首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The myth of nitrogen fertilization for soil carbon sequestration   总被引:9,自引:0,他引:9  
Intensive use of N fertilizers in modern agriculture is motivated by the economic value of high grain yields and is generally perceived to sequester soil organic C by increasing the input of crop residues. This perception is at odds with a century of soil organic C data reported herein for the Morrow Plots, the world's oldest experimental site under continuous corn (Zea mays L.). After 40 to 50 yr of synthetic fertilization that exceeded grain N removal by 60 to 190%, a net decline occurred in soil C despite increasingly massive residue C incorporation, the decline being more extensive for a corn-soybean (Glycine max L. Merr.) or corn-oats (Avena sativa L.)-hay rotation than for continuous corn and of greater intensity for the profile (0-46 cm) than the surface soil. These findings implicate fertilizer N in promoting the decomposition of crop residues and soil organic matter and are consistent with data from numerous cropping experiments involving synthetic N fertilization in the USA Corn Belt and elsewhere, although not with the interpretation usually provided. There are important implications for soil C sequestration because the yield-based input of fertilizer N has commonly exceeded grain N removal for corn production on fertile soils since the 1960s. To mitigate the ongoing consequences of soil deterioration, atmospheric CO(2) enrichment, and NO(3)(-) pollution of ground and surface waters, N fertilization should be managed by site-specific assessment of soil N availability. Current fertilizer N management practices, if combined with corn stover removal for bioenergy production, exacerbate soil C loss.  相似文献   

2.
Utilization of biosolids through land application is becoming increasingly popular among wastewater managers. To minimize the potential contamination of receiving waters from biosolids-derived nitrogen (N), it is important to understand the availability of N after land application of biosolids. In this study, four secondary biosolids (two municipal and two pulp and paper industrial biosolids) were used in a laboratory incubation experiment to simulate N mineralization and transformation after land application. Municipal biosolids were from either aerobically or anaerobically digested sources, while pulp and paper industrial biosolids were from aerated wastewater stabilization lagoons. These biosolids were mixed with two New Zealand forest soils (top 100 mm of a volcanic soil and a brown soil) and incubated at two temperatures (10 and 20 degrees C) for 26 wk. During incubation, mineralized N was periodically leached from the soil-biosolids mixture with 0.01 M CaCl2 solution and concentrations of NH4 and NO3 in leachate were determined. Mineralization of N from aerobically digested municipal biosolids (32.1%) was significantly more than that from anaerobically digested biosolids (15.2%). Among the two pulp and paper industrial biosolids, little N leached from one, while as much as 18.0% of total organic N was leached from the other. As expected, mineralization of N was significantly greater at 20 degrees C (average 22.8%) than at 10 degrees C (average 9.7%). It was observed that more N in municipal biosolids was mineralized in the brown soil, whereas more N in pulp and paper industrial biosolids mineralized in the volcanic soil. Transformation of NH4 to NO3 was affected by soil type and temperature.  相似文献   

3.
Nitrate (NO3-) pollution of surface and subsurface waters has become a major problem in agricultural ecosystems. Field trials were conducted from 1996 to 1998 at St-Emmanuel, Quebec, Canada, to investigate the combined effects of water table management (WTM) and nitrogen (N) fertilization on soil NO3- level, denitrification rate, and corn (Zea mays L.) grain yield. Treatments consisted of a combination of two water table treatments: free drainage (FD) with open drains at a 1.0-m depth from the soil surface and subirrigation (SI) with a design water table of 0.6 m below the soil surface, and two N fertilizer (ammonium nitrate) rates: 120 kg N ha(-1) (N120) and 200 kg N ha(-1) (N200). Compared with FD, SI reduced NO3(-)-N concentrations in the soil profile by 37% in spring 1997 and 2% in spring 1998; and by 45% in fall 1997 and 19% in fall 1998 (1 mg NO3(-)-N L(-1) equals approximately 4.43 mg NO3- L(-1)). The higher rate of N fertilization resulted in greater levels of NO3(-)-N in the soil solution. Denitrification rates were higher in SI than in FD plots, but were unaffected by N rate. The N200 rate produced higher yields than N120 in 1996 and 1997, but not 1998. Corn yields in SI plots were 7% higher than FD plots in 1996 and 3% higher in 1997, but 25% lower in 1998 because the SI system was unable to drain the unusually heavy June rains, resulting in waterlogging. These findings suggest that SI can be used as an economical means of reducing NO3- pollution without compromising crop yields during normal growing seasons.  相似文献   

