很稳定.(4)水稻品种的差异对水稻的稻米富集能力有较大的影响,而对水稻茎叶向水稻稻米的转运能力的影响较小;川优3203和川优6203的低富集系数,加之其较低的转运,最终呈现出稻米较低的镉富集能力.(5)相关性分析发现,稻米Cd含量受水稻富集系数影响最大,受根际土壤总Cd含量影响最小.  相似文献   

7.
稻田土壤性质与稻米镉含量的定量关系   总被引:26,自引:11,他引:15  
王梦梦  何梦媛  苏德纯 《环境科学》2018,39(4):1918-1925
水稻是高累积镉(Cd)的农作物,其吸收累积Cd的量受多种因素影响.为明确田间条件下,土壤中Cd含量和土壤性质与稻米Cd含量的定量关系,在水稻收获时通过对60个不同田块的土壤和稻谷进行点对点采样,分析土壤Cd含量、土壤pH值、土壤有机质(SOM)、土壤阳离子交换量(CEC)和稻米中Cd含量,并通过线性相关与多元回归分析,研究Cd污染稻田土壤性质与稻米Cd含量的定量关系.结果表明:所采稻田土壤Cd含量范围为0.15~2.54 mg·kg-1,其对应的稻米Cd含量范围为0.02~2.00 mg·kg-1;简单线性相关分析表明,土壤全Cd含量与水稻籽粒Cd含量达到了极显著相关水平(P<0.01),相关性系数r=0.392(n=60);土壤pH、有机质(SOM)和阳离子交换量(CEC)对稻米Cd含量也有一定的影响,但未达到显著水平;土壤pH与稻米Cd含量的关系呈现为:当pH小于6.5时,稻米Cd含量随着pH的升高而增加,当pH大于6.5时,稻米Cd含量随着pH的升高而降低.将土壤全Cd含量、土壤pH、有机质(SOM)、阳离子交换量(CEC)与稻米中Cd含量进行多元回归分析,得到5个稻米中Cd含量预测方程,其相关系数r均达到极显著水平(P<0.01),其中包括全部变量在内的预测方程的相关性系数最高,可以较好地预测此地水稻籽粒中Cd含量.  相似文献   

8.
代子雯  方成  孙斌  魏志敏  胡锋  李辉信  徐莉 《环境科学》2021,42(4):2016-2023
选取2种地质高背景农田土壤(马岭和云表),盆栽条件下种植7种不同水稻品种(宁两优1号、Y两优1号、深两优、泰两优、粤晶丝苗、油占八号和黄华占),分析比较不同水稻对Cd的吸收累积特征,并探究可能的影响因素.结果表明:①两种地质高背景土壤下种植的7种水稻稻米Cd含量均未超标(GB 2762-2017),其中深两优稻米Cd含量最低;②7种水稻稻米Cd含量均表现出在马岭土壤种植的高于在云表土壤种植的;③冗余和相关分析发现,稻米Cd累积主要是受水稻株高、根表面积、土壤全Cd含量、抽穗期土壤EC和Eh等因素影响.两种土壤中影响稻米Cd累积的主要因素存在差异:云表土壤下稻米Cd含量与水稻根长呈极显著相关;马岭土壤下稻米Cd含量与水稻地上部生物量呈极显著相关.  相似文献   

9.
南方典型区域水稻镉富集系数差异影响因素探析   总被引:4,自引:0,他引:4  
该研究通过自采样分析及综合其他人员研究结果分析了我国南方典型稻米产区水稻吸收镉差异性。方差分析结果表明我国南方稻米产区稻米镉富集系数差异显著且可划分为高吸收(富集系数平均值及标准差为(0.96±0.73)、中高吸收(0.64±0.59)、中低吸收(0.29±0.22)及低吸收(0.26±0.30)4种类型,在19个研究区内中及中低吸收型(富集系数介于0.2~0.3)是4种类型中最常见的。对土壤p H、有机质含量、质地、土壤类型、土壤镉含量、土壤Zn/Cd等影响稻米镉富集系数的因素进行了探讨,结果表明,土壤p H对稻米镉富集系数影响最大且符合韦布尔非线性方程模型。土壤有机质影响明显较p H低,土壤质地在土壤酸性条件下对稻米镉富集系数的影响要大于碱性条件,土壤Zn/Cd比对稻米镉富集系数影响也比较突出,在高Zn/Cd比的土壤中稻米镉富集系数一般较低,而土壤类型、土壤镉含量对稻米镉富集系数的影响存在较大的地域差异性。  相似文献   

