首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
A general conceptual watershed-lake model of the complex interactions among climatic conditions, watershed location and characteristics, lake morphology, and fish predation was used to evaluate limnological characteristics of high mountain lakes. Our main hypothesis was that decreasing elevation in mountainous terrain corresponds to an increase in diversity of watershed size and lake area, depth, temperature, nutrient concentrations, and productivity. A second hypothesis was that watershed location and aspect relative to climatic gradients within mountainous terrain influences the limnological characteristics of the lakes. We evaluated these hypotheses by examining watershed location, aspect and size; lake morphology; water quality; and phytoplankton and zooplankton community characteristics among high mountain forest and subalpine lakes in Mount Rainier National Park. Although many of the comparisons between all forest and subalpine lakes were statistically insignificant, the results revealed trends that were consistent with our hypotheses. The forest lake group included more lakes with larger watersheds, larger surface areas, greater depths, higher concentrations of nutrients, and higher algal biovolumes than did the group of subalpine lakes. Deep lakes, which were mostly of the forest lake type, exhibited thermal stratification and relatively high values of some of the water-quality variables near the lake bottoms. However, the highest near-surface water temperatures and phytoplankton densities and the taxonomic structures of the phytoplankton and zooplankton assemblages were more closely related to geographical location, which corresponded to a west-east climate gradient in the park, than to lake type. Some crustacean and rotifer taxa, however, were limited in distribution by lake type. Fish predation did not appear to play an important role in the structure of the crustacean zooplankton communities at the genus level with the exception of Mowich Lake, where crustacean taxa were absent from the zooplankton community. This was the only lake inhabited by a true zooplanktivourous species of fish.  相似文献   

2.
Two northern Minnesota lakes that had been studied in detail 22 years earlier (1958) were restudied to determine the extent of alteration in ecological conditions. Approximately one year after the original investigation, a coal-fired power plant, which incremented sulfate loading by about 6 kg/ha-yr, began operation nine miles away. These lakes lie within a region judged susceptible to acidic precipitation, though each lake, based on its buffering capacity, would be judged only moderately sensitive. In spite of the influence of this plant and other anthropogenic inputs, the change in lake ecology was apparently minimal. Water clarity decreased in both lakes and some alteration in zooplankton community structure was observed. The long-term utility of lake surveys depends upon how carefully and completely conditions can be reconstructed from records and reports. Past surveys generally omit measures of variability for the data, allowing only qualitative comparisons to be drawn. In order to judge the graded responses of aquatic ecosystems, necessary to sound management, quantitative measures are needed.Deceased.  相似文献   

3.
ABSTRACT: Zooplankton colonization was followed for 16 months in Lake Oconee, Georgia, a new pumped storage reservoir. Data were interpreted to identify differences among stations and seasons, as a function of the reservoir's early stage of development and of pumped storage operations. Colonization was rapid, and the zooplankton community was characterized by a high species diversity; approximately 40 rotifer species and 14 cladoceran genera were recorded. Zooplankton density varied along an environmental gradient from riverine to lentic conditions. Rotifer abundance varied from 104-106 individuals/m3, with maxima in the summers Copepod and cladoceran densities ranged from 103 to nearly 105 individuals/m3; maxima for stations other than the dam were observed in the summer and early fall, but high values at the dam station occurred throughout winter 1980. When pumped storage operations began in December 1979, zooplankton densities increased at the dam station. Pumpback decreased the intensity of the environmental gradient from riverine to lentic conditions, and led to a more similar zooplankton community structure throughout the reservoir.  相似文献   

4.
Stream-riparian ecosystems are dynamic and complex entities that can support high levels of bird assemblage abundance and diversity. The myriad patches (e.g., aquatic, floodplain, riparian) found in the riverscape habitat mosaic attract a unique mixture of aquatic, semiaquatic, riparian, and upland birds, each uniquely utilizing the river corridor. Whereas standard morning bird surveys are widely used across ecosystems, the variety of bird guilds and the temporal habitat partitioning that likely occur in stream-riparian ecosystems argue for the inclusion of evening surveys. At 41 stream reaches in Vermont and Idaho, USA, we surveyed bird assemblages using a combination of morning and evening fixed-width transect counts. Student’s paired t-tests showed that while bird abundance was not significantly different between morning and evening surveys, bird assemblage diversity (as measured by species richness, Shannon-Weiner’s index, and Simpson’s index) was significantly higher in the morning than in the evening. NMS ordinations of bird species and time (i.e., morning, evening) indicated that the structure of morning bird assemblages was different from that of evening assemblages. NMS further showed that a set of species was only found in evening surveys. The inclusion of evening counts in surveying bird assemblages in stream-riparian ecosystems has important experimental and ecological implications. Experimentally, the sole use of morning bird surveys may significantly underestimate the diversity and misrepresent the community composition of bird assemblages in these ecosystems. Ecologically, many of the birds detected in evening surveys were water-associated species that occupy high trophic levels and aerial insectivores that represent unique aquatic-terrestrial energy transfers.  相似文献   

