首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT: Climate data from the Malcolm Knapp Research Forest (MKRF) in the Coast Range mountains of southwestern British Columbia were used to examine relationships between climate and hydrology and variations in the El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Air and water temperatures were higher and precipitation was lower during in‐phase or warm PDO/E1 Niño events than in other years. In contrast, in‐phase or cool PDO/La Niña years were generally cooler and wetter than other years. Precipitation and East Creek discharge were positively related to the Southern Oscillation Index (SOI) and negatively related to the PDO index. Conversely, air and water temperatures were negatively related to the SOI and positively related to the PDO index. Differences in precipitation and air temperature were also evident at longer time scales when separated by PDO phase. Because of drier conditions during in‐phase El Niño events, the flow of organic matter from East Creek to downstream portions of the channel network was lower compared to other years. This reduction has implications for downstream communities, as these subsidies provide a major source of energy for stream food webs. Therefore, short term and long term shifts in climate, discharge, and water temperature may have profound impacts on the ecology of Pacific Northwest (PNW) watersheds due to changes in a number of ecosystem processes such as altered flux of organic matter from headwater streams to larger rivers.  相似文献   

2.
3.
ABSTRACT: A paired watershed approach was utilized to study the effects of three water management regimes on storm event hydrology in three experimental watersheds in a drained loblolly pine (Pinus taeda L.) plantation in eastern North Carolina. The regimes were: (1) conventional drainage, (2) controlled drainage (CD) to reduce outflows during spring fish recruitment, and (3) controlled drainage to reduce outflows and conserve water during the growing season. Data from two pit‐treatment years and three years of CD treatment with raised weirs at the watershed outlet are presented. CD treatment resulted in rises in water table elevations during the summer. But the rises were small and short‐lived due to increased evapotranspiration (ET) rates as compared to the spring treatment with lower ET demands. CD treatment had no effect on water tables deeper than 1.3 m. CD treatments, however, significantly (α= 0.05) reduced the stoning outflows for all events, and peak outflow rates for most of the events depending upon the outlet weir level. In some events, flows did not occur at all in watersheds with CD. When event outflows occurred, duration of the event was sharply reduced because of reduced effective ditch depth. Water table depth at the start of an event influenced the effect of CD treatment on storm event hydrology.  相似文献   

4.
ABSTRACT Results of a field survey designed to assess the extent of crop production losses due to inadequate drainage in a large watershed of Iowa is presented. Information on the current status of drainage of the watershed, located in the Des Moines River basin, was collected through personal interviews with 256 farmers from 60 legal drainage districts. The results of the survey indicate that 95 percent of the area in upper Des Moines River basin has inadequate district mains or main outlet drains currently having a design capacity of ≤ 0.64 cm/day drainage coefficient. Outlet capacity of 1.27 cm/day d.c. would be required for full production. Inadequate drainage in the watershed is currently responsible for crop yield reduction equal to about one-third of the maximum yield potential for average weather conditions.  相似文献   

5.
In areas where there is little or no topographic relief and where soils, vegetation, geologic structure and other factors are essentially uniform, identification of drainage basin boundaries is difficult or impossible. In such a homogeneous landscape, however, assumptions may be made that the hydrologic and geomorphic controls over drainage basin development are constant within the area. If this is true, it is suggested, the drainage area of a stream is related solely to the stream length and factors governing the length-area relationship are also constant. A simple formula based on these assumptions and the gravity model is proposed which can be used to estimate drainage divides in a homogeneous landscape.  相似文献   

6.
ABSTRACT: This paper discusses a computer program which extracts a number of watershed and drainage network properties directly from digital elevation models (DEM) to assist in the rapid parameterization of hydrologic runoff models. The program integrates new and established algorithms to address problems inherent in the analysis low-relief terrain from raster DEMs similar to those distributed by the U.S. Geological Survey for 7.5-minute quadrangles. The program delineates the drainage network from a DEM, and determines the Strahler order, total and direct drainage area, length, slope, and upstream and downstream coordinates of each channel link. It also identifies the subwatershed of each channel source and of the left and right bank of each channel link, and assigns a unique number to each network node. The node numbers are used to associate each subwatershed with the channel link to which it drains, and can be used to control flow routing in cascade hydrologic models. Program output includes tabular data and raster maps of the drainage network and subwatersheds. The raster maps are intended for import to a Geographical Information System where they can be registered to other data layers and used as templates to extract additional network and subwatershed information.  相似文献   

