首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The external phosphorus (P) loading has been halved, but the P content in the water column and the area of anoxic bottoms in Baltic proper has increased during the last 30 years. This can be explained by a temporary internal source of dissolved inorganic phosphorus (DIP) that is turned on when the water above the bottom sediment becomes anoxic. A load-response model, explaining the evolution from 1980 to 2005, suggests that the average specific DIP flux from anoxic bottoms in the Baltic proper is about 2.3 g P m−2 year−1. This is commensurable with fluxes estimated in situ from anoxic bottoms in the open Baltic proper and from hydrographic data in the deep part of Bornholm Basin. Oxygenation of anoxic bottoms, natural or manmade, may quickly turn off the internal P source from anoxic bottoms. This new P-paradigm should have far-reaching implications for abatement of eutrophication in the Baltic proper.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-013-0441-3) contains supplementary material, which is available to authorized users.  相似文献   

2.

Both the advanced oxidation process (AOP) using a combination of hydrogen peroxide addition and microwave heating (H2O2/microwave), and the microwave heating process were used for solubilization of phosphorus from liquid dairy manure. About 80% of total phosphate was released into the solution at a microwave heating time of 5 min at 170°C. With an addition of H2O2, more than 81% of total phosphate could be released over a reaction period of 49 h at ambient temperature. The AOP process could achieve up to 85% of total phosphate release at 120°C. The results indicated that both the microwave, and the AOP processes could effectively release phosphate from liquid dairy manure. These processes could serve as pretreatments for phosphorus recovery from animal wastes, and could be combined with the struvite crystallization process to provide a new approach in treating animal wastes.  相似文献   

3.
Ashley K  Cordell D  Mavinic D 《Chemosphere》2011,84(6):737-746
The element phosphorus has no substitute in sustaining all life and food production on our planet. Yet today’s phosphorus use patterns have resulted in both a global environmental epidemic of eutrophication and led to a situation where the future availability of the world’s main sources of phosphorus is uncertain. This paper examines the important history of human interference with the phosphorus cycle from initial discovery to present, highlighting key interrelated events and consequences of the Industrial Revolution, Sanitation Revolution and Green Revolution. Whilst these events led to profound advances in technology, public health and food production, they have fundamentally broken the global phosphorus cycle. It is clear a ‘Fourth Revolution’ is required to resolve this dilemma and ensure humanity can continue to feed itself into the future while protecting environmental and human health.  相似文献   

4.
This paper deals with the efficiency and effects of addition of aluminium sulphate on soft water quality of a shallow eutrophic lake. Almost all the controlled variables improved with treatment, especially nutrient concentrations such as soluble reactive phosphorus (SRP) and transparency. However, aluminium sulphate was not added in sufficient quantity to reduce the total phosphorus content. SRP concentration was significantly reduced in the short term. Moreover, external loading of phosphorus was high and not taken into account by the in-lake treatments. Finally, resuspension of sediment (polymictic lake) removed the alum hydroxide layer on the sediment surface, which reduced treatment effectiveness. No significant pH decrease was noted following alum addition. According to bibliographical toxicological data, monomeric aluminium content does not show any toxic effect on aquatic fauna and flora. In spite of low SRP in the water column, the treatment did not prevent appearance of Microcystis sp. colony (> 10 colony per ml) approximately 30 days after alum application.  相似文献   

5.
Ma W  Ma L  Li J  Wang F  Sisák I  Zhang F 《Chemosphere》2011,84(6):814-821
Increasing fertilizer phosphorus (P) application in agriculture has greatly contributed to the increase of crop yields during the last decades in China but it has also increased P flows in food production and consumption. The relationship between P use efficiency and P flow is not well quantified at national level. In present paper we report on P flows and P use efficiencies in rice, wheat, and maize production in China using the NUFER model. Conservation strategies for P utilization and the impact of these strategies on P use efficiency have been evaluated. Total amounts of P input to wheat, rice, and maize fields were 1095, 1240, and 1128 Gg, respectively, in China, approximately 80% of which was in chemical fertilizers. The accumulation of P annually in the fields of wheat, rice, and maize was 29.4, 13.6, and 21.3 kg ha−1, respectively. Phosphorus recovered in the food products of wheat, rice, and maize accounted for only 12.5%, 13.5%, and 3.8% of the total P input, or 3.2%, 2.6%, and 0.9% of the applied fertilizer P, respectively. The present study shows that optimizing phosphorus flows and decreasing phosphorus losses in crop production and utilization through improved nutrient management must be considered as an important issue in the development of agriculture in China.  相似文献   

