共查询到11条相似文献,搜索用时 15 毫秒
1.
Richard N. DeVries Douglas C. Kent 《Journal of the American Water Resources Association》1973,9(5):998-1005
ABSTRACT: The Ogallala aquifer in the Oklahoma Panhandle is in need of better management because of increased groundwater demand which has caused declines in static water levels at an alarming rate. A groundwater management computer model was developed for the Ogallala aquifer in the Texas Panhandle and treats the aquifer as a homogeneous system. In this study, the computer model has been modified in order to evaluate the effects of vertical layering on semi-static water level changes which occur during the dewatering of a single unconfined aquifer. The modified model was applied to a study area near Guymon, Oklahoma, using both the homogeneous and the multilayered cases. The aquifer is characterized by a saturated thickness of 400 feet. The accumulated drawdown values of the homogeneous and the multilayered cases demonstrate that an average difference of approximately 22% of the original saturated thickness occurs between the two cases before the base of the aquifer is encountered. Approximately 25% more time is required to dewater the layered aquifer. Thus, vertical variations of lithology in an aquifer such as the Ogallala should be considered when prediction is made relative to groundwater management. 相似文献
2.
Irfan A. Khan 《Journal of the American Water Resources Association》1979,15(6):1618-1627
ABSTRACT: In projects involving ground water problems, dependence on the mathematical modeling of the ground water flow phenomena is inescapable. At present, two dimensional flow models, which require tremendous amounts of computer time and storage, are generally used. When such bulky models are used for planning purposes, the two requirements (computer time and storage) can severely limit the number of alternatives that can be considered. A simple quantity and quality simulation model is developed here which requires considerably less computer time and storage and gives reasonably accurate results. The model was applied to simulate a ground water basin in San Luis Rey River in Southern California. The results were compared with those obtained by a USGS model. It was found that the simple model gave results which were consistentaly within five percent of the USGS model results, while the requirements on computer time and storage were drastically reduced. 相似文献
3.
Dale L. Simmons Richard J. Reynolds 《Journal of the American Water Resources Association》1982,18(5):797-805
ABSTRACT: Hydrograph analysis of six streams on the south shore of Long Island indicates that eastward urbanization during the last three decades has significantly reduced base flow to streams. Before urbanization, roughly 95 percent of total annual stream flow on Long Island was base flow. In urbanized southwestern Nassau County, storm water sewerage, increased impervious surface area, and sanitary sewerage have reduced base flow to 20 percent of total stream flow. In an adjacent urbanized but unsewered area in southeastern Nassau County, base flow has decreased to 84 percent of total annual stream flow. In contrast, base flow in two streams in rural areas has remained virtually constant, averaging roughly 95 percent of total annual flow throughout the 1955-70 study period. Double-mass curve analysis of base flow as a percentage of total annual stream flow indicates that (1) changes in stream flow characteristics began in the early 1960's in the sewered area and in the late 1960's in the later urbanized, unsewered area, and (2) a new equilibrium has been established between the streams in the sewered area and the new hydrologic characteristics of their urbanized drainage basins. 相似文献
4.
Wendy A. Rice Steven M. Gorelick 《Journal of the American Water Resources Association》1985,21(6):919-930
A graphical inverse method for determining the regional transmissivity distribution was applied to three field problems. The study areas were the Hanford Site, Washington; the Rocky Mountain Arsenal, Colorado; and the Nevada Test Site, Nevada. This method can aid in flow system conceptualization by revealing the location of bedrock controls for groundwater flow. It is a valuable tool for aiding the hydrogeologist in asking questions about the nature of trends in the pattern of transmissivity values. Quantitative estimates of regional transmissivities can be used as starting points for further parameter refinement. Sensitivity analysis using Monte Carlo simulation shows that quantitative estimates of transmissivity can be obtained when measurement error in the hydraulic head does not cause a large error in the hydraulic gradient. 相似文献
5.
Isaac J. Schlosser James R. Karr 《Journal of the American Water Resources Association》1981,17(2):233-240
ABSTRACT: Water quality was monitored for 17 months during base flow periods in six agricultural watersheds to evaluate the impact of riparian vegetation on suspended solids and nutrient concentrations. In areas without riparian vegetation, both instream algal production and seasonal low flows appeared to be major determinants of suspended solids, turbidity, and phosphorus concentrations. Peak levels of all parameters were reached during the summer when flows were reduced and benthic algal production was high. Similar summer peaks were reached in streams receiving major point inputs but peaks occurred downstream from the input. Instream organic production was less important in regulating water quality in areas with riparian vegetation and permanent flows. Concentrations of suspended solids remained relatively constant, while phosphorus and turbidity increased in association with leaf fall in autumn. Intermittent flow conditions in summer increased the importance of instream organic production in controlling water quality, even when riparian vegetation was present. Efforts to improve water quality in agricultural watersheds during base flow should emphasize maintenance of riparian vegetation and stable flow conditions. 相似文献
6.