7.
ABSTRACT: The spatial distribution and the temporal and spatial variation of the annual, seasonal, and monthly precipitation in two mountainous watersheds in southwestern British Columbia, Canada, have been analyzed using a detailed database for 1971–1990 in the Capilano and Seymour watersheds. The analysis showed that the precipitation increases up to the mid-position of the watersheds, and then either levels off or decreases. Precipitation on mountain slopes and in the valley at the same distance from the beginning of the slope is similar, and the barrier height is identified as the dominant parameter which influences the precipitation distribution. The temporal variation of the precipitation is the smallest at the mid-position of the watersheds. This variability is the least in the fall and winter and largest in the summer. Correlation between the precipitation accumulations at various stations is large, ranging from 0.80 for the wet period of October-March to 0.65 for the dry period of April-September for distances less than 32 km. Comparison with other studies and the analyses of precipitation and runoff data from coastal British Columbia showed that the results of this study are perhaps general and thus transferable to similar areas in the coastal Pacific Northwest.  相似文献   

8.
ABSTRACT: West Bitter Creek floodwater retarding structure site 3 in South Central Oklahoma was instrumented and records obtained and analyzed to obtain information concerning an impoundment water budget that is useful to landowners and designers of these impoundments. On-site loss of water from the impoundment was only 17 percent of the inflow during three years when the annual precipitation averaged 26 inches and the annual inflow averaged 1.4 inches. Runoff from an eroded area with no farm ponds was about 70 percent greater per unit area than from a portion of the watershed where 71 percent of the drainage area was controlled by farm ponds. A previous study indicated, however, that the ponds were reducing runoff only 13 percent. Loss of top soil increases runoff considerably. Only 24 percent of the total runoff into the impoundment was base flow. The flow rate into the impoundment was less than 0.05 cfs 70 percent of the time, and the inflow rate exceeded 10 cfs only 1 percent of the time. SCS runoff curve numbers varied between 57 and 96 for the impoundment watershed with an inverse relation between precipitation amount and curve number apprently caused by partial area runoff from impervious and semi-impervious areas. A comparison of measured event runoff versus event runoff computed by the SCS curve numbers gave an r2 of only 0.44. However, the total computed surface runoff for eight years of record was less than 1 percent below the measured runoff which indicated the curve number method was a good tool for predicting long term runoff for the watershed.  相似文献   

9.
Acid drainage from abandoned mines is a widespread problem in old mining regions. Agencies seeking to abate it face the prospect of dealing with hundreds of potential abatement projects, stretching decades into the future. A systematic regional analysis is necessary to establish locations, objectives, priorities, and phasing of such projects. The U.S. Bureau of Mines developed a novel procedure for abatement planning in the 420 square mile Blacklick Creek Watershed in Pennsylvania. The plan sought to direct abatement projects toward pollution sources where degradation was worst and adverse effects greatest. It established abatement priorities by comparing the “supply” of sources to be reclaimed (the degrees of old mines' water quality degradation) with the “demand” for abatement to be done (the natural and cultural values represented by the region's demography, land use and other non-mining characteristics). Matrices were used to define the relationships among mining and non-mining factors; maps were developed to show the geographic distribution of the conclusions. The locations, priorities, and phasing of abatement objectives shown on the maps should provide guidance for any abatement effort, no matter what type of technology is applied to achieve the objectives. Over the many years in which abatement projects are to be performed in the Watershed, the plan can be used to define, coordinate, and establish priorities for the projects in a manner that can result in maximum abatement benefits from the application of limited funds.  相似文献   

10.
ABSTRACT: Much of north-central Iowa is characterized by flat topography, shallow depressions, and poor natural surface drainage. Land drainage systems comprising of tile drains and agricultural drainage wells (ADWs) are used as outlets for subsurface drainage of cropland under corn and soybean production. Studies have shown that these drainage systems, mainly the ADWs, are potential routes for agricultural chemicals to underground aquifers. To protect the region's vital groundwater resource, researchers are evaluating alternative outlets ranging from complete closure of existing ADWs (and creation of wetlands) to continued use of ADWs and chemical management in a comprehensive policy framework. This paper presents the results of a study designed to provide government jurisdictions, farmers, and land managers information for assessing the impact of closing ADWs on crop production. The study couples a geographic information systems database for a 471-hectare watershed in Humboldt County, Iowa, with a groundwater flow model (MODFLOW) and an empirical crop yield loss model to predict long-term effects of complete closure of ADWs on crop production. The cropland areas inundated and the relative crop yield loss due to ADW closure are determined as a function of long-term climatic data. The results indicate that elimination of drainage outlets in the watershed could result in ponding of low-lying areas and poorly drained soils, making them unsuitable for crop production. Such wetness also decreases the efficiency of production in the no-ponding areas by isolating fields, and the crop yield loss can be reduced by an annual average of about 18 percent.  相似文献   

