首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Some studies have reported that small submicron atmospheric particles are more acidic than large submicron particles; other studies demonstrated a reversed trend. In this study, the size dependence of in situ pH in submicron particles in Hong Kong was investigated. The equivalent ratios of [NH4+]measured to [SO42−]measured in submicron particles were found to be generally less than unity and size dependent, suggesting the possibility of incomplete gas–aerosol equilibrium. The Aerosol Inorganic Model-II (AIM-II) model using measured ionic compositions with the gas–aerosol partitioning disabled was used to estimate the in situ pH in different sized particles. The estimated in situ pH of different sized submicron atmospheric particles was between −2.5 and 1.5 and it generally decreases with increasing submicron particle size. At such low in situ pH, the estimated HSO4 equivalent concentrations were 3.2 times (on average) of those of H+ in different sized particles. The trends of the size dependence of the [NH4+]measured to [SO42−]measured ratio and pH under different regimes of relative humidity are discussed.  相似文献   

2.
The Canadian Acid Aerosol Measurement Program (CAAMP) was established in 1992 to gain a better understanding of the atmospheric behaviour of fine particle strong acidity (“acid aerosols”) and to facilitate an assessment of the potential health risks associated with acid aerosols and particles in general. During 1992. 1993 and 1994, annular denuder and filter measurements were taken at four sites in Ontario, two in Quebec, three in the Atlantic Provinces and one in the greater Vancouver area. Mean fine particle sulphate concentrations (SO42−) were highest in southern Ontario (annual average ranged from 40–70 nmol m−3), lowest at a site in the Vancouver area (average = 16 nmol m−3) and second lowest in rural Nova Scotia. However, mean fine particle strong acid concentrations (H+) were geographically different. The highest mean concentrations were at the east coast sites (annual average of up to 30 nmol m−3). Acidities were lower in areas where the fine particle acidity experienced greater neutralization from reaction with ammonia. This included the major urban centres (i.e. Toronto and Montréal) and areas with greater amounts of agricultural activity, as in rural southern Ontario. On average, ambient concentrations of fine and coarse particle mass were larger in the urban areas and also in areas where SO42− levels were higher. All the particle components were episodic. However, compared to SO42− and fine particles (PM2.5 or PM2.1, depending upon inlet design), episodes of H+ tended to be less frequent and of shorter duration, particularly in Ontario. Saint John, New Brunswick, had the highest mean annual H+ concentration, which was 30 nmol m−3. H+ episodes (24 h concentration > 100 nmol m−3) were also the most frequent at this location. The high levels in Saint John were partially due to local sulphur dioxide sources and heterogeneous chemistry occurring in fog, which, on average, led to a 50% enhancement in sulphate, relative to upwind conditions.There was a substantial amount of intersite correlation in the day to day variations in H+, SO42− , PM2.5 and PM10 (fine + coarse particles) concentrations, which is due to the influence of synoptic-scale meteorology and the relatively long atmospheric lifetime of fine particles. Sulphate was the most regionally homogenous species. Pearson correlation coefficients comparing SO42− between sites ranged from 0.6 to 0.9, depending on site separation and lag time. In many cases, particle episodes were observed to move across the entire eastern portion of Canada with about a two-day lag between the SO42− levels in southern Ontario and in southern Nova Scotia.  相似文献   

3.
Ultrafine metal oxides and SO2 react during coal combustion or smelting operations to form primary emissions coated with an acidic SOx layer. A ZnO-SO2-H2O (mixed 500°C) system generates such particles to provide greatly needed information on both quantitative composition of the surface layer and its effects on the lung. Total S on the particles is related to ZnO concentration and is predominantly SVI. As a surface layer, 20 μg m−3 H2SO4 decreases pulmonary diffusing capacity in guinea pigs after four daily 3-h exposures and produces bronchial hypersensitivity following a single 1-h exposure. That 200 μg m−3 H2SO4 aerosols of equivalent particle size are needed to produce the same degree of bronchial hypersensitivity emphasizes the importance of the surface layer.  相似文献   