4.
Soil organic matter (SOM) is essential for sustaining food production and maintaining ecosystem services and is a vital resource base for storing C and N. The impact of long-term use of synthetic fertilizer N on SOM, however, has been questioned recently. Here we tested the hypothesis that long-term application of N results in a decrease in SOM. We used data from 135 studies of 114 long-term experiments located at 100 sites throughout the world over time scales of decades under a range of land-management and climate regimes to quantify changes in soil organic carbon (SOC) and soil organic nitrogen (SON). Published data of a total of 917 and 580 observations for SOC and SON, respectively, from control (unfertilized or zero N) and N-fertilized treatments (synthetic, organic, and combination) were analyzed using the SAS mixed model and by meta-analysis. Results demonstrate declines of 7 to 16% in SOC and 7 to 11% in SON with no N amendments. In soils receiving synthetic fertilizer N, the rate of SOM loss decreased. The time-fertilizer response ratio, which is based on changes in the paired comparisons, showed average increases of 8 and 12% for SOC and SON, respectively, following the application of synthetic fertilizer N. Addition of organic matter (i.e., manure) increased SOM, on average, by 37%. When cropping systems fluctuated between flooding and drying, SOM decreased more than in continuous dryland or flooded systems. Flooded rice ( L.) soils show net accumulations of SOC and SON. This work shows a general decline in SOM for all long-term sites, with and without synthetic fertilizer N. However, our analysis also demonstrates that in addition to its role in improving crop productivity, synthetic fertilizer N significantly reduces the rate at which SOM is declining in agricultural soils, worldwide.  相似文献   

5.
High in situ concentrations of inorganic N and P have been reported in overland/litter interflow from Sierran forests, indicating that these nutrients are derived from the forest floor O horizons. To test this hypothesis, forest floor monoliths consisting of the combined O(e) and O(i) horizons were collected near the South Shore of Lake Tahoe, Nevada, for leaching experiments. Three monoliths were left intact, and three were hand-separated according to horizon for a total of three treatments (combined O(e)+O(i), O(e) only, and O(i) only) by three replications. Samples were randomized and placed into lined leaching bins. Initial leaching consisted of misting to simulate typical early fall precipitation. This was followed by daily snow applications and a final misting to simulate spring precipitation. Leachate was collected, analyzed for NH(4)(+)-N, NO(3)(-)-N, and PO(4)(3-)-P, and a nutrient balance was computed. There was a net retention of NH(4)(+)-N, but a net release of both NO(3)(-)-N and PO(4)(3-)-P, and a net release of inorganic N and P overall. Total contributions (mg) of N and P were highest from the O(e) and O(e)+O(i) combined treatments, but when expressed as per unit mass, significantly (p < 0.05) higher amounts of NO(3)(-)-N and PO(4)(3-)-P were derived from the O(i) materials. The nutrients in forest floor leachate are a potential source of biologically available N and P to adjacent surface waters. Transport of these nutrients from the terrestrial to the aquatic system in the Lake Tahoe basin may therefore play a part in the already deteriorating clarity of the lake.  相似文献   

6.
Nine small (2.5 ha) and four large (70-135 ha) watersheds were instrumented in 1999 to evaluate the effects of silvicultural practices with application of best management practices (BMPs) on stream water quality in East Texas, USA. Two management regimes were implemented in 2002: (i) conventional, with clearcutting, herbicide site preparation, and BMPs and (ii) intensive, which added subsoiling, aerial broadcast fertilization, and an additional herbicide application. Watershed effects were compared with results from a study on the same small watersheds in 1981, in which two combinations of harvesting and mechanical site preparation without BMPs or fertilization were evaluated. Clearcutting with conventional site preparation resulted in increased nitrogen losses on the small watersheds by about 1 additional kg ha(-1) each of total Kjeldahl nitrogen (TKN) and nitrate-nitrogen (NO(3)-N) in 2003. First-year losses were not significantly increased on the large watershed with a conventional site preparation with BMPs. Fertilization resulted in increased runoff losses in 2003 on the intensive small watersheds by an additional 0.77, 2.33, and 0.36 kg ha(-1) for NO(3)-N, TKN, and total phosphorus, respectively. Total loss rates of ammonia nitrogen (NH(4)-N) and NO(3)-N were low overall and accounted for only approximately 7% of the applied N. Mean loss rates from treated watersheds were much lower than rainfall inputs of about 5 kg ha(-1) TKN and NO(3)-N in 2003. Aerial fertilization of the 5-yr-old stand on another large watershed did not increase nutrient losses. Intensive silvicultural practices with BMPs did not significantly impair surface water quality with N and P.  相似文献   