10.
稻米Cd超标问题已成为社会各界广泛关注的热点问题之一,探索降低Cd向地上部转运并缓解水稻Cd胁迫的新方法,对保障食品安全具有重要意义.本研究拟通过在水稻幼苗叶面喷施2,3-二巯基丁二酸(DMSA)评估利用该重金属螯合剂降低Cd向水稻地上部转运并缓解Cd胁迫的可行性.以我国南方水稻主栽品种之一中早35幼苗为研究材料,采用水培法研究了叶面喷施不同浓度DMSA对Cd在水稻幼苗体内吸收转运的影响,同时考察了对水稻幼苗丙二醛(MDA)、谷胱甘肽(GSH)含量以及对抗氧化酶过氧化氢酶(CAT)、超氧化物歧化酶(SOD)活性的影响.结果表明,叶面喷施DMSA 0.2、 0.4和1.0 mmol·L~(-1) 4次后,水稻幼苗地上部Cd含量随着DMSA喷施浓度增加呈显著降低趋势, 3种处理浓度与对照相比分别降低22.1%、 39.7%和43.5%,但是对水稻幼苗根部Cd含量无显著影响;对地上部及根中K、Ca、Mg、Fe、Zn和Mn这6种矿质元素含量无显著影响;喷施4次DMSA后显著降低了幼苗地上部MDA和GSH含量,同时使CAT和SOD活性显著增加,有效缓解了Cd对水稻幼苗造成的胁迫效应.DMSA能抑制Cd从水稻根部向地上部转运,同时不影响对人体必需矿质营养元素的吸收和转运,具备成为水稻降Cd叶面调理剂的潜力.  相似文献   

11.
唐舒庭  卢一铭  肖盛柏  崔浩  魏世强 《环境科学》2023,44(10):5704-5717
砷(As)和镉(Cd)是稻田土壤中最常见的有毒有害重金属元素,且易从土壤迁移到水稻籽粒中.目前,我国稻田土壤中As和Cd及其复合污染现象普遍,对粮食安全和人体健康均构成了严重威胁.As和Cd在土壤中的环境行为相反,对As-Cd复合污染的同步治理是当前水稻安全生产的关键技术难点.通过综述近年来同步阻控水稻对As和Cd吸收以及转运的若干实用技术,包括水分管理、钝化技术、淋洗技术、电动修复技术、植物修复技术、低累积水稻品种的选取以及叶面阻控技术,归纳并分析了各种技术的处理效果、作用机制和制约因素,提出了主要阻控技术的发展方向,指出构建区域高适配性综合技术模式的重要性,以期为稻田As-Cd复合污染治理和水稻安全生产提供参考.  相似文献   

12.
为研究椰壳炭(coconut shell biochar,简称"CSB")及铁锰改性椰壳炭(Fe-Mn modified coconut shell biochar,简称"FM-CSB")对土壤中Cd的钝化效果及对水稻吸收积累Cd的影响,采用室外水稻盆栽试验,比较了施加质量比为0.5%的CSB与质量比为0.05%、0.1%、0.2%、0.5%的FM-CSB对南方酸性污染稻田土壤pH、Cd的形态变化及水稻各部位吸收积累Cd的差异性.结果表明:与CK相比,施加CSB与FM-CSB均能提升土壤pH,当FM-CSB施加量高于0.1%时效果显著(P < 0.05),施加0.5% FM-CSB处理效果最好,且优于添加0.5%的未改性CSB处理.相比于CK处理,施加CSB与FM-CSB处理均可使土壤中w(弱酸可溶态Cd)随着水稻的生长而逐渐降低,而w(可还原态Cd)、w(可氧化态Cd)与w(残渣态Cd)则呈升高趋势,其中0.5% FM-CSB处理对土壤中w(弱酸可溶态Cd)的降低效果最佳.随着FM-CSB添加量的增加,水稻各部位及稻米中w(Cd)均逐渐降低,施加0.5% FM-CSB时的降Cd效果最佳,可使水稻根、茎、叶、壳与糙米中w(Cd)比CK分别下降48.66%、54.64%、45.11%、31.64%与48.94%,并增产39.33%,而施加量同为0.5%时的FM-CSB处理下的降Cd效果显著高于未改性的CSB.研究显示,施加0.5% CSB与0.05%~0.5%的FM-CSB均可钝化土壤中Cd并降低水稻对Cd的吸收,且施加相同量的FM-CSB对Cd的钝化效果优于CSB.可见,FM-CSB可钝化土壤中Cd、降低其生物有效性,并减少Cd在水稻各部位的积累.   相似文献   

