首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Denver Basin Aquifer System (DBAS) is a critical groundwater resource along the Colorado Front Range. Groundwater depletion has been documented over the past few decades due to the increased water use among users, presenting long‐term sustainability challenges. A spatiotemporal geostatistical analysis is used to estimate potentiometric surfaces and evaluate groundwater storage changes between 1990 and 2016 in each of the four DBAS aquifers. Several key depletion patterns and spatial water‐level changes emerge in this work. Hydraulic head changes are the largest in the west‐central side of the DBAS and have decreased in some areas by up to 180 m since 1990, while areas to the northwest show increases in hydraulic head by over 30.5 m. The Denver and Arapahoe aquifers show the largest groundwater storage losses, with the highest rates occurring in the 2000s. The results highlight uncertainty in the volumetric predictions under various storage coefficient calculations and emphasize the importance of representative aquifer characterization. The observed groundwater storage depletions are due to a combination of factors, which include population growth increasing the demand for water, variable precipitation, and drought influencing recharge, and increased groundwater pumping. The methods applied in this study are transferable to other groundwater systems and provide a framework that can help assess groundwater depletion and inform management decisions at other locations.  相似文献   

2.
3.
ABSTRACT: Most of California's precipitation falls at the wrong place in the wrong season in relation to the water needs. Redistribution and regulation are essential. Aquifer systems – groundwater basins – can provide a share of the future cyclic storage regulation. There are some differences in management concepts in using a full basin in comparison with a partially dewatered basin. Legal, water quality, and physical impacts on aquifer systems, including subsidence, are concerns. Storage may be for the benefit of overlying water users or for distant areas. Extraction during dry periods or recharge methods will require careful planning. Existing rights and uses and equitable treatment of all parties must be assured. Financial compensation may be involved. Changes in methods of operation or degree of self-determination by affected water agencies will require committed watermanship to resolve. Legislation or amendments to organic acts may be needed but much can be accomplished within existing statutes. Environmental impacts which can be avoided by not using large surface storage sites are important. Energy for pumping will be a key consideration. About 40 percent of California is underlain by aquifer systems. This resource offers major potential in overcoming the maldistribution of natural water resources.  相似文献   

4.
Mittelstet, Aaron R., Michael D. Smolen, Garey A. Fox, and Damian C. Adams, 2011. Comparison of Aquifer Sustainability Under Groundwater Administrations in Oklahoma and Texas. Journal of the American Water Resources Association (JAWRA) 1‐8. DOI: 10.1111/j.1752‐1688.2011.00524.x Abstract: We compared two approaches to administration of groundwater law on a hydrologic model of the North Canadian River, an alluvial aquifer in northwestern Oklahoma. Oklahoma limits pumping rates to retain 50% aquifer saturated thickness after 20 years of groundwater use. The Texas Panhandle Groundwater Conservation District’s (GCD) rules limit pumping to a rate that consumes no more than 50% of saturated thickness in 50 years, with reevaluation and readjustment of permits every 5 years. Using a hydrologic model (MODFLOW), we simulated river‐groundwater interaction and aquifer dynamics under increasing levels of “development” (i.e., increasing groundwater withdrawals). Oklahoma’s approach initially would limit groundwater extraction more than the GCD approach, but the GCD approach would be more protective in the long run. Under Oklahoma rules more than half of aquifer storage would be depleted when development reaches 65%. Reevaluation of permits under the Texas Panhandle GCD approach would severely limit pumping as the 50% level is approached. Both Oklahoma and Texas Panhandle GCD approaches would deplete alluvial base flow at approximately 10% development. Results suggest periodic review of permits could protect aquifer storage and river base flow. Modeling total aquifer storage is more sensitive to recharge rate and aquifer hydraulic conductivity than to specific yield, while river leakage is most sensitive to aquifer hydraulic conductivity followed by specific yield.  相似文献   