7.
In temperate forest ecosystems, soil acts as a major sink for atmospheric N deposition. A (15)N labeling experiment in a hardwood forest on calcareous fluvisol was performed to study the processes involved. Low amounts of ammonium ((15)NH(4)(+)) or nitrate ((15)NO(3)(-)) were added to small plots. Soil samples were taken after periods ranging from 1 h to 1 yr. After 1 d, the litter layer retained approximately 28% of the (15)NH(4)(+) tracer and 19% of (15)NO(3)(-). The major fraction of deposited N went through the litter layer to reach the soil within the first hours following the tracer application. During the first day, a decrease in extractable (15)N in the soil was observed ((15)NH(4)(+): 50 to 5%; (15)NO(3)(-): 60 to 12%). During the same time, the amount of microbial (15)N remained almost constant and the (15)N immobilized in the soil (i.e., total (15)N recovered in the bulk soil minus extractable (15)N minus microbial (15)N) also decreased. Such results can therefore be understood as a net loss of (15)N from the soil. Such N loss is probably explained by NO(3)(-) leaching, which is enhanced by the well-developed soil structure. We presume that the N immobilization mainly occurs as an incorporation of deposited N into the soil organic matter. One year after the (15)N addition, recovery rates were similar and approximately three-quarters of the deposited N was recovered in the soil. We conclude that the processes relevant for the fate of atmospherically deposited N take place rapidly and that N recycling within the microbes-plants-soil organic matter (SOM) system prevents further losses in the long term.  相似文献   

8.
An experiment was performed to better understand to what extent nitrogen fertilization rate and date and amount of urine deposition, when acting in combination, influence nitrate leaching under grassland. Leaching was studied during two successive winters using 2-m2 grassed lysimeters under three levels of N fertilization (0, 150, and 300 kg N ha(-1) yr(-1), referred to as 0N, 150N, and 300N, respectively), two levels of 15N-labeled urine (105 and 165 kg N ha(-1), referred to as A2 and A3, respectively), and three dates of urine application (spring, summer, and fall). During the first winter, total N leaching losses varied between 2 and 50 kg N ha(-1). When tested in combination, N applied as urine to grassland resulted in three times the total N loss by leaching that occurred following N fertilization in the first winter (4.3, 20.8, 34.9, 14.2, 17.1, and 28.7 kg NO3- -N ha(-1) for no urine, A2, A3, ON, 150N, and 300N, respectively). Leaching of 15N urine significantly depended on the date of application: 6.6, 17.3, and 29.1 kg for spring, summer, and fall, respectively. A similar pattern was observed for the contribution of 15N urine to total N leaching with 4.3, 12.9, and 21.4%. However, urine application, both in terms of amount and date, showed very little long-term effect on these N losses in Year 2. In our conditions of low winter rainfall and drainage, grazing management (through season, urinary N amounts, and urine N concentration) resulted in a higher impact on water nitrate quality than moderate N fertilization management.  相似文献   