13.
渝西地区镉轻度污染稻田安全利用技术   总被引:6,自引:5,他引:1  
李娜  贺红周  冯爱煊  李伟  蒋珍茂  魏世强 《环境科学》2019,40(10):4637-4646
渝西地区是重庆市粮食主产区,区域土壤污染特征为以镉(Cd)为主的轻中度污染区.选择该区域酸性和钙质两类典型紫色稻田土壤,开展了低累积水稻品种联合钝化剂的田间原位修复试验,比较了水稻低累积品种常两优772联合使用硅钙肥、铁粉、生物质炭和秸秆有机肥4种钝化剂的修复效果.结果表明:①在酸性和钙质两类紫色稻田土壤上,除Fe粉外的其他3种钝化剂均提高了水稻稻谷产量,酸性紫色稻田土壤上以秸秆有机肥效果最好,增产47. 43%;而在钙质稻田土壤上则以生物质炭最好,增产23. 95%.②酸性紫色稻田土壤(p H=4. 75)上单纯低累积水稻品种不能满足水稻安全生产要求,联合钝化剂施用稻米Cd含量降幅为14. 81%~54. 88%,除硅钙肥外其他3种钝化剂稻米Cd含量均达到安全食用标准(0. 2mg·kg-1,GB 2762-2017);而钙质紫色稻田土壤(p H=7. 77)上不同处理稻米Cd含量在0. 012~0. 030 mg·kg-1之间,均未超过安全标准,但施用钝化剂(除生物质炭外)仍然可使稻米Cd含量降低,降幅为26. 67%~59. 00%.③钝化剂影响Cd在稻株体内的转运.以酸性土壤为例,硅钙肥可降低茎中Cd向糙米的转运,Fe粉和生物质炭可减少根部Cd的富集并降低茎中Cd向糙米的转运,秸秆有机肥可降低根系Cd向茎中的转运.④添加4种钝化剂均能促进土壤Cd向残渣态转化,降低土壤中有效Cd含量,进而降低了水稻各器官中Cd的积累.在酸性土壤中生物质炭对土壤Cd的钝化效果最好,钙质土壤中则是秸秆有机肥钝化效果最好.⑤酸性土壤上硅钙肥和秸秆有机肥显著提升了酸性土壤p H值和有机质含量,相应地土壤有效Cd含量降低了39. 45%和34. 69%;在钙质土壤上此现象则不明显.  相似文献   