4.
Vehicle particle emissions are studied extensively because of their health effects, contribution to ambient PM levels and possible impact on climate. The aim of this work was to obtain a better understanding of secondary particle formation and growth in a diluting vehicle exhaust plume using 3-d information of simulations together with measurements. Detailed coupled computational fluid dynamics (CFD) and aerosol dynamics simulations have been conducted for H2SO4–H2O and soot particles based on measurements within a vehicle exhaust plume under real conditions on public roads.Turbulent diffusion of soot and nucleation particles is responsible for the measured decrease of number concentrations within the diesel car exhaust plume and decreases coagulation rates. Particle size distribution measurements at 0.45 and 0.9 m distance to the tailpipe indicate a consistent soot mode (particle diameter Dp∼50 nm) at variable operating conditions. Soot mode number concentrations reached up to 1013 m−3 depending on operating conditions and mixing.For nucleation particles the simulations showed a strong sensitivity to the spatial dilution pattern, related cooling and exhaust H2SO4(g). The highest simulated nucleation rates were about 0.05–0.1 m from the axis of the plume. The simulated particle number concentration pattern is in approximate accordance with measured concentrations, along the jet centreline and 0.45 and 0.9 m from the tailpipe. Although the test car was run with ultralow sulphur fuel, high nucleation particle (Dp⩽15 nm) concentrations (>1013 m−3) were measured under driving conditions of strong acceleration or the combination of high vehicle speed (>140 km h−1) and high engine rotational speed (>3800 revolutions per minute (rpm)).Strong mixing and cooling caused rapid nucleation immediately behind the tailpipe, so that the highest particle number concentrations were recorded at a distance, x=0.45 m behind the tailpipe. The simulated growth of H2SO4–H2O nucleation particles was unrealistically low compared with measurements. The possible role of low and semi-volatile organic components on the growth processes is discussed. Simulations for simplified H2SO4–H2O–octane–gasoil aerosol resulted in sufficient growth of nucleation particles.  相似文献   

5.
The TSP, SO4= and Pb levels observed downwind of a large refinery and in the city of Willemstad in Curaçao are presented. The results show that wiht increasing wind speed TSP and SO4= levels increase while Pb levels decrease. On the other hand, at relatively constant wind speeds a good correlation between TSP and Pb was observed.The correlation observed between TSP, SO4= and Pb and the wind speed, the effect of rain on the atmospheric levels observed during the sampling period, the lack of secondary pollutants (e.g. ozone, NO3?) and the composition of the island background air, allow us to conclude that the SO4= measured at the monitoring sites is mainly produced as a primary pollutant in the refinery, the high atmospheric TSP levels are due to refinery emissions (traditional source) and the recirculation of street dust particles (non traditional source) produced by traffic and the predominantly high wind velocity.The implication on air quality and control measures are discussed.  相似文献   

6.
Dehalogenation of chlorinated aliphatic contaminants at the surface of zero-valent iron metal (Fe0) is mediated by the thin film of iron (hydr)oxides found on Fe0 under environmental conditions. To evaluate the role this oxide film plays in the reduction of chlorinated methanes, carbon tetrachloride (CCl4) degradation by Fe0 was studied under the influence of various anions, ligands, and initial CCl4 concentrations ([P]o). Over the range of conditions examined in these batch experiments, the reaction kinetics could be characterized by surface-area-normalized rate constants that were pseudo-first order for CCl4 disappearance (kCCl4), and zero order for the appearance of dissolved Fe2+ (kFe2+). The rate of dechlorination exhibits saturation kinetics with respect to [P]o, suggesting that CCl4 is transformed at a limited number of reactive surface sites. Because oxidation of Fe0 by CCl4 is the major corrosion reaction in these systems, kFe2+ also approaches a limiting value at high CCl4 concentrations. The adsorption of borate strongly inhibited reduction of CCl4, but a concomitant addition of chloride partially offset this effect by destabilizing the film. Redox active ligands (catechol and ascorbate), and those that are not redox active (EDTA and acetate), all decreased kCCl4 (and kFe2+). Thus, it appears that the relatively strong complexation of these ligands at the oxide–electrolyte interface blocks the sites where weak interactions with the metal oxide lead to dehalogenation of chlorinated aliphatic compounds.  相似文献   

7.
This study investigates ammonium, nitrate, and sulfate (NH4+, NO3?, and SO42?) in size-resolved particles (particularly nano (PM0.01–0.056)/ultrafine (PM0.01–0.1)) and NOx/SO2 collected near a busy road and at a rural site. The average (mass) cumulative fraction of secondary inorganic aerosols (SO42?+NO3?+NH4+) in nano or ultrafine particles at the roadside was found to be three to four times that at the rural site. The above three secondary inorganic aerosol species were present in similar cumulative fractions in particles of size 1–18 μm at both sites; however, dissimilar fractions were observed for Cl?, Na+, and K+. The nitrogen ratios (NRs: NR = NO3??N/(NO3??N + NO2–N)), sulfur ratios (SRs: SR = SO42??S/(SO42??S + SO2–S)), dNR/DP (derivative of NR with respect to DP (particle diameter)), and dSR/DP (derivative of SR with respect to DP) at the roadside were higher than those at the rural site for nano/ultrafine particles. At both sites (particularly the roadside), the nanoparticles had significantly higher dNR/DP and dSR/DP values than differently sized particles, implying that NO3?/SO42? (from NO2/SO2 transformation or NO3?/SO42? deposition) were present on these particles.  相似文献   

