共查询到20条相似文献,搜索用时 62 毫秒
1.
为强化邻苯二甲酸二乙酯(DEP)降解,将从活性污泥中分离的高效DEP降解菌Arthrobacter sp.LMS13运用到MBR反应器,考察强化系统对DEP去除效果,并通过实时荧光定量(q-PCR)和Illumina Mi Seq技术分别对系统运行期间邻苯二甲酸双加氧酶降解基因(phtA)数量以及微生物群落结构特征进行了分析.结果表明,强化系统能加快反应器启动,对进水浓度为800 mg·L-1的DEP,强化系统和未经强化系统在运行后期(61 d)对DEP平均去除率分别为81%和19%.q-PCR结果显示,在驯化阶段,phtA基因拷贝数上升,但当DEP浓度大于400 mg·L-1时,phtA基因数量下降;phtA基因拷贝数与DEP降解率呈正相关.Mi Seq测序结果进一步表明,高浓度DEP导致系统中群落多样性指数下降,但对强化系统多样性影响相对较小.反应器运行过程中,原活性污泥中占有较高比例的拟杆菌门(Bateroidetes)和厚壁菌门(Firmicutes)丰度降低,ε-变形纲(ε-Proteobacteria)、绿弯菌门(Chloroflexi)在反应系统中逐渐被淘汰,而β-变形纲(β-Proteobacteria)和放线菌门(Actinobacteria)成为系统中的优势菌门,其中红环菌属(Rhodocyclus)、博得氏杆菌属(Bordetella)、节杆菌属(Arthrobacter)为优势菌属,在DEP降解系统中起着主要作用,是保证DEP生物处理效果和维持反应器稳定运行的重要菌属. 相似文献
2.
3.
Fe(III)-oxalic acid配合物是天然水体中广泛存在的光活性物质。系统考查了pH值、oxalic acid及投加方式等因素对DMP降解的影响。导致DMP的降解活性物种·OH来自Fe(III)-oxalic acid络合物、Fe(III)的光致激发以及由此引发的Fenton反应过程。当Fe(III)和oxalic acid的浓度比为1∶10时,pH=3.0为最佳酸度;在此酸度下,Fe(III)和oxalic acid的浓度比为1∶9~1∶20时达到最高降解效率。说明了pH和Fe(III)物种存在形式对·OH产生机制的影响。最后对比讨论了体系中oxalic acid对Fe(III)/Fe(II)变化规律的影响。 相似文献
4.
采用超声辐射沉淀-氧化法制备了纳米催化剂NiO,用XRD、XPS、BET和SEM等方法对其进行了表征.构建了微波-NiO催化反应体系,考察了该体系对DMP的去除效率及影响因素,并利用GC/MS、LC/MS鉴定降解产物,提出了可能的降解机理.结果表明:微波诱导NiO催化氧化技术是降解DMP的有效方法,在微波(750W)诱导NiO(0.4mg/L)催化降解体系中,15min内10mg/L DMP的去除率达70%以上.降解效率受到反应体系中不同条件的影响:微波功率的增加可以提高降解效率;催化剂NiO浓度越高,降解速率越快;溶液初始pH值对DMP的降解效率影响非常大,随着pH值的增大,降解效率明显提高.通过GC/MS、LC/MS分析,反应过程中DMP的降解产物主要包括双链水解产物邻苯二甲酸以及异构化产物对苯二甲酸、单链水解产物邻甲酯苯甲酸、苯环三取代产物甲酯基-邻苯二甲酸、侧链缩合形成的双环产物和少量小分子有机酸,由此推断DMP在微波诱导NiO催化体系中的降解主要包括6个途径:水解、异构化、甲酯基反应、侧链缩合成环、羟基化和开环等. 相似文献
5.
利用臭氧(O3)降解含较高浓度邻苯二甲酸二甲酯(DMP)的模拟废水,采用竞争动力学法,以硝基苯为参比有机物,获得了DMP与O3及羟基自由基(·OH)的反应速率常数,研究了·OH抑制剂叔丁醇(TBA)、pH和多种离子对O3降解DMP效果的影响.结果表明,O3降解DMP符合拟一级动力学,DMP与O3的反应速率常数kO3-DMP为(0.064±0.014)L.(mol·s)-1,与·OH的反应速率常数k·OH-DMP为3.59×109L.(mol·s)-1;O3降解DMP过程中,生成的羧酸类中间产物使弱酸或弱碱性反应液的pH下降,但不足以影响强酸或强碱性反应液的pH;降解过程中产生大量中间产物使COD的去除率滞后于DMP的降解率,且部分中间产物不易被矿化;较低浓度的TBA不足以抑制·OH与DMP反应,当TBA的浓度增大到DMP的90.21倍时,DMP的降解率由98.7%降为8.8%,已经基本抑制了·OH与DMP的反应;用磷酸盐缓冲溶液调节反应液pH,DMP的降解效果优于用NaOH/H2SO4调节;水中常见低浓度阴阳离子对DMP的降解效果没有影响,高浓度SO24-、NO3-和HPO24-对DMP降解效果的影响相对较小,高浓度Cl-和HCO3-对DMP的降解有抑制作用,且HCO3-的影响大于Cl-,当Cl-和HCO3-的浓度分别为7 097 mg·L-1和6 093 mg·L-1时,反应40 min,DMP降解率分别为50.5%和26.2%. 相似文献
6.