14.
原位钝化-低积累品种联合修复镉污染农田研究   总被引:2,自引:0,他引:2  
该研究在田间试验条件下,研究了低积累水稻品种与石灰、生物炭、生物有机肥以及多孔陶瓷纳米材料等钝化剂联合修复对镉污染农田中土壤有效态Cd含量、水稻糙米Cd含量以及水稻糙米产量的影响。研究结果表明:在土壤Cd背景值为0.327 mg/kg的轻度Cd污染农田中,无论是常规水稻品种还是低积累水稻品种,采用石灰、生物炭配施石灰、生物有机肥配施石灰、多孔陶瓷纳米材料以及多孔陶瓷纳米材料配施石灰5种钝化剂组合方式均可以提高土壤pH值,其中土壤中有效态Cd含量最大降低率为45.95%,水稻糙米Cd含量降低幅度为10.54%~53.85%,水稻糙米最大增产率为11.37%;低积累水稻品种与石灰、生物炭配施石灰、生物有机肥配施石灰、多孔陶瓷纳米材料以及多孔陶瓷纳米材料配施石灰的联合修复均可将水稻糙米Cd含量降低至国家安全标准以下(0.2 mg/kg)。多孔陶瓷纳米材料配施石灰可使土壤有效态Cd含量降低45.95%,结合低积累水稻品种联合修复可使水稻糙米Cd含量降至0.138 mg/kg,低积累水稻品种与石灰和多孔陶瓷纳米材料联合修复对轻度Cd污染农田土壤效果最明显。  相似文献   

15.
典型土壤双季稻对Cd吸收累积差异   总被引:1,自引:4,他引:1  
用盆栽试验方法研究典型土壤双季稻条件下水稻对Cd的吸收累积差异.选取典型水稻土黄泥田(板页岩母质发育)和麻砂泥(花岗岩母质发育),通过添加不同浓度梯度外源Cd,进行盆栽试验,研究双季稻不同生育期土壤有效态Cd(DTPACd)、水稻植株各部位以及糙米Cd累积情况.结果表明,双季稻晚稻生育期土壤有效态Cd大于早稻,黄泥田大于麻砂泥,其差异性均达极显著水平(P0.01).水稻植株各器官(根、茎、叶、壳和糙米)Cd累积量随外源Cd增加和生育期的延长而呈现递增的趋势.不同生育期、不同土壤水稻糙米与植株各器官Cd累积量差异显著,具体表现为:早稻小于晚稻,黄泥田小于麻砂泥.水稻各器官(根、茎、叶、壳和糙米)中Cd含量与土壤有效Cd含量呈显著或极显著正相关关系.应用稻米Cd含量预测模型及水稻累积Cd的特征方程推算出土壤Cd安全阈值为:黄泥田早稻0.98 mg·kg~(-1)和晚稻:0.83 mg·kg~(-1);麻砂泥分别为0.86 mg·kg~(-1)和0.56 mg·kg~(-1).不同母质土壤的安全阈值与环境容量不同,其环境质量标准与污染修复控制措施应该有所区别.  相似文献   

16.
选取湖南省长沙市北山镇某中重度Cd污染稻田,研究了土壤调理剂(石灰石+偏高岭土+钙镁磷肥)对稻田土壤重金属Cd、Zn的钝化效果,以及对水稻各部位累积Cd和Zn的影响,并进行了Cd的健康风险评价.结果表明,使用土壤调理剂提高了稻田土壤p H值.Cd的CaCl_2提取态含量降低了0.9%~24.1%,Zn的CaCl_2提取态含量降低了22.5%~69.6%.土壤调理剂显著降低了水稻糙米中Cd与Zn的含量,与对照相比分别降低了10.8%~47.3%、10.3%~17.5%;土壤调理剂对水稻糙米Cd的吸收和累积的影响要远大于Zn,水稻糙米中的Cd/Zn比随着土壤调理剂施用量的增加而显著降低.研究区大米重金属Cd目标危害系数THQ值大于1,说明当地人群通过食用大米途径摄入重金属Cd存在健康风险.土壤调理剂有效地抑制了水稻植株对土壤中Cd的吸收,并降低了Cd/Zn比,使糙米中的Cd含量显著降低,从而降低了当地人群通过食用大米途径摄入重金属Cd的健康风险.  相似文献   

