首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
对激光雷达产品的消光系数、退偏振比、边界层高度和气溶胶光学厚度进行统计分析,并与环境监测数据和地面气象观测数据进行对比,验证产品的可靠性。总的来说,大气消光系数垂直变化趋势是接近的,从近地面开始增大,在1km左右高度达到峰值,这就是边界层的所在。4月、11月和12月大气消光系数较高,大气气溶胶浓度较高,8月、9月和10月较低,气溶胶浓度较低,与环境监测数据相吻合。地面能见度和消光系数具有较好的指数相关;近地面处PM_(2.5)、PM_(10)的浓度和消光系数均具有较好的幂相关性;气溶胶光学厚度与PM_(2.5)、PM_(10)浓度有线性正相关;边界层高度与PM_(2.5)、PM_(10)存在显著的负相关,但是相比其他相关性不高;气溶胶光学厚度与能见度有负相关。  相似文献   

2.
利用2016年MODIS 3 km分辨率的气溶胶光学厚度(AOD)日产品、PM_(10)质量浓度以及相关气象数据,开展了北疆地区AOD与PM_(10)质量浓度的相关性分析.结果表明,AOD与PM_(10)质量浓度的直接相关程度较低,相关系数仅为0.294.对比分析了利用能见度数据对AOD进行垂直订正,然后再用相对湿度数据对其进行二次订正(AOD垂直-湿度订正)和利用能见度数据对AOD进行垂直订正和相对湿度数据对PM_(10)质量浓度进行订正(AOD垂直订正-PM_(10)湿度订正)两种订正方法,结果指出"AOD垂直订正-PM_(10)湿度订正"可显著提高二者之间的相关性.订正之后,北疆地区AOD与PM_(10)质量浓度的相关系数达到0.755,呈显著正相关;阿勒泰的订正效果最好,相关系数为0.837.最后,基于垂直订正后的AOD和湿度订正后PM_(10)建立两者之间的最优拟合模型,并利用新建的模型反演了北疆地区PM_(10)质量浓度.反演得到的PM_(10)质量浓度与经过湿度订正后PM_(10)呈显著正相关,相关系数为0.688;昌吉和伊宁的反演效果最好,相关系数分别为0.910和0.829.本研究结果表明MODIS 3 km AOD产品经过垂直和湿度订正后,可作为北疆地区监测PM_(10)质量浓度的一个有效手段.  相似文献   

3.
基于AGRI数据反演区域PM2.5浓度.利用6S辐射传输模式,分析气溶胶光学厚度AOD与能见度相关性,建立AOD、气溶胶标高和能见度模型;通过对大气柱AOD垂直订正,构建AOD与近地面PM2.5浓度关系的物理模型;同时引入了地面相对湿度数据.结果表明,FY-4A遥感的PM2.5浓度与地面空气质量监测站的PM2.5浓度变化趋势一致,算法计算效率较高.利用AGRI估算近地面PM2.5与地面观测网对比分析,其结果不亚于于MODIS以及VIIRS的对比结果,AGRI估算的均方根误差和相对误差较小.从季节分析,冬季近地面颗粒物浓度是影响整层大气柱AOD值的主要因素,AGRI反演结果精度较好,夏季相关系数相对于其他三个季节偏低.总体而言,采用FY-4A/AGRI反演颗粒物浓度精度可靠,有利于实现区域气溶胶全天候实时监测.  相似文献   

4.
MODIS气溶胶光学厚度在临安大气颗粒物监测中的应用   总被引:5,自引:0,他引:5  
基于大气辐射传输理论的研究表明,AOD(气溶胶光学厚度)与地面PM(颗粒物)浓度(以ρ计)呈正相关. 利用2006—2010年MODIS晴空AOD数据产品与临安区域大气本底站监测的ρ(PM10)进行相关分析发现,二者的R(相关系数)为0.431,直接相关程度较低. 根据AOD和气象能见度间的关系,获得了不同季节临安地区的气溶胶平均垂直标高,利用该垂直标高和RH(相对湿度)分别订正AOD和ρ(PM10)后,二者的相关性(R为0.576) 明显提高.冬季AOD和ρ(PM10)的相关性最好,R为0.765;夏、春季次之,R分别为0.643和0.608;秋季最低,为0.442. 经过对5年资料的对比分析,证实了MODIS气溶胶光学厚度经垂直标高和RH订正后,可用于临安地区地面空气污染的监测.   相似文献   

5.
北京市MODIS气溶胶光学厚度与PM_(10)质量浓度的相关性分析   总被引:1,自引:1,他引:0  
谢志英  刘浩  唐新明 《环境科学学报》2015,35(10):3292-3299
利用北京地区2012年1—12月NASA MODIS气溶胶光学厚度(AOD)和通过空气污染指数(API)转换得到的PM10质量浓度进行了相关性分析.结果发现,二者的直接相关程度较低,在引入季节变化的气溶胶标高且考虑了气溶胶的垂直分布后,进行标高订正,二者的相关系数有所提高;在考虑了湿度影响因子后,进行湿度订正,二者的相关系数显著提高;引入平均风速、平均气温和平均气压等气象因素,进行多元回归分析,相关系数进一步提高.证实了卫星遥感气溶胶光学厚度在经过垂直和湿度订正并考虑气象因素的情况下,可以作为监测北京地区颗粒物污染物地面分布的一个有效手段.  相似文献   