6.
Hein L  Leemans R 《Ambio》2012,41(4):341-349
The large majority of biofuels to date is "first-generation" biofuel made from agricultural commodities. All first-generation biofuel production systems require phosphorus (P) fertilization. P is an essential plant nutrient, yet global reserves are finite. We argue that committing scarce P to biofuel production involves a trade-off between climate change mitigation and future food production. We examine biofuel production from seven types of feedstock, and find that biofuels at present consume around 2% of the global inorganic P fertilizer production. For all examined biofuels, with the possible exception of sugarcane, the contribution to P depletion exceeds the contribution to mitigating climate change. The relative benefits of biofuels can be increased through enhanced recycling of P, but high increases in P efficiency are required to balance climate change mitigation and P depletion impacts. We conclude that, with the current production systems, the production of first-generation biofuels compromises food production in the future.  相似文献   

7.
Qiu G  Song Y  Zeng P  Xiao S  Duan L 《Chemosphere》2011,84(2):241-246
Fosfomycin pharmaceutical wastewater contains highly concentrated and refractory antibiotic organic phosphorus (OP) compounds. Wet air oxidation (WAO)-phosphate crystallization process was developed and applied to fosfomycin pharmaceutical wastewater pretreatment and phosphorus recovery. Firstly, WAO was used to transform concentrated and refractory OP substances into inorganic phosphate (IP). At 200 °C, 1.0 MPa and pH 11.2, 99% total OP (TOP) was transformed into IP and 58% COD was reduced. Subsequently, the WAO effluent was subjected to phosphate crystallization process for phosphorus recovery. At Ca/P molar ratio 2.0:1.0 or Mg/N/P molar ratio 1.1:1.0:1.0, 99.9% phosphate removal and recovery were obtained and the recovered products were proven to be hydroxyapatite and struvite, respectively. After WAO-phosphate crystallization, the BOD/COD ratio of the wastewater increased from 0 to more than 0.5, which was suitable for biological treatment. The WAO-phosphate crystallization process was proven to be an effective method for phosphorus recovery and for fosfomycin pharmaceutical wastewater pretreatment.  相似文献   

8.
The Soil and Water Assessment Tool (SWAT) was used to assess the impact of climate change on sediment, nitrate, phosphorus and pesticide (diazinon and chlorpyrifos) runoff in the San Joaquin watershed in California. This study used modeling techniques that include variations of CO2, temperature, and precipitation to quantify these responses. Precipitation had a greater impact on agricultural runoff compared to changes in either CO2 concentration or temperature. Increase of precipitation by ±10% and ±20% generally changed agricultural runoff proportionally. Solely increasing CO2 concentration resulted in an increase in nitrate, phosphorus, and chlorpyrifos yield by 4.2, 7.8, and 6.4%, respectively, and a decrease in sediment and diazinon yield by 6.3 and 5.3%, respectively, in comparison to the present-day reference scenario. Only increasing temperature reduced yields of all agricultural runoff components. The results suggest that agricultural runoff in the San Joaquin watershed is sensitive to precipitation, temperature, and CO2 concentration changes.  相似文献   

