首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以淀粉厂厌氧活性污泥为对象,探讨了经酸处理后污泥的产氢特性.结果表明,酸处理后的活性污泥反应系统,其产氢量均大于未经处理的活性污泥反应系统,其中最适产氢酸处理pH值为4.0、处理时间为0.5 h.通过细胞裂解直接提取活性污泥细菌基因组DNA,PCR扩增细菌16S rRNA基因V3区和变性梯度凝胶电泳分离,获得酸处理活性...  相似文献   

2.
宋佳秀  任南琪  陈瑛  安东 《环境科学》2009,30(7):2124-2129
将CSTR系统内pH由4.2一次性提高至6.0左右,启动发酵类型的转化,研究了转化过程系统内的产氢动态和细菌群落.结果表明,在有机负荷维持在(33±1)kg/(m3·d)的情况下,发酵类型10 d内未发生改变,产氢量8 d内未降低,15 d后系统内种群由乙醇型转化为丁酸型,进水碱度由250 mg/L增至2 450 mg/L.研究中利用荧光原位杂交技术(FISH)对反应系统内3类微生物群进行监测发现,在转化过程中Clostridium cluster XI数量增加,Clostridium cluster Ⅰ 和Ⅱ数量减少,而Enterobacteriaceae始终存在,变化不明显.种群的消长同反应系统产氢能力的高低存在密切关联,以Clostridium cluster Ⅰ和Ⅱ占优势的乙醇型发酵具有更佳的产氢能力,平均比产氢速率为23.6 mol/(kg·d).  相似文献   

3.
为寻求适宜的污泥热处理方法富集产氢菌群,利用摇瓶发酵试验,考察了城市污水处理厂活性污泥在65 ℃下经不同时间的热处理后,其利用葡萄糖发酵产氢的特性。结果表明,在初始葡萄糖浓度为10 g/L,接种量为1.6 g/L(以MLVSS计),pH为7.0条件下,35 ℃培养64 h,经65 ℃热处理15和30 min的种泥发酵系统表现出较好的发酵产氢性能,其氢气转化率分别为1.06和1.09 mol/mol(以葡萄糖计),比产氢率分别为8.2和8.4 mmol/g(以MLVSS计)。不同热处理时间下种泥中的微生物种群存在差异,各发酵体系形成了具有不同产酸发酵产氢功能的顶级群落,其中经15~75 min热处理的种泥发酵体系表现为丁酸型发酵特征,而经90~120 min热处理的种泥发酵体系则呈现混合酸发酵特征。  相似文献   

4.
为解决连续流搅拌槽式反应器(CSTR)发酵制氢系统存在的不足,如单位基质氢气转化率低、因搅拌带来的耗能,抗负荷冲击能力不强等问题,开展了厌氧折流板反应器(ABR)发酵产氢的研究.结果表明,在35℃和进水COD 5000mg/L等条件下,ABR系统可在26d达到乙醇型发酵,其比产氢速率为0.13L/(gMLVSS·d),而在同样条件下, CSTR达到乙醇型发酵后,比产氢速率仅为0.06L/(gMLVSS·d).ABR通过生物相的分离,使产氢系统梯级利用有机物并达到深度产氢的目的.与CSTR相比,ABR具有较高的产氢活性、较低能源消耗等优点,是一种较为理想的有机废水发酵制氢反应设备.  相似文献   

5.
采用两级CSTR反应器对实际生活污水亚硝化的启动过程及稳定运行主要影响因素进行了研究.通过向生活污水里投加(NH4)2SO4来提高进水氨氮浓度,并逐渐调整两级反应器的曝气强度至DO浓度分别为(1.5±0.12),(0.35±0.1) mg/L,历经45d即实现了亚硝化的启动,亚硝化率保持在90.3%以上,氨氧化率保持在91.2%以上.低氨氮生活污水运行时,通过第一级反应器中三组DO/ALR的效果对比,表明DO/ALR在1.2~2.0 mg O2/(gN·d)时亚硝化效果最好.降低氨氮浓度以及增大HRT两种情况下导致ALR改变时,维持上述DO/ALR范围依然可以保证亚硝化的稳定.  相似文献   

6.
酸性预处理污泥厌氧发酵产氢   总被引:13,自引:2,他引:11  
通过批量试验系统研究了酸性预处理污泥厌氧发酵产氢情况.研究结果表明,通过酸性预处理,不仅对耗氢菌起到抑制作用,还能起到一定的融胞作用,使污泥中溶解性的糖和蛋白质的含量增加,促进厌氧发酵产氢;酸性预处理污泥厌氧发酵主要降解的有机物质为蛋白质,糖类次之.最佳的酸性预处理条件为调整原污泥pH=3.0放置24h;经过pH=3.0酸性预处理后调节初始pH=11.0的条件下厌氧发酵产氢,其最大累积产氢量最高,为14.66 mL.  相似文献   