5.
ABSTRACT: The Edwards Aquifer is one of the most studied and most prolific aquifers in the United States. The aquifer is a heavily fractured and faulted carbonate aquifer with transmissivities in excess of 100 ft2/s. The City of San Antonio relies upon the Edwards Aquifer as its sole source for water. Much work has been done on quantifying recharge to the aquifer and discharge from wells and acquiring aquifer characteristics from pumping tests, specific capacity tests, and geophysical logs. Although the aquifer has been well studied in Bexar County, much less is known about the Edwards Aquifer in Kinney County. This is partly due to the lower population within the county (approximately 3,500 people) relative to the eastern counties (Uvalde, Medina, Bexar, Comal, and Hays) and the great distance of Kinney County from high profile discharge areas such as the City of San Antonio and Comal and San Marcos Springs. Three key products resulted from this study: (1) exploratory well drilling and the largest aquifer test in the county that were conducted to evaluate the well yields within a 10,000 acre study area in which a drawdown of 2.5 ft approximately 1.2 miles away was observed while pumping at approximately 4,600 gpm; (2) a recharge estimate for the Edwards Aquifer within Kinney County of approximately 71,382 ac‐ft/yr; and (3) locating the Brackettville Groundwater Divide from an evaluation of ground water flow direction and hydrograph analysis. These results help evaluate the complex hydraulics occurring within Kinney County and aid in development of ground water modeling that will be used in managing the Edwards Aquifer.  相似文献   

6.
Many important groundwater aquifers cross state and national boundaries. The flow of water in these aquifers is not influenced by the boundaries but may be materially influenced by mans activities on one or both sides of a boundary. Interstate and international problems may develop because of excessive groundwater lowering on one side of a boundary affecting water users on the opposite side of the line. Similarly, intensive groundwater development along a surface stream may influence the amount of surface water that flows across a boundary. A third type of problem may develop when pumping on one side of the boundary induces poor quality water into an aquifer on the other side of the boundary. Several specific interstate and international aquifer problems are briefly described.  相似文献   

7.
Johnson, R.L., B.R. Clark, M.K. Landon, L.J. Kauffman, and S.M. Eberts, 2011. Modeling the Potential Impact of Seasonal and Inactive Multi‐Aquifer Wells on Contaminant Movement to Public Water‐Supply Wells. Journal of the American Water Resources Association (JAWRA) 47(3):588‐596. DOI: 10.1111/j.1752‐1688.2011.00526.x Abstract: Wells screened across multiple aquifers can provide pathways for the movement of surprisingly large volumes of groundwater to confined aquifers used for public water supply (PWS). Using a simple numerical model, we examine the impact of several pumping scenarios on leakage from an unconfined aquifer to a confined aquifer and conclude that a single inactive multi‐aquifer well can contribute nearly 10% of total PWS well flow over a wide range of pumping rates. This leakage can occur even when the multi‐aquifer well is more than a kilometer from the PWS well. The contribution from multi‐aquifer wells may be greater under conditions where seasonal pumping (e.g., irrigation) creates large, widespread downward hydraulic gradients between aquifers. Under those conditions, water can continue to leak down a multi‐aquifer well from an unconfined aquifer to a confined aquifer even when those multi‐aquifer wells are actively pumped. An important implication is that, if an unconfined aquifer is contaminated, multi‐aquifer wells can increase the vulnerability of a confined‐aquifer PWS well.  相似文献   

8.
Jang, Cheng‐Shin, Chen‐Wuing Liu, Shih‐Kai Chen, and Wen‐Sheng Lin, 2011. Using a Mass Balance Model to Evaluate Groundwater Budget of Seawater‐Intruded Island Aquifers. Journal of the American Water Resources Association (JAWRA) 48(1): 61‐73. DOI: 10.1111/j.1752‐1688.2011.00593.x Abstract: The study developed a mass balance model to evaluate the groundwater budget of seawater‐intruded island aquifers using limited available data. The Penghu islands were selected as a study area. As sparse observed data were available in the islands, methods of combining water and chloride balances were used to determine the amounts of groundwater pumping, seawater intrusion, aquifer storages, and safe yields in the shallow and deep aquifers. The groundwater budget shows that seawater intrusion to freshwater aquifers was 1.38 × 106 and 0.29 × 106 m3/year in the shallow and deep aquifers, respectively, indicating that the seawater intrusion is severe in the both aquifers. The safe yield of the shallow aquifer was 14.56 × 106 m3/year in 2005 which was four times higher than that of the deep aquifer (3.70 × 106 m3/year). However, the annual pumping amounts in the shallow and deep aquifers were 4.77 × 106 and 3.63 × 106 m3/year, respectively. Although the safe yield of the shallow aquifer is enough for all water resources demands, only 55% of exploitation amount was extracted from the shallow aquifer due to its poor water quality. Groundwater exploitation in the deep aquifer should be significantly reduced and regulated by a dynamic management of pumping scheme because the annual pumping amounts are close to the safe yield and seawater intrusion occurs continually. Additionally, to alleviate further aquifer salination, at least half of the current annual groundwater abstraction should be reduced.  相似文献   