9.
Phosphorus use-efficiency of agriculture and food system in the US   总被引:4,自引:0,他引:4  
Suh S  Yee S 《Chemosphere》2011,84(6):806-813
The rapid increase in human mobilization of phosphorus has raised concerns on both its supply security and its impact on the environment. Increasing the efficiency of phosphorus use is an approach to mitigate the adverse impacts associated with phosphorus consumption. This study estimates the life-cycle phosphorus use-efficiency of the US food system. A framework for accounting phosphorus stocks and flows is developed, and the account was populated with data. A map of phosphorus stocks and flows around the US food system is drawn and phosphorus use-efficiency was calculated. The results show that only 15% of the total phosphorus extracted from nature for the provision of food is eventually ingested by humans and the rest is lost to the environment. Major losses occur during the livestock, meat and dairy production and crop cultivation stage, where about 66% of the total phosphorus extracted is lost to the environment. The results also show that other losses of phosphorus including household food waste, mining waste, and fertilizer manufacturing waste are not negligible, which constitute about 19% of the total phosphorus extracted for food purpose. A data quality assessment and sensitivity analysis was performed to identify data quality hotspots and to envisage effective measures to improving phosphorus use-efficiency. Improving yields of livestock and crop cultivation without additional phosphorus input and reducing household food waste are shown to be effective measures to improve life-cycle phosphorus use-efficiency. The results highlight the need of a concerted effort by all entities along the life-cycle for efficient use of phosphorus.  相似文献   

10.
Eero Asmala  Laura Saikku 《Ambio》2010,39(2):126-135
Ongoing eutrophication is changing the Baltic Sea ecosystem. Aquaculture causes relatively small-scale nutrient emissions, but local environmental impact may be considerable. We used substance flow analysis (SFA) to identify and quantify the most significant flows and stocks of nitrogen (N) and phosphorus (P) related to rainbow trout aquaculture in Finland. In 2004–2007, the input of nutrients to the system in the form of fish feed was 829 t N year−1 and 115 t P year−1. Around one-fifth of these nutrients ended up as food for human consumption. Of the primary input, 70% ended up in the Baltic Sea, directly from aquaculture and indirectly through waste management. The nutrient cycle could be closed partially by using local fish instead of imported fish in rainbow trout feed, thus reducing the net load of N and P to a fraction.  相似文献   

11.
In this study an attempt is made to estimate nitrogen and phosphorus discharged to the environment from the striped catfish (Pangasianodon hypophthalmus) farming sector in the Mekong Delta (8°33′–10°55′N, 104°30′–106°50′E), South Vietnam. The sector accounted for 687,000 t production in 2007 and 1,094,879 t in 2008, with over 95% of the produce destined for export to over 100 countries. Commercial and farm-made feeds are used in catfish farming, currently the former being more predominant. Nitrogen discharge levels were similar for commercial feeds (median 46.0 kg/t fish) and farm-made feeds (median 46.8 kg/t fish); whilst, phosphorus discharge levels for commercial feeds (median 14.4 kg/t fish) were considerably lower than for farm-made feeds (median 18.4 kg/t fish). Based on the median nutrient discharge levels for commercial feeds, striped catfish production in the Mekong Delta discharged 31,602 t N and 9,893 t P, and 50,364 t N and 15,766 t P in 2007 and 2008, respectively. However, the amount of nutrients returned directly to the Mekong River may be substantially less than this as a significant proportion of the water used for catfish farming as well as the sludge is diverted to other agricultural farming systems. Striped catfish farming in the Mekong Delta compared favourably with other cultured species, irrespective of the type of feed used, when the total amounts of N and P discharged in the production of a tonne of production was estimated.  相似文献   

12.
Current regulatory environmental exposure assessments for decamethylcyclopentasiloxane (D5), used in a range of personal care products, are based on a number of erroneous assumptions. Using an estimated D5 flux to waste water of 11.6 mg cap−1 d−1, a 95.2% removal rate in Sewage Treatment Plants (STP) and a dilution factor of 10 results in modelled surface water concentrations that are up to an order of magnitude higher than concentrations observed downstream of STPs in two UK rivers. A GIS-based water quality model (LF2000-WQX) was used to predict concentrations of D5 in two UK rivers. Assuming the STP removal rate is reasonable, a waste water flux of 2.4 mg cap−1 d−1 is needed in order to obtain a reasonable match between predicted and observed in-river concentrations. This flux is consistent with measured effluent concentrations. The results highlight major uncertainties in estimating chemical emission rates for volatile chemicals used in personal care products and suggest that measured concentrations in waste water are needed to refine exposure assessments.  相似文献   