5.
An agricultural watershed, situated on an island of the Aegean archipelago, was studied in order to gain insight into the structure and the design of a typical terrestrial ecosystem of the Mediterranean region. Fieldwork was focused on the comparative study of seasonal patterns of inorganic nutrients, organic nitrogen, and erosion over the most abundant vegetation types of the area, such as olive groves, maquis, and wetlands. Nutrient losses via the pathway of erosion were provided by the determination of nutrient concentrations in runoff sediments. Results showed that nutrient levels are higher and more susceptible to rapid changes in the zones that host agricultural activities and animal husbandry. The behavior of nitrogen and phosphorus showed remarkable stability in the maquis, where dynamic processes were mainly affected by soil erosion, which led gradually to land degradation, especially on sloping terrains. The aim of this study was to form the basis for the quantification of the interconnections within the Mediterranean-type ecosystems and to conceptualize their operational properties.  相似文献   

6.
Soil physicochemical characteristics, total aboveground biomass, number of species and relative abundance of groups and individual species were measured along a moisture gradient in a pasture, flooded in part during winter through early summer, adjacent to Pamvotis lake in Ioannina, Greece. Soil and vegetation measurements were conducted in 39 quadrats arranged in four zones perpendicular to the moisture gradient. The zone closest to the lake, recently separated from the lake, became part of the pasture and its soil texture was quite different from that of the other zones with a substrate containing 91% sand. Except for pH, this zone had the lowest values in the other five soil physicochemical characteristics measured (organic matter, total and extracted inorganic nitrogen, Olsen extracted phosphorus and extractable potassium); in the other zones organic matter, total nitrogen, phosphorus and potassium tended to increase from the driest to the wettest zone. Total aboveground biomass, ranging from 280 to 840 gm-2, is high for herbaceous pastures in the conditions of Mediterranean climate and it was not related to distance from the lake's shoreline, although the highest values were measured at intermediate distances, or to any of the various soil characteristics measured. Also, the number of species/0.25 m2 was not related to any of the various soil characteristics, but it was highest at the intermediate distances from the lake's shoreline. Species composition varied along the moisture gradient. Forbs as well as annual grasses and legumes declined in abundance from the driest to the wettest places; the reverse was the case for sedges and perennial grasses and legumes. These results indicate that the soil moisture gradient was the principal factor affecting soil characteristics and plant species composition. Since most species were recorded in all the four zones of the pasture, indicating that these can tolerate all variations in abiotic conditions of pasture, the vegetation zonation seems to be influenced by competition. Each functional group of species tends to dominate in a particular range of the soil moisture gradient where it is better suited and tends to exclude competitively other species. Management practices (mowing and grazing) affect the kinds of processes which maintain the observed community structure either by preventing the establishment of later successional species, like reeds and woody species, or by moderating the shoot competition, especially in the wetter zones, and thus permitting the creeping species to grow successfully.  相似文献   

7.
Nine similarity indices based on phytoplankton community structure were examined for their sensitivity to assess different levels of eutrophication. Two phytoplankton data sets, one from an open coastal system and one from a semi-enclosed gulf, associated with different nutrient dynamics and circulation patterns were used for evaluating the indices. The results have shown that similarity indices, measuring interspecific association and resemblance of phytoplankton communities between enriched areas and control sites, were effective for detecting spatial and temporal dissimilarities in coastal marine ecosystems. The structure of the oligotrophic habitat as a potential source of ambiguity for the results was discussed, whereas the validity ranges and the potential applicability of this method were deemed to be dependent on the size of the fraction of the common species among the samples, and the similarity of the classification patterns resulted from this subcategory and those extracted from the overall community data. Furthermore, the study provides a new technique based on the use of the “Box and Whisker Plot” designed to distinguish opportunistic and rare phytoplanktonic species. The similarity indices, applied solely to the dominant species abundance, were more sensitive to resolve eutrophic, mesotrophic and oligotrophic conditions. This procedure can be proposed as an effective methodology for water characterization and can also be used as a qualitative tracer for detecting renewal processes of coastal marine ecosystems.  相似文献   