研究了邻苯二甲酸二甲酯在臭氧氧化和二氧化钛光催化氧化两种条件下的氧化降解历程,采用胶束电动毛细管色谱技术对邻苯二甲酸二甲酯降解反应的中间产物和终产物进行踊跃分析,初步认为,臭氧氧化邻苯二甲酸二甲酯时,首先是侧链反应,生成邻苯二甲酸,然后再进一步氧化降解,而TiO2光催化氧化时,则为自由基直接攻击苯环,开环生成链状化合物,最终降解为CO2和H2O。 相似文献
7.
8.
Ag掺杂改性TiO_2催化降解水体中的邻苯二甲酸二甲酯 总被引:1,自引:0,他引:1
邻苯二甲酸酯是环境中普遍存在的有机污染物(内分泌干扰物)之一。通过湿式机械混合法制备Ag掺杂改性TiO2催化剂。光催化降解实验的结果表明Ag掺杂浓度为1×10-4mol/g,焙烧温度为400℃下所得的催化剂活性较好。对降解体系的研究表明,当催化剂的投加量为0.1~0.3 g/L、pH=5~8时降解效率较高(62.0%)。相对于催化剂的降解过程而言,其吸附作用是比较小的,而是以光催化反应为主。并利用荧光光谱对催化剂的性能进行了初步表征。 相似文献
9.
采用电晕放电等离子体协同钨酸铋降解水中的邻苯二甲酸二甲酯.利用水热法合成γ-Bi2WO6,通过XRD、SEM、TEM和XRF对合成产物进行了结构、形貌及成分分析,结果表明:合成的催化剂是一种高纯度、高结晶度的涡旋状纳米材料.以邻苯二甲酸二甲酯为目标污染物,探究了等离子体放电和钨酸铋光催化的协同效果及输出功率、催化剂量、催化剂重复使用次数、羟基自由基清除剂对邻苯二甲酸二甲酯去除率的影响.结果表明:电晕放电等离子体和钨酸铋光催化有明显的协同作用,在放电功率50 W、初始浓度100 mg·L~(-1)、空气流速2 L·h-1、钨酸铋添加量为0.7 g·L~(-1)、初始p H 6.31、初始电导率4.05μS·cm-1的条件下,反应30 min,邻苯二甲酸二甲酯的去除率可高达到90%.反应过程中,钨酸铋催化剂表现出低吸附性、高沉降性和较好的重复利用效果.加入羟基自由基清除剂可一定程度的抑制邻苯二甲酸二甲酯的降解. 相似文献
10.
11.
以活性污泥为接种污泥,葡萄糖为共代谢基质,通过控制有机负荷、污泥沉降时间,在序批式反应器(sequencing batchreactor,SBR)内培养得到具有邻苯二甲酸二甲酯(dimethyl phthalate,DMP)降解性能的好氧颗粒污泥.结果表明,好氧颗粒污泥对DMP具有很好的去除效果,驯化75 d后,DMP与COD去除率分别达到92.3%与90.6%.好氧颗粒污泥降解DMP的中间产物为邻苯二甲酸单酯(monomethyl phthalate,MMP)和邻苯二甲酸(phthalic acid,PA).动力学研究表明,DMP降解过程符合haldane抑制模型,Vmax为643.2 mg.(g.h)-1,Ks和Ki分别171.0 mg.L-1和337.5 mg.L-1.电镜观察表明,颗粒污泥表面粗糙,微生物相丰富,含有丝状菌、球菌和短杆菌. 相似文献
12.
13.
文章采用序批式生物膜法(SBBR)对城市污水进行了试验研究.结果表明:在一个反应器内,可以取得既能去除有机物又能脱氮除磷的效果.研究中确定了适合该工艺的最优工况,处理后各污染指标的去除率COD为80%~90%,NH3-N、TP达到90%以上,TN为55%左右,出水水质满足国家一级排放标准. 相似文献
14.
15.
16.
17.
在水力停留时间(HRT)分别为20、10、7.5、5d的条件下,进行了中温、高温厌氧序批式反应器(ASBR)处理热水解污泥的试验,在此基础上总结了ASBR处理高浓度悬浮固体废物的工艺特性.ASBR可以有效积累悬浮固体从而保持较高的固体浓度,但ASBR存在一“临界点”,即最大积累悬浮固体的能力,超过此临界点,反应器运行不稳.在稳态运行条件下,ASBR能保持较高固体停留时间(SRT)和微生物平均细胞停留时间(MCRT),在处理热水解污泥时,SRT和MCRT分别是水力停留时间(HRT)的2.53~3.73倍、2.03~3.14倍.因此,与传统的连续流搅拌反应器(CSTR)相比,ASBR的处理效率提高7.13%~34.68%. 相似文献
18.
在序批式活性污泥(SBR)反应池内投加填料,形成流动床SBR,本试验对SBR和流动床SBR去除COD、TN的效果进行了对比研究,结果表明:流动床SBR对COD、TN的去除效果优于SBR,采用限制性曝气方式时TN的去除率较非限制性曝气方式高。 相似文献
19.
新型SBR工艺及其在水处理中的应用 总被引:3,自引:2,他引:3
简要介绍了几种新型SBR处理工艺的流程、优点及其在水处理中的应用。提出新型的SBR工艺将成为中小型企业废水及城市生活污水处理的理想工艺。 相似文献