13.
Salvetti R  Azzellino A  Vismara R 《Chemosphere》2006,65(11):2168-2177
The source apportionment of the annual nutrient load carried by the Po river to the Adriatic sea has been studied.

An integrated modelling approach was applied to the Lombardy plain area, which covers about 34% of the Po river watershed area and accounts for about 50% of the point sources’ loads carried by the river. To extract all the information available from direct instream measurements, two different modelling tools were alternatively used. The source apportionment was investigated considering both dry and wet weather scenarios. In order to quantify the apportionment in dry-weather conditions, the Lombardy portion of the Po river basin was modelled by using the US-EPA QUAL2E model. Such a simulation allowed to assess a significant contribution (about 50% of the total dry-weather load) of a not rain-driven diffuse pollution component (i.e. groundwater, springs, lake emissaries). Moreover, to estimate the rain-driven surface runoff contribution to the instream total load, the Lombardy plain area was also modelled by means of the US-DA SWAT model. SWAT results indicate a runoff contribution to the Po river instream total load of about 10 000 t N yr−1 and 1300 t P yr−1 (i.e. approximately the 10–20% of the total annual Lombardy nutrient load). At the event scale (i.e. the single rainstorm event) the runoff contribution may rise up to 30–80% of the total instream load. Finally, the total annual nitrogen load at the Po basin closure was estimated for the period 1985–2001. Out of a total annual load of 140 000 t N yr−1, Lombardy accounts for 43% (point plus diffuse sources). The rain-driven diffuse sources constitute the 20% of the overall total load, the point sources account for 40%, whereas the remaining 40% is mainly constituted by “dry-weather diffuse sources” (i.e. groundwater, springs, lake emissaries).  相似文献   


14.
Long-range transboundary air pollution has caused severe environmental effects in Europe. European air pollution abatement policy, in the framework of the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP Convention) and the European Union Clean Air for Europe (CAFE) programme, has used critical loads and their exceedances by atmospheric deposition to design emission abatement targets and strategies. The LRTAP Convention International Cooperative Programme on Modelling and Mapping Critical Loads and Levels and Air Pollution Effects, Risks and Trends (ICP M&M) generates European critical loads datasets to enable this work. Developing dynamic nitrogen flux models and using them for a prognosis and assessment of nitrogen effects remains a challenge. Further research is needed on links between nitrogen deposition effects, climate change, and biodiversity.  相似文献   

15.
Modelling the spatial distribution of ammonia emissions in the UK   总被引:3,自引:0,他引:3  
Ammonia emissions (NH3) are characterised by a high spatial variability at a local scale. When modelling the spatial distribution of NH3 emissions, it is important to provide robust emission estimates, since the model output is used to assess potential environmental impacts, e.g. exceedance of critical loads. The aim of this study was to provide a new, updated spatial NH3 emission inventory for the UK for the year 2000, based on an improved modelling approach and the use of updated input datasets. The AENEID model distributes NH3 emissions from a range of agricultural activities, such as grazing and housing of livestock, storage and spreading of manures, and fertilizer application, at a 1-km grid resolution over the most suitable landcover types. The results of the emission calculation for the year 2000 are analysed and the methodology is compared with a previous spatial emission inventory for 1996.  相似文献   