9.
Urban ecosystems are rapidly expanding and their effects on atmospheric nitrous oxide (N2O) inventories are unknown. Our objectives were to: (i) measure the magnitude, seasonal patterns, and annual emissions of N2O in turfgrass; (ii) evaluate effects of fertilization with a high and low rate of urea N; and (iii) evaluate effects of urea and ammonium sulfate on N2O emissions in turfgrass. Nitrogen fertilizers were applied to turfgrass: (i) urea, high rate (UH; 250 kg N ha(-1) yr(-1)); (ii) urea, low rate (UL; 50 kg N ha(-1) yr(-1)); and (iii) ammonium sulfate, high rate (AS; 250 kg N ha(-1) y(-1)); high N rates were applied in five split applications. Soil fluxes of N2O were measured weekly for 1 yr using static surface chambers and analyzing N2O by gas chromatography. Fluxes of N2O ranged from -22 microg N2O-N m(-2) h(-1) during winter to 407 microg N2O-N m(-2) h(-1) after fall fertilization. Nitrogen fertilization increased N2O emissions by up to 15 times within 3 d, although the amount of increase differed after each fertilization. Increases were greater when significant precipitation occurred within 3 d after fertilization. Cumulative annual emissions of N2O-N were 1.65 kg ha(-1) in UH, 1.60 kg ha(-1) in AS, and 1.01 kg ha(-1) in UL. Thus, annual N2O emissions increased 63% in turfgrass fertilized at the high compared with the low rate of urea, but no significant effects were observed between the two fertilizer types. Results suggest that N fertilization rates may be managed to mitigate N2O emissions in turfgrass ecosystems.  相似文献   

10.
Secondary compounds are known to be associated with the resistance of conifer xylem against insects and fungi. The effects of long-term forest fertilization with nitrogen (N) or with N, calcium (Ca), and phosphorus (P) on secondary compounds in the xylem of 50-yr-old Scots pine (Pinus sylvestris L.) trees were examined. Xylem samples were collected from trees growing in three locations in southern Finland: Vilppula, Padasjoki, and Punkaharju. Forests were fertilized every fifth (Vilppula and Padasjoki) or tenth (Punkaharju) year since the 1950s. We compared concentrations of individual and total monoterpenes and resin acids in the heartwood and sapwood of Scots pine. Terpene emissions were analyzed from the sapwood and total phenolics from the heartwood. Fertilization did not have any significant effect on the concentrations and emissions of xylem monoterpenes. Concentrations of several individual terpenes in sapwood were positively correlated with the corresponding terpene emission. The concentrations of individual resin acids (i.e., abietic and dehydroabietic) decreased significantly in Punkaharju, but increased in the sapwood of N-fertilized trees compared with control ones at Padasjoki and Vilppula. The concentrations of resin acids in the heartwood were not significantly affected by fertilization. Both fertilization treatments decreased the total phenolic concentrations in the heartwood of trees growing in Padasjoki. There was a significant positive correlation between the total phenolics and total resin acid concentration. Overall, resin acids and phenolics seemed be more responsive than monoterpenes to N treatment. These results suggest that forest fertilization might cause slight changes in secondary compound concentrations of xylem, and thus might have significance in the decay resistance of wood.  相似文献   

11.
Soil carbon sequestration (SCS) has the potential to attenuate increasing atmospheric CO2 and mitigate greenhouse warming. Understanding of this potential can be assisted by the use of simulation models. We evaluated the ability of the EPIC model to simulate corn (Zea mays L.) yields and soil organic carbon (SOC) at Arlington, WI, during 1958-1991. Corn was grown continuously on a Typic Argiudoll with three N levels: LTN1 (control), LTN2 (medium), and LTN3 (high). The LTN2 N rate started at 56 kg ha(-1) (1958), increased to 92 kg ha(-1) (1963), and reached 140 kg ha(-1) (1973). The LTN3 N rate was maintained at twice the LTN2 level. In 1984, each plot was divided into four subplots receiving N at 0, 84, 168, and 252 kg ha(-1). Five treatments were used for model evaluation. Percent errors of mean yield predictions during 1958-1983 decreased as N rate increased (LTN1 = -5.0%, LTN2 = 3.5%, and LTN3 = 1.0%). Percent errors of mean yield predictions during 1985-1991 were larger than during the first period. Simulated and observed mean yields during 1958-1991 were highly correlated (R2 = 0.961, p < 0.01). Simulated SOC agreed well with observed values with percent errors from -5.8 to 0.5% in 1984 and from -5.1 to 0.7% in 1990. EPIC captured the dynamics of SOC, SCS, and microbial biomass. Simulated net N mineralization rates were lower than those from laboratory incubations. Improvements in EPIC's ability to predict annual variability of crop yields may lead to improved estimates of SCS.  相似文献   