9.
The City of Cape May, New Jersey, draws its primary water supply from the Cohansey Aquifer, a unit serving residential, community, and industrial users throughout the Coastal Plain. By the year 2000, projected population growth will impose a peak water demand beyond available supplies. In addition, regional over-pumping threatens the Cohansey with saltwater intrusion, placing the city wells at risk by 1998. In the early-to mid 1990s, three broad categories of water-supply alternatives were evaluated by regional, state, and federal agencies — additional pumping from the Cohansey, conjunctive use of the Cohansey with other aquifers, and desalination of brackish groundwater. An approach was adopted in 1996 which derives up to 2 MGD from desalination of brackish groundwater, with the remaining peak demand satisfied by short-term pumpage from existing wells in the Cohansey. The first of two wells has been completed, yielding 1.4 MGD of brackish groundwater. Similar performance from the second well will exceed the design goal. When the initial system comes on line during the summer of 1998, New Jersey will have its first public water supply derived from desalinated groundwater. The use of desalinated groundwater balances competing demands for water resources in the southern Cape Region of New Jersey, allowing continued economic growth while reducing human impacts on a threatened aquifer.  相似文献   

10.
James Androwski, Abraham Springer, Thomas Acker, and Mark Manone, 2011. Wind‐Powered Desalination: An Estimate of Saline Groundwater in the United States. Journal of the American Water Resources Association (JAWRA) 47(1):93‐102. DOI: 10.1111/j.1752‐1688.2010.00493.x Abstract: Increasing scarcity of freshwater resources in many regions of the world is leading water resource managers to consider desalination as a potential alternative to traditional freshwater supplies. Desalination technologies are energy intensive and expensive to implement making desalination using renewable energy resources a potentially attractive option. Unfortunately, saline groundwater resources are not well characterized for many regions hindering consideration of such technologies. In this assessment, we estimate the saline groundwater resources of the principal aquifers of the United States using a geographic information system and correlate these resources to wind resources potentially sufficient to supply the energy demand of desalination equipment. We estimate that 3.1 × 1014 m3 saline groundwater, total volume, are contained in 28 of the country’s principal aquifers known to contain saline groundwater. Of this volume, 1.4 × 1014 m3 saline groundwater are co‐located with wind resources sufficient for electrical generation to desalinate groundwater.  相似文献   

11.
The natural complexity, heterogeneity, and extent of transboundary aquifers around the world, have led to controversy over which method or criteria should be used to identify and delineate their boundaries. Currently, there is no standard methodology that aquifer‐sharing countries can use to delineate the area of a transboundary aquifer. In the case of Mexico and Texas, Mexico uses administrative boundaries, whereas Texas uses geological boundaries. This paper proposes a method for delineation and prioritization of aquifers (or aquifer areas) called effective transboundary aquifer areas (ETAAs), which uses a combination of physical criteria (geological boundaries, topography, and hydrography) and the location and density of active water wells in the borderland between Mexico and Texas. This method identifies the area of priority (productivity area) in the aquifer using pumping patterns or hot spots regardless of the aquifer’s surficial geological limits, therefore offering a more effective, local and practical management option at the transboundary level. Different geological features or pumping patterns will have different sizes and locations of ETAAs within the same aquifer. In West Texas, which is dominated by bolsons, the method produces limited options for ETAAs, whereas in South Texas in the easternmost border the identified ETAAs are more significant.  相似文献   

12.
The cost of developing groundwater resources in northeastern Illinois from 198cL2020 is estimated for the purpose of providing a basis for comparing alternative sources. Demands for each township in the study area are estimated at 10-year increments and are satisfied, where the supply is sufficient, in such a way as to minimize the cost subject to constraints on supply. Sources of water are two shallow aquifers with known potential yields and a series of deep aquifers treated as a single unit and modeled on a digital computer. For each township the costs of wells, pumps, power and rehabilitation is estimated for each aquifer on a per million gallons of water per day basis. In addition the cost of groundwater treatment necessary to raise the quality to that of treated Lake Michigan water is considered. Raw water costs are found to vary from 2 to 14 cents per 1000 gallons depending upon the depth to the deep aquifer water. Treated water costs vary from 22 to 53 cents per 1000 gallons, the lower costs applying to the largest users because of the economy of scale. It is found that with proper distribution of pumpage there is sufficient water in storage in the deep aquifers to meet groundwater demands through 2020.  相似文献   