16.
Extractions of volatile organic compounds (VOC’s) in contaminated soil from petroleum site were performed with supercritical carbon dioxide at different temperatures, pressures, extraction times, solvent flow rates, soil moisture contents and soil acidity. Three soil systems were investigated in order to compare the best parameters for extraction. A central composite rotatable design has been used to evaluate the influence of operation conditions on the extraction efficiency to generate model equations representing the types of soil. The results indicate that at least 70-80% of the initial amount of VOC’s can be removed at moderate temperatures even at very high moisture content. Supercritical extraction is best suited to silt type soils which have a low adsorption capacity. VOC’s recoveries from the artificial contaminated soil samples were higher in comparison with real contaminated soils. At moderate temperatures, the extraction efficiency for real soils is low because pollutants bind strongly to the soil.  相似文献   

17.
A newly developed reactive transport model was used to evaluate the potential effects of mine closure on the geochemical evolution in the aquifer downgradient from a mine site. The simulations were conducted for the K?nigstein uranium mine located in Saxony, Germany. During decades of operation, uranium at the former mine site had been extracted by in situ acid leaching of the ore underground, while the mine was maintained in a dewatered condition. One option for decommissioning is to allow the groundwater level to rise to its natural level, flooding the mine workings. As a result, pore water containing high concentrations of dissolved metals, radionuclides, and sulfate may be released. Additional contamination may arise due to the dissolution of minerals contained in the aquifer downgradient of the mine. On the other hand, dissolved metals may be attenuated by reactions within the aquifer. The geochemical processes and interactions involved are highly non-linear and their impact on the quality of the groundwater and surface water downstream of the mine is not always intuitive. The multicomponent reactive transport model MIN3P, which can describe mineral dissolution-precipitation reactions, aqueous complexation, and oxidation-reduction reactions, is shown to be a powerful tool for investigating these processes. The predictive capabilities of the model are, however, limited by the availability of key geochemical parameters such as the presence and quantities of primary and secondary mineral phases. Under these conditions, the model can provide valuable insight by means of sensitivity analyses.  相似文献   

18.
As a component of a multi-level study of the anthropogenic lead cycle for year 2000 (52 countries, 8 regions, and the planet), we have estimated the lead flows in seven emission streams: tailings, slag, fabrication and manufacturing, dissipation from use, hibernation, landfilling, and dispersion following product discard. For every 1 kg of lead put into end use, 0.5 kg is lost to the environment, largely due to landfilling and dissipation from use. From the standpoint of the receiving media, 1/3 of the losses are to uncontained solids on land and 48% of the losses are to containment facilities on land. On a country basis, the largest losses occur in the United States and China, which between them are responsible for about 32% of total global lead losses. On a per capita basis, the highest lead losses occurred in the United Kingdom, Belgium-Luxembourg, and Ireland.  相似文献   

19.
Abstract

Composts improve organic carbon content and nutrients of calcareous soils but the accumulation and distribution of phosphorus and heavy metals among various fractions in soil may vary under the south Florida conditions. The accumulation of P, Cd, Ni, and Pb with depth and the distribution of water soluble, exchangeable, carbonate, Fe–Mn oxides, organic and residual forms of each element were investigated in soils amended with municipal solid waste (MSW) compost, co-compost and biosolids compost and inorganic fertilizer (as control). Total concentrations of P, Cd, Ni, and Pb were higher in the 0–22 cm soil layers and decreased considerably in the rock layers. These elements were in the decreasing order of P ? Pb > Ni > Cd. Amounts of water soluble and exchangeable forms of P, Cd, Ni and Pb were negligible at 0–22 cm soil depths except for Cd in the 10–22 cm depth. Amending calcareous soil with either organic or inorganic amendments rendered phosphorus, nickle and lead in the residual form followed by Fe–Mn oxides form in the 0–10 and 10–22 cm soil layers. Cadmium was predominantly in the Fe–Mn oxides fraction followed by the residual and carbonate forms in both soil layers. A significant positive correlation was found between various organic carbon fractions and organic forms of P, Cd and Pb in the surface soil layer. Soil amended with MSW compost had higher concentration of Cd in the organic fraction whereas, co-compost and MSW compost amended soil had higher concentrations of organic Ni fraction in the 0–10 cm soil layer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号