8.
ABSTRACT: We present an ecological risk assessment methodology at the watershed level for freshwater ecosystems. The major component is a pollutant transport and fate model (a modified EUTROMOD) with an integrated uncertainty analysis utilizing a two-phase Monte Carlo procedure. The uncertainty analysis methodology distinguishes between knowledge uncertainty and stochastic variability. The model assesses the ecological risk of lentic (lake) ecosystems in response to the stress of excess phosphorus resulting in eutrophication. The methodology and model were tested on the Wister Lake watershed in Oklahoma with the lake and its trophic state as the endpoint for ecological risk assessment. A geographic information system was used to store, manage, and manipulate spatially referenced data for model input.  相似文献   

9.
We investigated differences in vegetation composition and dynamics for two globally rare ecosystems, bracken–grasslands and northern–dry forests of northern Wisconsin. These ecosystems commonly have been viewed as degraded pine barrens. Bracken–grasslands contained a high dominance of exotic species, low native richness, and no obvious prairie species, suggesting logging-era anthropogenic origins. Differences in cover for common plants among ecosystems were examined using Mann-Whitney U tests of equivalence. Cover of all 8 graminoid species, 4 of 5 Ericaceae and Myricaceae species, and 10 of 17 species of forbs were significantly different between ecosystems. Vegetation changes over a 4-year period were examined through detrended correspondence analysis (DCA) and analysis of variance (ANOVA) repeated measures. DCA analyses of community composition failed to detect significant temporal trends within individual management units, although differences were apparent between ecosystems, regardless of sample year. In addition, no apparent patterns could be detected between years when comparing dominant individual species to management history (prescribed fire). This is contrary to what would be expected for a degraded pine barrens and questions the efficacy of using repeated prescribed fire as a management tool in bracken–grasslands. Methods for conservation and restoration of xeric ecosystems of northern Wisconsin have historically relied heavily on single species (e.g., sharp-tailed grouse) wildlife models, without full consideration of other factors. We suggest that stakeholders involved in these restoration projects examine historic processes and reference conditions prior to formulating management goals. Greater attention to the differentiation and individual management needs of pine barrens, northern–dry forests, and bracken–grasslands is needed.  相似文献   

10.
Water extraction from dryland rivers is often associated with declines in the health of river and floodplain ecosystems due to reduced flooding frequency and extent of floodplain inundation. Following moderate flooding in early 2008 in the Narran River, Murray-Darling Basin, Australia, 10,423 ML of water was purchased from agricultural water users and delivered to the river to prolong inundation of its terminal lake system to improve the recruitment success of colonial waterbirds that had started breeding in response to the initial flooding. This study examined the spatial and temporal patterns of fish assemblages in river and floodplain habitats over eight months following flooding to assess the possible ecological benefits of flood extension. Although the abundances of most fish species were greater in river channel habitats, the fish assemblage used floodplain habitats when inundated. Young-of-the-year (4–12 months age) golden perch (Macquaria ambigua) and bony bream (Nematalosa erebi) were consistently sampled in floodplain sites when inundated, suggesting that the floodplain provides rearing habitat for these species. Significant differences in the abundances of fish populations between reaches upstream and downstream of a weir in the main river channel indicates that the effectiveness of the environmental water release was limited by restricted connectivity within the broader catchment. Although the seasonal timing of flood extension may have coincided with sub-optimal primary production, the use of the environmental water purchase is likely to have promoted recruitment of fish populations by providing greater access to floodplain nursery habitats, thereby improving the ability to persist during years of little or no flow.  相似文献   