13.
ABSTRACT. Interest in the geochemistry of groundwater is increasing owing to the great number of current projects involving underground liquid waste storage, artificial recharge of potable water, accidental contamination of groundwater bodies, sanitary landfills, and pollution monitoring. Geochemical techniques used to facilitate the understanding of a groundwater system range from extremely simple to those requiring sophisticated theories, equipment, and procedures. An interpretation of the simple trilinear diagram for samples collected from the Yucatan Peninsula of Mexico provided evidence that the fresh-water body was only a few tens of meters thick and was underlain everywhere by an extensive body of salt water. A geochemical technique that has been used effectively to identify the source of salt water in coastal aquifers is measurement of the carbon-14 concentrations. Carbon-14 has been used in a regional carbonate aquifer to determine the velocity of groundwater movement, rates of chemical reactions, and distribution of hydraulic conductivity. The application of principles of irreversible thermodynamics to groundwater systems provides a basis for constructing models which permit prediction, over both time and space, of changes in head distribution and chemical character of the water resulting from imposed stresses on the system. In essence, proper application of irreversible thermodynamics combines the potential theory of Hubbert with principles of reversible chemical thermodynamics, such as solution of carbonate minerals, to describe and explain controlling chemical reactions and processes of groundwater systems.  相似文献   

14.
The High Plains aquifer (HPA) is the primary water source for agricultural irrigation in the US Great Plains. The water levels in many locations of the aquifer have declined steadily over the past several decades because the rate of water withdrawals exceeds recharge, which has been a serious concern to the water resources management in the region. We evaluated temporal trends and variations in agricultural water use and hydroclimatic variables including precipitation, air temperature, reference evapotranspiration, runoff, groundwater level, and terrestrial water storage across the HPA region for different periods from 1985 to 2020 at the grid, county, or region scale. The results showed that water withdrawals decreased from 21.3 km3/year in 1985 to 18.2 km3/year in 2015, while irrigated croplands increased from 71,928 km2 in 1985 to 78,464 km2 in 2015 in the entire HPA. The hydroclimatic time-series showed wetting trends in most of the northern HPA, but drying and warming trends in the southern region from 1985 to 2020. The groundwater level time-series indicated flat trends in the north, but significant declining in the central and southern HPA. Trends in irrigation water withdrawals and irrigation area across the HPA were controlled by the advancement of irrigation systems and technologies and the management of sustainable water use, but also were affected by dynamical changes in the hydroclimatic conditions.  相似文献   

15.
Abstract: Water supply uncertainty continues to threaten the reliability of regional water resources in the western United States. Climate variability and water dispute potentials induce water managers to develop proactive adaptive management strategies to mitigate future hydroclimate impacts. The Eastern Snake Plain Aquifer in the state of Idaho is also facing these challenges in the sense that population growth and economic development strongly depend on reliable water resources from underground storage. Drought and subsequent water conflict often drive scientific research and political agendas because water resources availability and aquifer management for a sustainable rural economy are of great interest. In this study, a system dynamics approach is applied to address dynamically complex problems with management of the aquifer and associated surface‐water and groundwater interactions. Recharge and discharge dynamics within the aquifer system are coded in an environmental modeling framework to identify long‐term behavior of aquifer responses to uncertain future hydrological variability. The research shows that the system dynamics approach is a promising modeling tool to develop sustainable water resources planning and management in a collaborative decision‐making framework and also to provide useful insights and alternative opportunities for operational management, policy support, and participatory strategic planning to mitigate future hydroclimate impacts in human dimensions.  相似文献   

16.
ABSTRACT: The biodegradation potential of two drinking water disinfection byproducts was investigated using aquifer materials obtained from approximately 100 and 200 meters below land surface in an aerobic aquifer system undergoing aquifer storage recovery of treated surface water. No significant biodegradation of a model trihalomethane compound, chloroform, was observed in aquifer microcosms under aerobic or anaerobic conditions. In contrast, between 16 and 27 percent mineralization of a radiolabeled model haloacetic acid compound, chloroacetic acid, was observed. These results indicate that although the potential for biodegradation of chloroacetic acid exists in deep aquifer systems, chloroform entrained within these aquifers or formed in situ will tend to persist. These results have important implications for water managers planning to meet anticipated lowered permissible levels of trihalomethanes in drinking water.  相似文献   