12.
The courts have provided the traditional battleground for conflicts between environmental interest groups and those whose actions in some way have an adverse impact on the environment The judicial process is a time-consuming one in which all sides usually must concede to some points. Environmental disputes involve complex scientific issues which the court system is not set up to comprehend, so that the process gives the parties to a dispute the sense of having lost control of their own destinies. An increasing number of parties to environmental disputes are turning to negotiation, or mediation, as an alternative in which they can be active parties in the settlement-making process rather than the victims of a court-imposed solution When do the parties to a dispute choose a negotiated settlement over a court battle? To what extent does each party make the concessions necessary to reach an agreement? These questions can be answered by the game theory that provides a model for analyzing the negotiation process. This paper will apply game theory to two environmental conflict cases A series of questions pertinent to the analysis of all environmental disputes will be raised  相似文献   

13.
New sustainable agriculture techniques are arising in response to the environmental problems caused by intensive agriculture, such as nitrate leaching and surface water eutrophication. Organic fertilization (e.g., with sewage sludge) and agroforestry could be used to reduce nutrient leaching. We assessed the efficiency of establishing trees and pasture species in environmentally sensitive, irrigated Mediterranean grassland soils in controlling nitrate leaching. Four vegetation systems-bare soil, pasture species, cherry trees [ (L.) L.], and pasture-tree mixed plantings-and five fertilization treatments-control, two doses of mineral fertilizer, and two doses of organic fertilizer (sewage sludge)-were tested in a greenhouse experiment over 2 yr. In the experiment, the wet and warm climate characteristics of Mediterranean irrigated croplands and the plant-to-plant and soil-to-plant interactions that occur in open-field agroforestry plantations were simulated. Following a factorial design with six replicates, 120 pots (30-cm radius and 120 cm deep) were filled with a sandy, alluvial soil common in the cultivated fluvial plains of the region. The greatest pasture production and tree growth were obtained with sewage sludge application. Both pasture production and tree growth decreased significantly in the pasture-tree mixed planting. Nitrate leaching was negligible in this latter treatment, except under the highest dose of sewage sludge application. The rapid mineralization of sludge suggested that this organic fertilizer should be used very cautiously in warm, irrigated Mediterranean soils. Mixed planting of pasture species and trees, such as , could be a useful tool for mitigating nitrate leaching from irrigated Mediterranean pastures on sandy soils.  相似文献   

14.
Little information is available concerning the contamination risk caused by forest seedling nurseries to local surface and ground waters compared with agricultural and horticultural production. Leaching of nitrogen (N) and phosphorus (P) through peat growing medium in containers and nutrient uptake of seedlings were monitored in production of silver birch (Betula pendula Roth), Norway spruce [Picea abies (L.) Karst], and Scots pine (Pinus sylvestris L.) seedlings. About half of the applied nutrients (total amount applied = 149 to 260 kg N ha(-1) and 60 to 108 kg P ha(-1)) was premixed into the peat medium, as is usual in Finnish nursery practice, and the other half was applied to seedlings in liquid form with mobile booms. Depending on tree species, 11 to 19% of the applied N was recovered in leachates and 15 to 63% in seedlings. The undiscovered proportion varied from 19 to 71%. The amounts of leached N were 19 to 41 kg ha(-1). Only 5 to 31% of the applied P was recovered in seedlings; 16 to 64% (11 to 56 kg ha(-1)) was found in leachates. Total N and P load to the environment may increase substantially if nutrients applied in liquid fertilization outside container trays are included. Consequently, it is important to determine the sources of nutrient load in container seedling production to mitigate the risk of environment contamination.  相似文献   