11.
Several models have been developed to assess the biological integrity of aquatic systems using fish community data. One of these, the target fish community (TFC) model, has been used primarily to assess the biological integrity of larger, mainstem rivers in southern New England with basins characterized by dispersed human activities. We tested the efficacy of the TFC approach to specify the fish community in the highly urbanized Charles River watershed in eastern Massachusetts. To create a TFC for the Charles River we assembled a list of fish species that historically inhabited the Charles River watershed, identified geomorphically and zoogeographically similar reference rivers regarded as being in high quality condition, amassed fish survey data for the reference rivers, and extracted from the collections the information needed to define a TFC. We used a similarity measurement method to assess the extent to which the study river community complies with the TFC and an inference approach to summarize the manner in which the existing fish community differed from target conditions. The five most abundant species in the TFC were common shiners (34%), fallfish (17%) redbreast sunfish (11%), white suckers (8%), and American eel (7%). Three of the five species predicted to be most abundant in the TFC were scarce or absent in the existing river community. Further, the river was dominated by macrohabitat generalists (99%) while the TFC was predicted to contain 19% fluvial specialist species, 43% fluvial dependent species, and 38% macrohabitat generalist species. In addition, while the target community was dominated by fish intolerant (37%) and moderately tolerant (39%) of water quality degradation, the existing community was dominated by tolerant individuals (59%) and lacked intolerant species expected in the TFC. Similarity scores for species, habitat use specialization, and water quality degradation tolerance categories were 28%, 35% and 66%, respectively. The clear pattern of deviations from target conditions when observing fish habitat requirements strongly suggests that physical habitat change should be a priority for river enhancement in the Charles River. Comparison of our target and existing fish communities to those from a comprehensive study of Northeastern fish assemblage responses to urban intensity gradients revealed very similar results. Likewise, comparison of our TFC community and affinity scores to those of other TFCs from similar regions also yielded similar results and encouraging findings. Based on the positive results of these comparisons, the utility of the findings from the inference approach, and the widespread adoption of the TFC in the Northeast US, it appears that the TFC approach can be used effectively to identify the composition of a healthy fish community and guide river enhancements in both highly urbanized and non-urbanized streams and rivers in the Northeast US.  相似文献   

12.
Although changes in depth to groundwater occur naturally, anthropogenic alterations may exacerbate these fluctuations and, thus, affect vegetation reliant on groundwater. These effects include changes in physiology, structure, and community dynamics, particularly in arid regions where groundwater can be an important water source for many plants. To properly manage ecosystems subject to changes in depth to groundwater, plant responses to both rising and falling groundwater tables must be understood. However, most research has focused exclusively on riparian ecosystems, ignoring regions where groundwater is available to a wider range of species. Here, we review responses of riparian and other species to changes in groundwater levels in arid environments. Although decreasing water tables often result in plant water stress and reduced live biomass, the converse is not necessarily true for rising water tables. Initially, rising water tables kill flooded roots because most species cannot tolerate the associated low oxygen levels. Thus, flooded plants can also experience water stress. Ultimately, individual species responses to either scenario depend on drought and flooding tolerance and the change in root system size and water uptake capacity. However, additional environmental and biological factors can play important roles in the severity of vegetation response to altered groundwater tables. Using the reviewed information, we created two conceptual models to highlight vegetation dynamics in areas with groundwater fluctuations. These models use flow charts to identify key vegetation and ecosystem properties and their responses to changes in groundwater tables to predict community responses. We then incorporated key concepts from these models into EDYS, a comprehensive ecosystem model, to highlight the potential complexity of predicting community change under different fluctuating groundwater scenarios. Such models provide a valuable tool for managing vegetation and groundwater use in areas where groundwater is important to both plants and humans, particularly in the context of climate change.  相似文献   

13.
Wild burros (Equus asinus), protected by the 1971 Wild Free-Roaming Horse and Burro Act on some federal lands but exotic animals many ecologists and resource mangers view as damaging to native ecosystems, represent one of the most contentious environmental management problems in American Southwest arid lands. This review synthesizes the scattered literature about burro effects on plant communities of the Mojave Desert, a center of burro management contentions. I classified 24 documents meeting selection criteria for this review into five categories of research: (i) diet analyses directly determining which plant species burros consume, (ii) utilization studies of individual species, (iii) control-impact comparisons, (iv) exclosure studies, and (v) forage analyses examining chemical characteristics of forage plants. Ten diet studies recorded 175 total species that burros consumed. However, these studies and two exclosure studies suggested that burros preferentially eat graminoid and forb groups over shrubs. One study in Death Valley National Park, for example, found that Achnatherum hymenoides (Indian ricegrass) was 11 times more abundant in burro diets than expected based on its availability. Utilization studies revealed that burros also exhibit preferences within the shrub group. Eighty-three percent of reviewed documents were produced in a 12-year period, from 1972 to 1983, with the most recent document produced in 1988. Because burros remain abundant on many federal lands and grazing may interact with other management concerns (e.g., desert wildfires fueled by exotic grasses), rejuvenating grazing research to better understand both past and present burro effects could help guide revegetation and grazing management scenarios.  相似文献   