17.
Increasing reservoir storage is commonly proposed to mitigate increasing water demand and provide drought reserves, especially in semiarid regions such as California. This paper examines the value of expanding surface reservoir capacity in California using hydroeconomic modeling for historical conditions, a future warm‐dry climate, and California's recently adopted policy to end groundwater overdraft. Results show expanding surface storage capacity rarely provides sizable economic value in most of California. On average, expanding facilities north of California's Delta provides some benefit in 92% of 82 years modeled under historical conditions and in 61% of years modeled in a warm‐dry climate. South of California's Delta, expanding storage capacity provides no benefits in 14% of years modeled under historical conditions and 99% of years modeled with a warm‐dry climate. Results vary across facilities between and within regions. The limited benefit of surface storage capacity expansion to statewide water supply should be considered in planning California's water infrastructure.  相似文献   

18.
Liu, Clark C.K. and John J. Dai, 2012. Seawater Intrusion and Sustainable Yield of Basal Aquifers. Journal of the American Water Resources Association (JAWRA) 48(5): 861‐870. DOI: 10.1111/j.1752‐1688.2012.00659.x Abstract: Basal aquifers, in which freshwater floats on top of saltwater, are the major freshwater supply for the Hawaiian Islands, as well as many other coastal regions around the world. Under unexploited or natural conditions, freshwater and the underlying seawater are separated by a relatively sharp interface located below mean sea level at a depth of about 40 times the hydraulic head. With forced draft, the hydraulic head of a basal aquifer would decline and the sharp interface would move up. It is a serious problem of seawater intrusion as huge amounts of freshwater storage is replaced by saltwater. Also, with forced draft, the sharp interface is replaced by a transition zone in which the salinity increases downward from freshwater to saltwater. As pumping continues, the transition zone expands. The desirable source‐water salinity in Hawaii is about 2% of the seawater salinity. Therefore, the transition zone expansion is another serious problem of seawater intrusion. In this study, a robust analytical groundwater flow and salinity transport model (RAM2) was developed. RAM2 has a simple mathematical structure and its model parameters can be determined satisfactorily with the available field monitoring data. The usefulness of RAM2 as a viable management tool for coastal ground water management is demonstrated by applying it to determine the sustainable yield of the Pearl Harbor aquifer, a principal water supply source in Hawaii.  相似文献   

19.
We evaluated long‐term trends and predictors of groundwater levels by month from two well‐studied northern New England forested headwater glacial aquifers: Sleepers River, Vermont, 44 wells, 1992‐2013; and Hubbard Brook, New Hampshire, 15 wells, 1979‐2004. Based on Kendall Tau tests with Sen slope determination, a surprising number of well‐month combinations had negative trends (decreasing water levels) over the respective periods. Sleepers River had slightly more positive than negative trends overall, but among the significant trends (p < 0.1), negative trends dominated 67 to 40. At Hubbard Brook, negative trends outnumbered positive trends by a nearly 2:1 margin and all seven of the significant trends were negative. The negative trends occurred despite generally increasing trends in monthly and annual precipitation. This counterintuitive pattern may be a result of increased precipitation intensity causing higher runoff at the expense of recharge, such that evapotranspiration demand draws down groundwater storage. We evaluated predictors of month‐end water levels by multiple regression of 18 variables related to climate, streamflow, snowpack, and prior month water level. Monthly flow and prior month water level were the two strongest predictors for most months at both sites. The predictive power and ready availability of streamflow data can be exploited as a proxy to extend limited groundwater level records over longer time periods.  相似文献   

20.
The objective of this work is to analyze and interpret the components or hydrogeological, physical, and chemical variables of the San Diego aquifer to describe it and explain its influence on the sustainable use of groundwater for the providing of this locality. The San Diego municipality covers most of the area of the aquifer and is an area of high urban development that currently needs the contribution of groundwater due to the deficit presented by the main supply from the Central Regional System. Said aquifer is a set of geological strata located within the limits of the San Diego River basin, in the state of Carabobo, which are capable of storing groundwater and transmitting it. Data on lithology, porosity, and pumping level were investigated, which allows calculating an estimate of the volume of water available in the aquifer. Regarding the quality of the water, the data on hardness, chlorides, sulfates, nitrates, conductivity, calcium, magnesium, and pH, show that the water towards the center and north of the aquifer is of good quality, being able to classify it as type 1A, while toward the southern end—this is of lower quality, where the mineral parameters are higher, which is related to the probable intrusion of brackish water from Lake Valencia. It is concluded by establishing that the volume of groundwater, its availability, extraction feasibility, and its quality, make it suitable for urban supply and that said extraction is sustainable. But a better-integrated type of management must be designed, considering the contribution of the Regional System of the Center and the adequacy of the distribution networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号