15.
There are growing interests to use co-composted drilling wastes contaminated with hydrocarbons as growth media for planting in land reclamation. However, such use of the compost may have potential problems such as inherent toxicity of residual hydrocarbon and microbial N immobilization due to high compost C to N ratios. We investigated the growth, biomass production, N uptake, and foliar delta13C of white spruce (Picea glauca [Moench] Voss) seedlings in a pot experiment using 1-, 2-, 3-, and 4-yr-old composts (with different hydrocarbon concentrations and C to N ratios) and a local noncontaminated soil with (200 kg N ha(-1)) or without N fertilization. Growth and N content of seedlings (particularly N content in roots) were lower when grown in the compost media as compared with those grown in the soil. Within the compost treatments seedling growth was affected by compost age, but the magnitude of growth reduction was not linearly proportional to hydrocarbon concentrations. Plant N uptake increased with compost age, which corresponds with an increase in indigenous mineral N concentration. Effects of N fertilization on N uptake were curtailed by the presence of indigenous mineral N (e.g., in the 4-yr-old compost) and by fertilization-induced stimulation of microbial activities (e.g., in the 1-yr-old compost). The differences in foliar delta13C values between seedlings grown in compost and soil (P < 0.05) suggest that limitations on water uptake caused by the residual hydrocarbon might have been the predominant factor limiting seedling growth in the compost media. This study suggests that water stress caused by residual hydrocarbons may be a critical factor for the successful use of co-composted drilling wastes as a growth medium.  相似文献   

16.
Soil carbon (C) sequestration in tilled and nontilled areas can be influenced by crop management practices due to differences in plant C inputs and their rate of mineralization. We examined the influence of four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secale cereale L.)], biculture of legume and nonlegume (vetch and rye), and no cover crops (or winter weeds)} and three nitrogen (N) fertilization rates (0, 60 to 65, and 120 to 130 kg N ha(-1)) on C inputs from cover crops, cotton (Gossypium hirsutum L.), and sorghum [Sorghum bicolor (L.) Moench)], and soil organic carbon (SOC) at the 0- to 120-cm depth in tilled and nontilled areas. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic Plinthic Paleudults) from 1999 to 2002 in central Georgia. Total C inputs to the soil from cover crops, cotton, and sorghum from 2000 to 2002 ranged from 6.8 to 22.8 Mg ha(-1). The SOC at 0 to 10 cm fluctuated with C input from October 1999 to November 2002 and was greater from cover crops than from weeds in no-tilled plots. In contrast, SOC values at 10 to 30 cm in no-tilled and at 0 to 60 cm in chisel-tilled plots were greater for biculture than for weeds. As a result, C at 0 to 30 cm was sequestered at rates of 267, 33, -133, and -967 kg C ha(-1) yr(-1) for biculture, rye, vetch, and weeds, respectively, in the no-tilled plot. In strip-tilled and chisel-tilled plots, SOC at 0 to 30 cm decreased at rates of 233 to 1233 kg C ha(-1) yr(-1). The SOC at 0 to 30 cm increased more in cover crops with 120 to 130 kg N ha(-1) yr(-1) than in weeds with 0 kg N ha(-1) yr(-1), regardless of tillage. In the subtropical humid region of the southeastern United States, cover crops and N fertilization can increase the amount of C input and storage in tilled and nontilled soils, and hairy vetch and rye biculture was more effective in sequestering C than monocultures or no cover crop.  相似文献   

17.
The Delphi approach to the mediation of environmental disputes   总被引:1,自引:1,他引:1  
Environmental disputes, in many countries, have taken on a ritualistic character. Their persistence, even after prolonged analysis and debate, suggests that they result from ideological rather than factual differences. Since no single ideological position holds a monopoly on the truth, effective environmental management would seem to require an integration of views, the problem being how to achieve this. One approach to this problem is illustrated in this article. Two factions in the spruce budworm dispute in New Brunswick, Canada, were engaged in a mediation exercise using the Delphi method. Details of the design and execution of this form of mediation are provided, together with an evaluation of the Delphi's effectiveness in this context.  相似文献   