14.
/ The part of the Doubs River between Montbeliard and Dole (France), i.e., downstream from the confluence with the Allan River, will be affected by the Rhine- Rhone connection project. In order to improve the understanding of the Doubs ichthyofauna, aquatic environments of the Doubs were sampled by electrofishing. Fish diversity and the presence of some rheophilic species demonstrated the good ecological quality of some stretches of the Doubs. This quality was due to alternating areas with very diversified aquatic environments (riffles, islands and side-arms, backwaters) and a considerable range of flow velocities. The differences in the structure of the fish communities of the different types of aquatic environments were more qualitative (fish species) than quantitative (number of species and number of fish). However, the mean number of fish was statistically lower in the canals (Freycinet canal and channelized part of the Allan River) than in the main course and in the backwaters. The natural parts of the Doubs (unnavigable reaches) showed the most diversified environmental structure and had the most rheophilic fish communities. Thus, the rheophilic species were well represented, but they proved also the most vulnerable to river regulation. However, the most abundant fishes throughout the Doubs River were generalists with no special requirements for food sources or spawning substrate.KEY WORDS: Fish communities; Regulation; Restoration; Floodplain; Large ship canal; Doubs River  相似文献   

15.
Recovery of the benthic macroinvertebrate community in a small east Tennessee stream impacted by fly ash discharges from a power plant was investigated over a period of 6.5 years. The rate of recovery was greatest in the first 2 years after an initial 75% reduction in coal use led to a similar reduction in ash discharges and associated contaminants; further recovery followed after all fly ash discharges ceased. Recovery of the stream progressed through two phases. In the first phase, which lasted for approximately the first 2 years, most density and richness metrics increased considerably. In the second phase of recovery, the increases in metric values were followed by declines before fluctuating in and out of the lower reference ranges for the metrics. Detrended correspondence analyses and indicator species analyses showed that changes in species composition and community structure were ongoing throughout the second phase. Thus, the first phase was characterized by species additions, while the second phase involved species replacements and shifts in community dominants. Further recovery of the macroinvertebrate community will probably depend on additional flushing of fly ash deposits from the streambed and flood plain, because their continued presence reduces habitat quality in the stream and serves as a potential source of contaminants. Further recovery also may be limited by the availability of vagile species in nearby watersheds.  相似文献   

16.
An optical plankton counter (OPC) potentially provides an assessment tool for zooplankton condition in ecosystems that is rapid, economical, and spatially extensive. We collected zooplankton data with an OPC in 20 near-shore regions of 4 of the Laurentian Great Lakes. The zooplankton size information was used to compute mean size, biomass density, and size-spectra parameters for each location. The resulting metrics were analyzed for their ability to discriminate among the Great Lakes. Biomass density provided discrimination among lakes, as did several parameters describing spectra shape and distribution. A proposed zooplankton indicator, mean size (determined with OPC measurements in this study), was found to provide discrimination among lakes. Size-spectra-related parameters added increased ability to discriminate in conjunction with the biomass density (or mean size) metric. A discriminant function analysis of the multiple metrics (mean size, biomass density, and distribution parameters) suggests that a multi metric size-based approach might be used to classify communities among lakes improving a mean-size metric. The feasibility OPCs and size-based metrics for zooplankton assessment was found to have potential for further development as assessment tools for the biological condition of zooplankton communities in the Great Lakes.  相似文献   

17.
Arp, C.D., B.M. Jones, M. Whitman, A. Larsen, and F.E. Urban, 2010. Lake Temperature and Ice Cover Regimes in the Alaskan Subarctic and Arctic: Integrated Monitoring, Remote Sensing, and Modeling. Journal of the American Water Resources Association (JAWRA) 46(4): 777-791. DOI: 10.1111/j.1752-1688.2010.00451.x Abstract: Lake surface regimes are fundamental attributes of lake ecosystems and their interaction with the land and atmosphere. High latitudes may be particularly sensitive to climate change, however, adequate baselines for these lakes are often lacking. In this study, we couple monitoring, remote sensing, and modeling techniques to generate baseline datasets of lake surface temperature and ice cover in the Alaskan Subarctic and Arctic. No detectable trends were observed during this study period, but a number of interesting patterns were noted among lakes and between regions. The largest Arctic lake was relatively unresponsive to air temperature, while the largest Subarctic lake was very responsive likely because it is fed by glacial runoff. Mean late summer water temperatures were higher than air temperatures with differences ranging from 1.7 to 5.4°C in Subarctic lakes and from 2.4 to 3.2°C in Arctic lakes. The warmest mean summer water temperature in both regions was in 2004, with the exception of Subarctic glacially fed lake that was highest in 2005. Ice-out timing had high coherence within regions and years, typically occurring in late May in Subarctic and in early-July in Arctic lakes. Ice-on timing was more dependent on lake size and depth, often varying among lakes within a region. Such analyses provide an important baseline of lake surface regimes at a time when there is increasing interest in high-latitude water ecosystems and resources during an uncertain climate future.  相似文献   