7.
外加淀粉酶预处理污泥厌氧发酵产氢研究   总被引:4,自引:1,他引:4  
通过外加淀粉酶预处理剩余污泥,考察了淀粉酶对污泥的破解效果,研究了接种产氢菌(Enterococcus sp.LG1)和未接种产氢菌两种状况下,污泥厌氧发酵产氢效果,并与相应温度(60℃)热预处理污泥的发酵产氢效果进行对比,同时分析探讨了污泥发酵产氢过程中底物和pH值的变化.结果表明,淀粉酶预处理污泥4h后水解效果最佳...  相似文献   

8.
污泥厌氧发酵产氢的影响因素   总被引:12,自引:1,他引:11  
蔡木林  刘俊新 《环境科学》2005,26(2):98-101
污水生物处理过程中产生大量剩余污泥, 通常采用厌氧发酵处理并获取甲烷气体. 产氢产酸是污泥厌氧消化过程中的一个中间阶段. 本研究考察了原污泥和经碱处理的污泥在不同初始pH(3.0~12.5)条件下的产氢效果, 以及污泥性质和污泥浓度等对产氢效果的影响. 结果表明, 当初始pH为11.0时污泥发酵的产氢率达到最大值.采用原污泥发酵产氢时, 在初始pH为11.0的条件下发酵产氢获得的最大产氢率为8.1 mL/g, 而经碱处理的污泥在同样初始pH的条件下发酵产氢可将其产氢率提高一倍左右, 达到16.9 mL/g. 污泥经碱处理后厌氧发酵4d无甲烷产生, 且可有效地降低氢气消耗的速率. 另外, 污泥的VSS/SS值过低时会大大降低污泥的产氢率, 而污泥浓度对产氢率无明显影响.  相似文献   

9.
以污泥与垃圾焚烧厂渗滤液为原料,通过小瓶批式试验,考察了垃圾渗滤液的添加量以及渗滤液初始pH对联合厌氧消化产氢的影响。结果表明:未添加污泥的渗滤液本身也可以在厌氧发酵过程中产氢。而污泥与垃圾渗滤液联合厌氧发酵,当渗滤液初始pH为5.20时,添加90%的渗滤液体系产氢量最大,为201.58mL,最大产氢速率也最高,为9.56mL/h;当初始渗滤液pH为4.47时,最大产氢量出现在渗滤液添加剂量为60%的样品,为57.73mL,随后减小,但最大产氢速率在添加40%的渗滤液达到峰值,为5.11mL/h。  相似文献   

10.
接种不同普通污泥的厌氧氨氧化反应器的启动运行研究   总被引:13,自引:3,他引:13  
采用 3套相似的小试UASB系统 ,分别接种普通厌氧颗粒污泥、普通厌氧颗粒污泥与好氧活性污泥的混合污泥以及河底污泥 ,以自配含NH 4 N和NO-2 N的废水为进水 ,分别经过 2 2 5d、2 2 0d和 2 5 0d的启动运行 ,均成功实现了厌氧氨氧化过程 ,氨氮去除率都达到 80 %以上 ,但在各反应器中由厌氧氨氧化过程所去除的氨氮与亚硝酸氮的比例有较大区别  相似文献   

11.
凤眼莲发酵产氢特性的研究   总被引:3,自引:0,他引:3       下载免费PDF全文
采用加热预处理的厌氧活性污泥为接种物,对凤眼莲进行发酵产氢研究.结果表明,凤眼莲茎叶的发酵产氢能力优于整株凤眼莲,讨论了不同预处理方法和温度对凤眼莲茎叶发酵产氢的影响规律.在凤眼莲茎叶酶水解前采用强碱(NaOH)的预处理方式优于低酸(稀H2SO4),发酵反应温度35℃比55℃更有利于代谢产氢.将凤眼莲茎叶经NaOH预处理和酶解后,控制发酵液pH值为6和温度为35℃时,得到单位产氢量为49.7mL/g,最大产氢速率为0.48mL/(h·g).  相似文献   

12.
好氧颗粒污泥亚硝化工艺的启动与运行特性研究   总被引:2,自引:8,他引:2  
杨洋  左剑恶  卜德华  顾夏声 《环境科学》2007,28(11):2462-2466
以具有硝化功能的活性污泥与厌氧产甲烷颗粒污泥的混合物接种小试曝气上流式污泥床反应器,采用自配无机氨氮废水为进水,在中温(30~35℃)条件下成功培养获得亚硝化颗粒污泥,亚硝化工艺的进水NH4-N负荷可达2 .5~3 .0 kg/(m·d),氨氮去除率和亚硝化率均可稳定在90%以上;进水中约100 mg/L的有机COD对亚硝化工艺的运行无明显影响;常温(约20℃)条件下亚硝化工艺也能高效稳定运行.  相似文献   