11.
ABSTRACT: The Cheat River of West Virginia is impaired by acid mine drainage (AMD). Fifty‐five of its river segments were placed on the 303(d) list, which required calculations of total maximum daily load (TMDL) to meet the water quality criteria for pH, total iron, aluminum, manganese, and zinc. An existing watershed model was enhanced to simulate AMD as nonpoint source load. The model divided a watershed into a network of catchments and river segments. Each catchment was divided into soil layers, which could contain pyrite, calcite and other minerals. A kinetic expression was used to simulate pyrite oxidation as a function of oxygen in the soil voids. Oxygen in the soil voids was consumed by pyrite oxidation and replenished by earth breathing. The by‐products of pyrite oxidation were calculated according to its mass action equations. Chemical equilibrium was used to account for the speciation of ferrous and ferric irons and precipitation of metal hydroxides. Simulated hydrology and water quality were compared to available data. The USEPA used the calibrated model to calculate the TMDLs in the Cheat River Watershed.  相似文献   

12.
ABSTRACT: Surface and subsurface drainage make crop production economically viable in much of southern Minnesota because drainage allows timely field operations and protects field crops from extended periods of flooded soil conditions. However, subsurface drainage has been shown to increase nitrate/nitrogen losses to receiving waters. When engaging in drainage activities, farmers are increasingly being asked to consider, apart from the economic profit, the environmental impact of drainage. The Agricultural Drainage and Pesticide Transport model (ADAPT) was used in this study to evaluate the impact of subsurface drainage design on the soil water balance over a two‐year period during which observed drainage discharge data were available. Twelve modeling scenarios incorporated four drainage coefficients (DC), 0.64 cm/d, 0.95 cm/d, 1.27 cm/d, and 1.91 cm/d, and three drain depths, 0.84 m, 1.15 m, and 1.45 m. The baseline condition corresponded to the drainage system specifications at the field site: a drain depth and spacing of 1.45 m and 28 m, respectively (DC of 0.64 cm/d). The results of the two‐year simulation suggested that for a given drainage coefficient, soils with the shallower drains (but equal DC) generally have less subsurface drainage and can produce more runoff (but reduced total discharge) and evapotranspiration. The results also suggested that it may be possible to design for both water/nitrate/nitrogen reduction and crop water needs.  相似文献   

13.
A paired watershed study was conducted in western hemlock/western redcedar/Douglas fir forests of southwestern British Columbia to assess the effects of clearcutting and clearcutting plus slash-burning treatments on stream water characteristics. In the case of stream temperatures, both treatments increased summer temperatures as well as summer daily temperature fluctuations. These effects lasted for seven years in the case of the clearcut stream but longer in the case of the clearcut and slashburned stream. Clearcutting increased winter stream temperatures whereas slashburning caused a decrease. These changes lasted less than four years. Clearcutting and slashburning had a greater impact on stream temperatures than did clearcutting alone.  相似文献   

14.
ABSTRACT: The herbicide glyphosate was applied to portions of two watersheds in southwestern British Columbia to kill vegetation that was competing with Pseudotsuga menziesii (Douglas-fir) plantations. This application had little significant effect on streamwater chemistry (K+, Na2+, Mg2+, Ca2+, Cl-, NOs3-, NH4+, PO43-, SO4=, and SiO2 concentrations, electrical conductivity, and pH) when vegetation cover in a watershed was reduced by 4%, but had significant (P>0.05) effects, which lasted for at least five years, when cover was reduced by 43%. In this case, most parameters increased in value following the application, with K+ and Mg2+ concentrations and pH values exhibiting the most prolonged increases and NO3- concentrations exhibiting the greatest percentage increases. Sulphate and dissolved SiO2 concentrations decreased following the application. Streamwater chemical fluxes showed similar trends to concentrations except that changes in fluxes were less significant and no decreases were observed. Forest management induced losses of NO3-N in streamwater during the first five post-treatment years in the study area decreased in the order: herbicide application (approximately 40 kg/ha) < clearcutting and slashburning (approximately 20 kg/ha) < clearcutting (approximately 10 kg/ha). In watersheds similar to those of the study area, herbicide application is likely to have a greater impact on streamwater chemistry, in general, than would clearcutting or clearcutting followed by slashburning.  相似文献   

15.
ABSTRACT: Discharge hydrographs computed from the theory of linear flow through topologically random channel networks are compared to actual discharge hydrographs for basins in semiarid regions of central Wyoming. The basins drained by the channel networks range in size from 0.69 to 10.8 square miles. Topological information consisting of stream-network magnitude and link -length distribution parameters are used in calibrating celerity values that ensure that the peak discharge and excess rainfall volume of the resulting computed hydrographs match the peak discharge and excess-rainfall volume of the actual hydrographs. Results indicate that, for a given peak discharge and excess-rainfall volume in a basin, the sensitivity of the calibrated celerity values to excess-rainfall duration is small if the ratio of excess-rainfall volume to peak discharge is at least 1.75 times the excess-rainfall duration.  相似文献   