6.
针对气溶胶含量随高度呈负指数递减这一假设存在的问题,通过对Mie散射激光雷达探测资料的系统分析和总结,论证了Logistic曲线能更好地表征大气消光系数在边界层内的垂直演变特征.在对MODIS卫星遥感气溶胶光学厚度(AOD)系统偏差进行校正的基础上,将大气消光系数的模拟值与实测值之间离差平方和最小作为目标函数,利用小波协方差法计算混合层高度,以订正后的AOD和混合层高度作为约束条件,再用免疫进化算法优化目标函数中的参数,据此提出了MODIS卫星遥感AOD反演近地面"湿"消光系数的新模型.基于成都市2013年6月—2014年5月的MODIS卫星遥感AOD资料及同时次的Mie散射激光雷达探测数据和地面细颗粒物浓度资料的实例分析表明,新模型反演得到的近地面大气"湿"消光系数与近地面细颗粒物质量浓度之间的相关系数在四季均能稳定在0.6以上.  相似文献   

7.
采用美国国家航空航天局的云-气溶胶激光雷达红外开拓者卫星搭载的正交极化云-气溶胶激光雷达数据产品,包括消光系数、光学厚度、总后向散射系数、体积退偏比和色比,结合地面监测的颗粒物质量浓度,分析上海大气相对湿度小于80%霾发生期间气溶胶光学属性的垂直分布特征和颗粒物质量浓度变化,并与非霾期间进行比较.结果表明:霾期间532 nm和1064 nm消光系数在垂直高度上(海拔:0~10 km)均大于非霾期间,且大多数霾期间颗粒物在整层大气的光学厚度大于非霾期间.在近地面,霾期间大气颗粒物散射能力大于非霾期间.各垂直高度层,霾与非霾期间小粒径和规则气溶胶占主导地位.霾期间近地面大粒径颗粒物在霾期间所占比例大于非霾期间;2.0~4.0 km高度层,霾和非霾期间细颗粒所占比例接近;4.0~10.0 km高度层,霾期间细颗粒气溶胶所占比例大于非霾期间.PM1、PM2.5和PM10质量浓度在霾期间均大于非霾期间,且霾期间细颗粒物所占比例明显增加.颗粒物质量浓度和比值PM1/PM2.5和PM2.5/PM10分别随霾污染程度的加重而升高.冬季颗粒物质量浓度最高,主要来自细颗粒物的贡献;而春季PM10质量浓度高于其它季节.  相似文献   

8.
利用卫星遥感MODIS数据研究区域大气PM_(2.5)浓度分布是环境管理的有效方法。获取美国国家航空航天局MODIS L1B1KM数据,采用暗目标法反演阜新市大气气溶胶厚度AOD数据;提取阜新市5个大气监测站点位2014年3月至5月、2015年3月至4月期间PM_(2.5)浓度数据进行相关性分析,建立PM_(2.5)浓度-AOD之间的线性、一元二次、对数函数、幂函数及指数函数5种相关性模型;引用湿度影响因子建立大气PM_(2.5)浓度订正模型,采用PM_(2.5)浓度订正模型、Peterson模型分别订正PM_(2.5)浓度及AOD标高,应用阜新市环保局5个监测点位2014年6~12月、2015年5~12月期间PM_(2.5)的月平均浓度进行模型检验。对比分析订正后的5种相关性模型拟合优度,检验结果表明:订正方法提高了PM_(2.5)浓度-AOD相关性;线性相关性模型R2为0.633 6,相对误差为12.41%,相对其他4种模型相对误差较小。利用阜新市大气AOD预测PM_(2.5)浓度具有良好环境指示意义。  相似文献   

9.
基于卫星遥感资料监测地面细颗粒物的敏感性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
分析了垂直分布、粒径分布和吸湿增长3个影响因子及其组合对基于卫星遥感资料监测地面细颗粒物(PM2.5)的敏感性.以广州地区为例,使用影响因子及其组合对2010年全年、干季和湿季的MODIS气溶胶光学厚度(AOD)资料进行订正,与时空匹配的地基实测PM2.5质量浓度数据对比和分析.研究表明,两者的直接相关性很低,全年相关系数(R)仅有0.147.经单个因子订正后,效果提升有限.其中,粒径因子的敏感性最高,垂直因子次之.组合因子中,垂直及粒径订正的效果最好,敏感性最高,全年R达0.526.垂直及粒径因子再加上湿度因子后,全年R降为0.498.垂直及湿度订正的敏感性最低,全年R仅为0.145.总体而言,垂直及粒径订正因子敏感性最高,效果最佳.粒径因子加入后订正效果提升显著,而经验吸湿增长因子的时空代表性比较单一.  相似文献   

10.
目的分析北京地区大气温湿廓线对气溶胶垂直分布的影响。方法利用北京地区2017年9月至2018年8月每日两次(08时和20时)的气象探空、地面PM_(2.5)浓度和气溶胶激光雷达消光系数资料,分析不同污染条件下大气温湿廓线与气溶胶消光系数廓线的关系。结果地面PM_(2.5)浓度和210m气溶胶消光系数的相关系数达到0.77。春季、秋季和冬季污染条件下的近地面消光系数约是清洁条件下的5倍,夏季污染条件下的近地面消光系数约是清洁条件下的3倍。相比清洁条件下,污染条件下各季节的大气温度垂直递减率偏小,并且低层大气相对湿度偏大。结论大气温度廓线代表大气层结稳定性,影响气溶胶的扩散高度,而相对湿度廓线与气溶胶吸湿增长密切相关,两者对气溶胶消光系数的垂直分布都有重要影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号