J. J. McDonnell Ian F Owens M. K. Stewart 《Journal of the American Water Resources Association》1991,27(4):679-685
ABSTRACT: Soil water potentials, slope throughflow, runoff chemistry, and isotopic composition were monitored in a 97 m2 zero-order basin within the Maimai 8 watershed on the South Island of New Zealand, for a natural rain storm and two artificial water applications. Contrary to results previously reported for other portions of the Maimai catchment, much of the runoff occurred as a shallow subsurface organic layer flow. For the 47 mm natural rain event, pre-storm soil matric potential ranged from ?60 to ?150 cm H2O. No saturation was produced within the profile, and the majority of storm runoff emanated from flow within the organic horizon perched on the mineral soil surface. Hillslope applications corroborated this interpretation by showing >90 percent new water flushing with negligible mineral soil moisture response. Although the mechanisms cited in the text are not representative of the entire catchment, the study demonstrates: (1) the value of a combined physical-chemical-isotopic approach in quantifying slope processes, and (2) the heterogeneous nature and diversity of slope runoff pathways in a relatively homogeneous catchment. 相似文献
7.
Harry I. Nightingale William C. Bianchi 《Journal of the American Water Resources Association》1980,16(4):702-709
ABSTRACT: The geographical distribution of well water specific electrical conductivity and nitrate levels in a 932 km2 ground water quality study area in the Fresno-Clovis, California, indicated that frequently areas of lower ground water salinity were also areas of relatively greater soil and aquifer permeability. From these observations and certain assumptions we hypothesized that the quality of the well water should be better in areas with permeable soils and geological formations. Correlation and multiple linear regression analysis supported this hypothesis for well water salinity. However, well water nitrate levels were significantly negatively correlated with only the estimated equivalent specific yield of the aquifer system. The multiple R2 values of the most significant multiple linear regression models showed that only a fourth to a third of the variability in well water specific electric conductivity and nitrate levels could be ascribed to the effects of the hydrogeological parameters considered with more than 90 percent confidence. This indicates that three-fourths to two-thirds of the variability in ground water salinity and nitrate levels may be related to land use. Thus, there is considerable room for land use management techniques to improve ground water quality and reduce its variability. 相似文献
8.
ABSTRACT A comprehensive mathematical watershed model containing a complete soil moisture accounting system was used to simulate the hydrologic processes measured in one of the weighing lysimeters at Coshocton, Ohio. Data from a four-year rotation were used to calibrate the parameters initially selected for the model. Data from the succeeding four years were used to evaluate the predictions. Reasonable agreement was obtained between observed and predicted percolation and evapo-transpiration values. 相似文献
9.
R. L. Dymond A. J. McDonnell 《Journal of the American Water Resources Association》1988,24(5):1065-1072
ABSTRACT: Spreadsheet software was utilized on two related large scale trial and error problems. Gaged streamflow data and known reservoir volumes were used to construct a daily continuity balance in order to estimate the daily mean flows from ungaged portions of a study watershed over one year. Watershed yield coefficients were determined for two diverse types of watersheds with and without significant ground water contribution. Subsequently, a spreadsheet template was devised to ensure than an EPA supported water quality model, WASP, would successfully model the actual segmental volumes of a flood control reservoir. Inlet, outlet, and intersegmental advective flows were determined on a two week average basis using a continuity balance, segmental routing, and known segmental volumes. The protocols described relate the use of microcomputers to the resolution of hydraulic and hydrologic problems requiring iterative solutions. 相似文献
10.
Jean E. Weber Martin M. Fogel Lucien Duckstein 《Journal of the American Water Resources Association》1976,12(1):1-17
ABSTRACT. Four commonly used models for predicting sediment yield are analyzed and compared using previously published data. Three of these models involve logarithmic transformations. Some of the problems involved in transforming data are discussed in the context of logarithmic transformations. These problems are illustrated using the results of standard regression analyses and economic loss function analyses. For the data analyzed, the linear model is preferable to each of the logarithmic models on the basis of each analysis, and the usual multiple objective nature of the model choice problem is thus modified. The extent to which these results can be generalized is discussed in the context of model choice. 相似文献
11.
Jimmie L. Thomas J. Paul Riley Eugene K. Israelsen 《Journal of the American Water Resources Association》1972,8(5):922-934
ABSTRACT. A hybrid computer program was developed to predict the water and salt outflow from a river basin in which irrigation is the major user of water. The model combines a chemical model which predicts the quality of water percolated through a soil profile with a general hydrologic model. The chemical model considers the reactions that occur in the soil, including the exchange of calcium, magnesium, and sodium cations on the soil complex, and the dissolution and precipitation of gypsum and lime. The chemical composition of the outflow is a function of these chemical processes within the soil, plus the blending of undiverted inflows, evaporation, transpiration, and the mixing of sub surface return flows with groundwater. The six common ions of western waters, namely calcium (Ca++), magnesium (Mg++), sodium (Na+), sulfate (SO4=), chloride (Cl?), and bicarbonate (HCO3?) were considered in the study. Total dissolved solids (TDS) outflow was obtained by adding the individual ions. The overall model operates on a monthly time unit. The model was tested on a portion of the Little Bear River basin in northern Utah. The model successfully simulated measured outflows of water and each of the six ions for a 24-month period. The usefulness of the model was demonstrated by a management study of the prototype system. For example, preliminary results indicated that the available water supply could be used to irrigate additional land without unduly increasing the salt outflow from the basin. With minor adjustments the model can be applied to other hydrologic areas. 相似文献