16.
ABSTRACT: Snowmelt from deep mountainous snowpacks is seldom rapid enough to exceed infiltration rates; thus, the source of streamflow in many mountainous watersheds is snowmelt recharge through shallow ground water systems. The hydrologic response and interaction between surface and sub-surface flow processes in these watersheds, which is controlled by basin structure, the spatial distribution of snowmelt, and the hydrogeology of the subsurface, are not well understood. The purpose of this study was to test a three-dimensional ground water model using simulated snowmelt input to simulate ground water response to spatially distributed snowmelt on the Upper Sheep Creek Watershed located within the Reynolds Creek Experimental Watershed in Southwestern Idaho. The model was used to characterize the mountainous aquifer and to delineate the subsurface flow mechanisms. Difficulty in finding a reasonable combination of grid spacing and time stepping within the model was encountered due to convergence problems with the Picard solution to the non-linear variably saturated ground water flow equations. Simulation results indicated that flow may be either unconfined or confined depending on inflow rate and hydrogeologic conditions in the watershed. The flow mechanism had a much faster response time when confined flow occurred. Response to snowmelt from a snow drift approximately 90 m away took only a few hours when flow was confined. Simulated results showed good agreement with piezometer measurements both in magnitude and timing; however, convergence problems with the Picard solution limited applicability of the model.  相似文献   

17.
ABSTRACT: A study was conducted to 1) chemically characterize three AMD streams entering Chestnut Creek in southwestern Virginia below the town of Galax, Virginia, and 2) to assess the biological and chemical alterations in the creek. Over a six mile reach, the benthic macroinvertebrate population was reduced to zero, the naturally low alkalinity (~25mg/1) of the stream was reduced to less than 5 mg/1, and the pH was reduced from 7.2 to 6.3. Increased concentration of iron from less than 0.01 mg/I to more than 4.0 mg/1 were accompanied by the deposition of a coating of iron hydroxide up to 0.25 in. thick in the stream bed, a phenomenon most likely responsible for the absence of benethic macroinvertebrates. In situ bioassays with bluegill sunfish and one snail species showed that the creek water, after confluence with all the AMD streams, was not toxic in 192 hours to fish, and snails survived 96 hours before they began to die. The undiluted AMD itself was highly toxic.  相似文献   

18.
ABSTRACT: A method of predicting annual flows is presented and is applied to the Fraser River catchment. Statistical tests show the annual flow records to be stationary and aerially independent and can be adequately approximated by Gaussian distributions. Estimates are made of the Gaussian parameters for each subbasin. The spatial variations of these parameters are described by third order trend surfaces. The fitted surfaces can then be used to predict parameters of ungaged basins using the latitude and longitude of the basin centroids. The predicted parametric values are substituted into the Gaussian distribution to generate flows of various return periods.  相似文献   

19.
ABSTRACT: Transient events in water chemistry in small coastal watersheds, particularly pH depressions, are largely driven by inputs of precipitation. While the response of each watershed depends upon both the nature of the precipitation event and the season of the year, how the response changes over time can provide insight into landscape changes. Neural network models for an urban watershed and a rural‐suburban watershed were developed in an attempt to detect changes in system response resulting from changes in the landscape. Separate models for describing pH depressions for wet season and dry season conditions were developed for a seven year period at each watershed. The neural network models allowed separation of the effects of precipitation variations and changes in watershed response. The ability to detect trends in pH depression magnitudes was improved by analyzing neural network residuals rather than the raw data. Examination of sensitivity plots of the models indicated how the neural networks were affected by different inputs. There were large differences in effects between seasons in the rural‐suburban watershed whereas effects in the urban watershed were consistent between seasons. During the study period, the urban watershed showed no change in pH depression response, while the rural‐suburban watershed showed a significant increase in the magnitude of pH depressions, likely the result of increased urbanization.  相似文献   

20.
ABSTRACT. Estimates of peak flows, with specified return periods, are needed in practice for the design of works that affect streams in forested areas. In the province of British Columbia (B.C.), Canada, the new Forest Practices Code specifies the 100-year instantaneous peak flow (Q100) for the design of bridges and culverts for stream crossings under forest roads; and many practitioners are engaged in making such estimates. The state of the art is still quite primitive, very similar to the state of urban hydrology 30 years ago, when popular estimating techniques were used with little consideration given to their applicability. Urban hydrology then evolved on a much more scientific basis, such that within about a 10-year period, standard approaches to design were developed. Forest hydrology should follow the same pattern, at least as far as estimating design flows is concerned. Popular present day design procedures include the rational method and other empirical approaches based on rainfall data, as use of the standard flood frequency approach is limited by the paucity of relevant flow data. Estimating procedures based on peak streamflow measurements and statistics are likely to evolve, and these will include distinctions for rain, snowmelt, and rain on snow floods. Guidelines will also be developed for selecting and applying appropriate procedures for particular areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号