13.
通过批式试验将不同来源的污泥与餐厨垃圾进行联合厌氧发酵,研究不同产氢程度的污泥-餐厨垃圾在不同污泥接种量下的产甲烷能力,以寻求产氢余物产沼的最佳条件及有机质转化规律。结果表明:污泥-餐厨垃圾产氢余物的产氢程度与体系产甲烷能力呈正相关,即产氢多余物>产氢少余物>不产氢底物;接种量增大后,体系产甲烷效能降低且各体系间的差异逐渐缩小。30%接种量下的产氢多余物体系产甲烷能力最佳,平均产甲烷速率为0.54 mL/(g·d),在第27天甲烷占比达到峰值87.04%,有最大累积产甲烷量1659 mL;主要原因是该体系挥发酸降解量大(17565 mg COD/L),占TCOD降解量(35384 mg/L)的50%。  相似文献   

14.
采集了广州两种生活污水污泥、两种工业污泥(印染污泥和造纸污泥),利用热重法对这4种不同来源的单一干污泥及混合污泥在不同条件下进行实验研究,同时计算了试样的4个燃烧特性指数,获得了污泥燃烧的动力学参数.实验结果表明,各污泥燃烧阶段主要分为水分析出、挥发分析出、固定碳的燃烧和无机盐类挥发分解4个阶段,其中挥发分的析出和燃烧制约着污泥燃烧整个过程.市政污泥S1与其他类污泥混烧过程中,各污泥有较明显的交互作用,其中市政污泥S1与其他3种污泥按照1∶1质量比混合后,其挥发特性指数D提高较明显,而综合燃烧特性指数S改变不明显.两种市政污泥8∶2质量比混合后,其混合样燃烧性能明显提高,其中综合燃烧指数提高接近2倍.采用积分法(Coats-Redfern方程)计算得到各燃烧阶段反应的机理方程及相应的活化能参数,发现各试样燃烧反应级数不尽相同,其中市政污泥S1与其他污泥混合后活化能E普遍降低,与样品S2混燃的活化能降低最多,对燃烧最有利.  相似文献   

15.
ABR发酵产氢系统的控制运行及产氢效能   总被引:2,自引:0,他引:2  
以稀释糖蜜为原料,通过分阶段提高进水COD的方法,考察了四格式、总有效容积为28.75L厌氧折流板反应器(ABR)的发酵产氢效能和运行特性.结果表明,以好氧和厌氧活性污泥的混合物接种,在水力停留时间(HRT)24h、进水pH为5.3~6.8和35℃等条件下,进水COD从500mg.L-1逐渐提高到6000mg.L-1左右,ABR可在63d内培育出具有产甲烷功能的微生物群落体系,并达到稳定运行状态.此时,4个格室中的液相末端产物以乙酸和丁酸为主,均呈现丁酸型发酵特征,系统的COD平均去除率为37.6%,平均产氢量为3.2L.d-1,去除单位COD的比产氢率平均为45.29L.kg-1(以COD计).随着进水COD的提高,ABR及各格室的运行特征也随之发生变化,在进水COD提高到8000mg.L-1并达到运行稳定状态时,后3个格室中仍有产甲烷活性的残留;前3个格室表现为乙醇型发酵,而最后1个格室的丁酸型发酵特征则得到加强;系统对COD的平均去除率降低为15.4%,平均产氢量和去除单位COD的产氢能力分别提高到12.85L.d-1和360.22L.kg-1(以COD计);由于诸如产甲烷菌和同型产乙酸菌的耗氢活性未被有效抑制,ABR的产氢效能受到了严重影响,虽然总产气速率和活性污泥的比产气率分别达到了61.54L.d-1和232L.kg-.1d-1(以MLVSS计),但总产氢速率和活性污泥的比产氢率分别仅为12.85L.d-1和48L.kg-1.d-1(以MLVSS计).  相似文献   

16.
采用连续流完全混合反应器(CSTR)对好氧污泥的颗粒化进行试验研究。以乙酸盐作为碳源、由营养和微量元素配制的人工配水作原水(COD=150~500 mg/L、pH=6~7)、以污水处理厂活性污泥接种,在常温(25~30℃)条件下,经过20多天的运行,培养出外观为淡黄色、颗粒粒径为1~5 mm(平均为2~3 mm)的好氧颗粒污泥。污泥颗粒化过程由EPS作用下的自絮凝、大量丝状菌的缠裹及细颗粒间的黏附结合等作用产生,经过絮凝核的形成、絮凝核的黏附、颗粒的形成和颗粒的成熟等几个阶段。反应器运行稳定高效,在水力停留时间为2.82 h、COD有机负荷为4.24 kg/(m3.d)的条件下,COD、NH4+-N和PO43--P的去除率分别为85%~90%、90%和50%~70%。颗粒污泥具有极好的沉降性能,沉降速度达30~58 m/h。  相似文献   