17.
叶面喷施纳米MnO2对水稻富集镉的影响机制   总被引:2,自引:0,他引:2  
镉(Cd)容易被水稻富集,从而造成稻米中Cd含量超标,严重威胁人类健康.锰(Mn)是植物必需元素,为了探究叶面喷施纳米MnO2对水稻富集Cd的影响机制,本研究在酸性Cd污染土壤上进行田间小区试验,在水稻抽穗早期叶面喷施0.1%、0.3%和0.5%的纳米MnO2溶液.结果表明与对照组相比,叶面喷施不同浓度的纳米MnO2可以有效降低水稻叶、壳和糙米中的Cd含量,增加所有部位的Mn含量,但对水稻的产量影响不大.叶面喷施纳米MnO2后,提高了叶片光合作用效果,抑制了叶片脂质过氧化,增加了氧化应激酶的含量,从而缓解Cd对水稻的胁迫.此外,叶面喷施纳米MnO2增加了水稻根表铁锰胶膜的含量,强化了铁锰胶膜对Cd的吸附/共沉淀作用,从而限制水稻根系吸收Cd.因此,在水稻抽穗早期叶面喷施纳米MnO2是一种增加糙米中Mn含量和减少Cd含量的有效措施.  相似文献   

18.
在典型镉(Cd)污染稻田上,采用田间小区试验研究脲酶抑制剂N-丁基硫磷酰三胺(NBPT)和硝化抑制剂双氢胺(DCD)与尿素同步基施对土壤氯化钙提取态Cd(CaCl2-Cd)、根表胶膜Cd和水稻各部位Cd含量的影响.结果表明:与对照相比,NBPT、DCD和NBPT+DCD处理均在一定程度上降低土壤CaCl2-Cd含量,NBPT+DCD处理CaCl2-Cd含量显著降低15.0%.NBPT与NBPT+DCD处理提高了水稻根表胶膜量.NBPT+DCD处理稻米Cd含量显著降低18.4%,Cd由根向稻米的转运系数(TF米/根)、茎向叶的转运系数(TF叶/茎)和茎向稻米的转运系数(TF米/茎)分别降低20.0%、40.6%和38.1%.Cd的TF米/根和TF米/茎降低是NBPT和DCD配施降低稻米Cd含量的主要原因.NBPT和DCD与尿素同基施是一种降低稻米Cd含量的有效措施.  相似文献   

19.
秸秆离田能增加稻田土壤中镉(Cd)的输出.本研究在2种不同Cd污染程度稻田开展田间试验,设置5种处理研究秸秆离田措施对水稻Cd吸收累积及稻米摄入人体健康风险的影响.研究结果表明:(1)相比与秸秆还田处理,秸秆离田处理提高了轻度和中重度Cd污染稻田土壤pH值0.13~0.58个单位,降低了秸秆分解的产酸作用,降低了土壤酸化效应;秸秆离田降低土壤有机质含量0.68%~19.48%,减少了有机质溶解带来的活性Cd可能.(2)秸秆离田处理显著影响轻度和中重度Cd污染稻田土壤Cd赋存形态,T1~T4处理使酸可提取态Cd占比分别降低0.74%~7.52%和5.70%~16.34%,残渣态Cd占比分别提升4.59%~14.40%和5.96%~18.49%;降低了土壤Cd的迁移性和生物可利用性,也提高了Cd的稳定性.(3)秸秆离田处理使轻度和中重度Cd污染稻田糙米Cd含量分别降低14.47%~40.13%和18.21%~25.33%,水稻植株Cd积累量分别降低20.53%~63.41%和15.05%~34.95%,降低了成人和儿童的稻米食用的人体健康风险THQ值.因此在Cd污染稻田长期实施秸秆离田措施...  相似文献   

20.
不同生育期Cd胁迫对水稻生长及镉累积的影响   总被引:7,自引:0,他引:7  
采用水培试验方法,从水稻移栽至某特定生育期之间添加外源镉(Cd),通过递推减法,研究了湘晚籼13号水稻不同生育期Cd胁迫对其生长和不同部位中Cd含量的影响.结果表明,50μg·L~(-1)外源Cd胁迫不会影响水稻的正常生长发育,糙米中的Cd主要来源于水稻分蘖期吸收的Cd在后期的迁移、灌浆期吸收的Cd和成熟期吸收的Cd,这3个关键生育期对糙米中最终Cd含量的贡献率分别为36.4%、18.2%和16.4%.因此,与灌浆期和成熟期相比,在水稻分蘖期采用一些植物阻隔技术可能对水稻籽粒中Cd含量的削减更为重要.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号