18.
Management practices can influence soil CO(2) emission and C content in cropland, which can effect global warming. We examined the effects of combinations of irrigation, tillage, cropping systems, and N fertilization on soil CO(2) flux, temperature, water, and C content at the 0- to 20-cm depth from May to November 2005 at two sites in the northern Great Plains. Treatments were two irrigation systems (irrigated vs. non-irrigated) and six management practices that contained tilled and no-tilled malt barley (Hordeum vulgaris L.) with 0 to 134 kg N ha(-1), no-tilled pea (Pisum sativum L.), and a conservation reserve program (CRP) planting applied in Lihen sandy loam (sandy, mixed, frigid, Entic Haplustolls) in western North Dakota. In eastern Montana, treatments were no-tilled malt barley with 78 kg N ha(-1), no-tilled rye (Secale cereale L.), no-tilled Austrian winter pea, no-tilled fallow, and tilled fallow applied in dryland Williams loam (fine-loamy, mixed Typic Argiborolls). Irrigation increased CO(2) flux by 13% compared with non-irrigation by increasing soil water content in North Dakota. Tillage increased CO(2) flux by 62 to 118% compared with no-tillage at both places. The flux was 1.5- to 2.5-fold greater with tilled than with non-tilled treatments following heavy rain or irrigation in North Dakota and 1.5- to 2.0-fold greater with crops than with fallow following substantial rain in Montana. Nitrogen fertilization increased CO(2) flux by 14% compared with no N fertilization in North Dakota and cropping increased the flux by 79% compared with fallow in no-till and 0 kg N ha(-1) in Montana. The CO(2) flux in undisturbed CRP was similar to that in no-tilled crops. Although soil C content was not altered, management practices influenced CO(2) flux within a short period due to changes in soil temperature, water, and nutrient contents. Regardless of irrigation, CO(2) flux can be reduced from croplands to a level similar to that in CRP planting using no-tilled crops with or without N fertilization compared with other management practices.  相似文献   

19.
The effectiveness of riparian zones in mitigating nutrient in ground and surface water depends on the climate, management, and hydrogeomorphology of a site. The purpose of this study was to determine the efficacy of a well drained, mixed-deciduous riparian forest to buffer a river from N originating from a poorly drained grass seed cropping system. The study site was adjacent to the Calapooia River in the Willamette Valley, Oregon. Water was found to move from the rapid drainage of swale surface water. During winter hydrological events, the riparian forest also received river water. Low nitrate (NO3-) concentrations (0.2-0.4 mg NO3- -NL(-1)) in the shallow groundwater of the cropping system were associated with low rates of mineralization and nitrification (33 kg N ha(-1) yr(-1)) and high grass seed crop uptake of N (155 kg N ha(-1) yr(-1)). The riparian forest soil had higher rates of mineralization (117 kg N ha(-1) yr(-1)) that produced quantities of soil N that were within the range of literature values for plant uptake, leading to relatively low concentrations of shallow groundwater NO3 (0.6-1.8 mg NO3- -NL(-1)). The swale that dissected the cropping system and riparian area was found to have the highest rates of denitrification and to contribute dissolved organic C to the river. Given the dynamic nature of the hydrology of the Calapooia River study site, data suggest that the riparian forest plays a role not only in reducing export of NO3- from the cropping system to the river but also in processing nutrients from river water.  相似文献   

20.
Mediterranean riparian zones can experience severe drought periods that lead to low soil moisture content, which dramatically affects their performance as nitrate removal systems. In the Mediterranean riparian zone of this study, we determined that N2O emission was practically nil. To understand the role of forest floor processes in nitrogen retention of a Mediterranean riparian area, we studied leaf litter dynamics of two tree species, London planetree [Platanus x acerifolia (Aiton) Willd.] and alder [Alnus glutinosa (L.) Gaertn.], for two years, along with soil nitrogen mineralization rates. Annual leaf litter fall equaled 562.6 +/- 10.1 (standard error) g dry wt. m(-2), 68% of which was planetree and 32% of which was alder. The temporal distribution of litterfall showed a two-peak annual cycle, one occurring in midsummer, the other in autumn. Planetree provided the major input of organic nitrogen to the forest floor, and the amount of planetree leaves remaining on the forest floor was equivalent to approximately four years of stock. Leaf litter decomposition was three times higher for alder (decay coefficient [k] = 1.13 yr(-1)) than for planetree (k = 0.365 yr(-1)). Mineralization rates showed a seasonal pattern, with the maximum rate in summer (1.92 mg N kg(-1) d(-1)). Although the forest floor was an important sink for nitrogen due to planetree leaf accumulation, 7.5% of this leaf litter was scoured to the streambed by wind. This loss was irrelevant for alder leaves. Due to the litter quality, the forest floor of this Mediterranean riparian forest acts as a nitrogen sink.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号