17.
采用连续流搅拌槽式反应器(CSTR)为实验装置,探讨了利用新型发酵产氢菌R3的生物制氢反应器的启动与运行情况.实验表明,维持反应器内pH在4.5左右、COD启动值为6000 mg·L-1、水力停留时间为8 h等条件,可在30 d内完成反应器内菌种对环境的适应并进入稳定运行阶段,此时系统氧化还原电位(HRT)稳定在-400mV左右.系统内的液相末端发酵产物中乙醇含量最大,占发酵产物总含量的65%,乙醇和乙酸所占比例为95%,系统呈现明显的乙醇型发酵特性.启动和运行阶段的积累产氢量为399.33 L,最大产氢量达15768.8 mL·d-1,最大氢气产率为49.94%.有机氮源可被微生物利用而无机氮源对产氢并无太大影响.使用有机氮源和磷源时积累产气量、积累产氢量和发酵液相末端产物与空白对照相比有所增大.  相似文献   

18.
CSTR和MBR反应器的短程硝化快速启动   总被引:3,自引:6,他引:3  
为实现短程硝化的快速启动,采用完全混合反应器(CSTR)和膜生物反应器(MBR)进行短程硝化启动性能对比研究,考察两个反应器在启动时间、氮素转化和污泥性能3个方面的差异.结果表明在进水C/N=1,温度为30℃±1℃,pH为7.5~8.0,DO为0.6~1.0 mg·L~(-1),结合缺氧/好氧比为1∶3(15 min∶45 min)和缩短HRT,CSTR和MBR分别运行56 d和44 d成功启动短程硝化,MBR启动周期较短.运行至第14 d、第28 d和第56 d时,CSTR和MBR亚硝累积率平均为51%、66%、89%和50%、71%、93%,硝酸盐氮生成速率(以NO_3~--N/MLVSS计)依次为7.4、4.0、1.7和7.6、3.5、1.0 mg·(g·h)~(-1),MBR在第28 d和第56 d表现出较高的亚硝累积率和较低的NO_3~--N产率,有利于短程硝化的快速启动.整个运行过程中,两个反应器内的亚硝化污泥均呈黄色,SVI在55~110 mL·g~(-1),MLVSS/MLSS稳定在0.6~0.8左右,良好的污泥性能为CSTR和MBR短程硝化的快速启动创造了有利条件.MBR在短程硝化快速启动中展现出更明显的优势.  相似文献   

19.
微生物电解池(microbial electrolysis cells,MEC)制氢技术是在传统发酵制氢中引入电解协助,克服了传统发酵制氢体系的热力学限制,使发酵末端产物挥发性有机酸能进一步转化为氢气,从而提高制氢效率。为考察不同底物MEC制氢的可行性,实验采用单池MEC反应器,在恒温35℃和电解电压为1.0 V下,以厌氧活性污泥为接种物,研究了挥发性有机酸(乙酸钠、丙酸钠和丁酸钠)、糖类化合物(葡萄糖、蔗糖和淀粉)的MEC产氢潜力。比较了Modified Gomperts模型获得各底物的动力学参数,氢气产率,及实验过程中电流,产氢潜力及能源转化率值。实验结果表明,酸挥发性有机酸与糖类化合物都能够在电解协助下产生氢气,乙酸钠、丙酸钠和丁酸钠的产氢潜力分别为40、26、48 m L/g,而葡萄糖、蔗糖和淀粉的产氢潜力分别为104、87、75 m L/g;葡萄糖、蔗糖、淀粉为底物时较乙酸钠、丙酸钠、丁酸钠更容易被降解利用产氢。  相似文献   

20.
预处理污泥发酵液(SFL)直接用于微生物电解池(MEC)产氢,相较于预处理发酵液上清液MEC产氢,可更好地实现污泥资源化利用.通过批式循环试验,将分别经p H=3、p H=10和70℃预处理后的SFL进行MEC产氢.结果表明,70℃和p H=10有效预处理的产氢速率分别为0.36 m3·m-3·d-1和0.34 m3·m-3·d-1.挥发性脂肪酸总量(TVFA)利用量最高,分别约为未处理组的1.99倍和1.60倍,其中,乙酸利用量占比最大;而后依次是可溶性蛋白质与可溶性碳水化合物.70℃组和p H=10组SFL更适合作为MEC底物,其峰值电流相对较高、电流持续时间相对较长.70℃组阴极氢气损失得到有效控制,阴极氢回收率达到59%;p H=10组由于体系中较多的OH-和钠盐影响,阴极氢回收率较低.MEC可加速SFL水解过程,由于SCOD不断溶出,其利用率相对较低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号