18.
Road-killed mammals, birds, and reptiles were collected weekly from highways in southern Brazil in 2002 and 2005. The objective was to assess variation in estimates of road-kill impacts on species richness produced by different sampling efforts, and to provide information to aid in the experimental design of future sampling. Richness observed in weekly samples was compared with sampling for different periods. In each period, the list of road-killed species was evaluated based on estimates the community structure derived from weekly samplings, and by the presence of the ten species most subject to road mortality, and also of threatened species. Weekly samples were sufficient only for reptiles and mammals, considered separately. Richness estimated from the biweekly samples was equal to that found in the weekly samples, and gave satisfactory results for sampling the most abundant and threatened species. The ten most affected species showed constant road-mortality rates, independent of sampling interval, and also maintained their dominance structure. Birds required greater sampling effort. When the composition of road-killed species varies seasonally, it is necessary to take biweekly samples for a minimum of one year. Weekly or more-frequent sampling for periods longer than two years is necessary to provide a reliable estimate of total species richness.  相似文献   

19.
Southern Portugal is experiencing a rapid change in land use due to the spread of intensive farming systems, namely olive production systems, which can cause strong negative environmental impacts and affect the ecological integrity of aquatic ecosystems. This study aimed to identify the main environmental disturbances related with olive grove intensification on Mediterranean-climate streams in southern Portugal, and to evaluate their effects on fish assemblage structure and integrity. Twenty-six stream sites within the direct influence of traditional, intensive, and hyper-intensive olive groves were sampled. Human-induced disturbances were analyzed along the olive grove intensity gradient. The integrity of fish assemblages was evaluated by comparison with an independent set of least disturbed reference sites, considering metrics and guilds, based on multivariate analyses. Along the gradient of olive grove intensification, the study observed overall increases in human disturbance variables and physicochemical parameters, especially organic/nutrient enrichment, sediment load, and riparian degradation. Animal load measured the impact of livestock production. This variable showed an opposite pattern, since traditional olive groves are often combined with high livestock production and are used as grazing pasture by the cattle, unlike more intensive olive groves. Stream sites influenced by olive groves were dominated by non-native and tolerant fish species, while reference sites presented higher fish richness, density and were mainly occupied by native and intolerant species. Fish assemblage structure in olive grove sites was significantly different from the reference set, although significant differences between olive grove types were not observed. Bray–Curtis similarities between olive grove sites and references showed a decreasing trend in fish assemblage integrity along the olive grove intensification gradient. Olive production, even in traditional groves, led to multiple in-stream disturbances, whose cumulative effects promoted the loss of biota integrity. The impacts of low intensity traditional olive groves on aquatic ecosystems can be much greater when they are coupled with livestock production. This paper recommends best practices to reduce negative impacts of olive production on streams, contributing to guide policy decision-makers in agricultural and water management.  相似文献   

20.
With existing and proposed air-quality regulations, ecological disasters resulting from air emissions such as those observed at Copperhill, Tennessee, and Sudbury, Ontario, are unlikely. Current air-quality standards, however, may not protect ecosystems from subacute and chronic exposure to air emissions. The encouragement of the use of coal for energy production and the development of the fossil-fuel industries, including oil shales, tar sands, and coal liquification, point to an increase and spread of fossil-fuel emissions and the potential to influence a number of natural ecosystems. This paper reviews the reported responses of ecosystems to air-borne pollutants and discusses the use of animals as indicators of ecosystem responses to these pollutants. Animal species and populations can act as important indicators of biotic and abiotic responses of aquatic and terrestrial ecosystems. These responses can indicate long-term trends in ecosystem health and productivity, chemical cycling, genetics, and regulation. For short-term trends, fish and wildlife also serve as monitors of changes in community structure, signaling food-web contamination, as well as providing a measure of ecosystem vitality. Information is presented to show not only the importance of animals as indicators of ecosystem responses to air-quality degradation, but also their value as air-pollution indices, that is, as air-quality-related values (AQRV), required in current air-pollution regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号