8.
SO2/O2 mixtures were photolyzed at 3130 Å and in the range 2500–4000 Å at room temperature. The only product of photolysis was SO3. Attempts to estimate ф(S03) using mass spectrometry, l.R. spectroscopy and pressure change measurements were unsuccessful, because it was not possible to obtain reproducible quantitative estimates of SO3. ф(SO2) values were determined by monitoring the 3130 Å absorption for its concentration measurements. ф(SO2) was independent of SO2 (11.6 to 50.4 torr) and O2 (50.0 to 390.6 torr) pressures. At 3130 Å, ф(SO2) varied between 1.5 × 10?2 and 2.2 X 10?2. Over the integrated range 2500–4000 Å ф(SO2) values of 2.1 X 10?3 to 2.9 X 10?3 were obtained. The differences in ф(SO2) values are explained in terms of wavelength dependence of the rate constants for the two primary reactions: 1SO2 + SO2 → 2SO2(1) and 1SO2 + SO23SO2 + SO2(2); (k2/k1) 3130 Å ≈ 10(k2/k1)2500–4000 Å.  相似文献   

9.
Determination of the chemical compositions of atmospheric single particles in the Yellow Sea region is critical for evaluating the environmental impact caused by air pollutants emitted from mainland China and the Korean peninsula. After ambient aerosol particles were collected by the Dekati PM10 cascade impactor on July 17–23, 2007 at Tokchok Island (approximately 50 km west of the Korean coast nearby Seoul), Korea, overall 2000 particles (on stage 2 and 3 with cut-off diameters of 2.5–10 μm and 1.0–2.5 μm, respectively) in 10 samples were determined by using low-Z particle electron probe X-ray microanalysis. X-ray spectral and secondary electron image (SEI) data showed that soil-derived and sea-salt particles which had reacted or were mixed with SO2 and NOx (or their acidic products) outnumbered the primary and “genuine” ones (59.2% vs. 19.2% in the stage 2 fraction and 41.3% vs. 9.9% in the stage 3 fraction). Moreover, particles containing nitrate in the secondary soil-derived species greatly outnumbered those containing sulfate. Organic particles, mainly consisting of marine biogenic species, were more abundant in the stage 2 fraction than in the stage 3 fraction (11.6% vs. 5.1%). Their relative abundance was greater than the sum of carbon-rich, K-containing, Fe-containing, and fly ash particles, which exhibited low frequencies in all the samples. In addition, many droplets rich in C, N, O, and S were observed. They tended to be small, exhibiting a dark round shape on SEI, and generally included 8–20 at.% C, 0–12 at.% N, 60–80 at.% O, and 4–10 at.% S (sometimes with <3 at.% Mg and Na). They were attributed to be a mixture of carbonaceous matter, H2SO4, and NH4HSO4/(NH4)2SO4, mostly from the reaction of atmospheric SO2 with NH3 under high relative humidity. The analysis of the relationship between the aerosol particle compositions and 72-h backward air-mass trajectories suggests that ambient aerosols at Tokchok Island are strongly affected not only by seawater from the Yellow Sea but also by anthropogenic pollutants emitted from China and the Seoul–Incheon metropolis, resulting in the dominance of complex secondary aerosol particles.  相似文献   

10.
Abstract

Geographic and temporal variations in the concentration and composition of particulate matter (PM) provide important insights into particle sources, atmospheric processes that influence particle formation, and PM management strategies. In the nonurban areas of California, annual-average PM2.5 and PM10 concentrations range from 3 to 10 [H9262]g/m3 and from 5 to 18 µg/m3, respectively. In the urban areas of California, annual-averages for PM2.5 range from 7 to 30 [H9262]g/m3, with observed 24-hr peaks reaching levels as high as 160 [H9262]g/m3. Within each air basin, exceedances are a mixture of isolated events as well as periods of elevated PM2.5 concentrations that are more prolonged and regional in nature. PM2.5 concentrations are generally highest during the winter months. The exception is the South Coast Air Basin, where fairly high values occur throughout the year. Annual-average PM2.5 mass, as well as the concentrations of major components, declined from 1988 to 2000. The declines are especially pronounced for the sulfate (SO4 2?) and nitrate (NO3 ?) components of PM2.5 and PM10 and correlate with reductions in ambient levels of oxides of sulfur (SOx) and oxides of nitrogen (NOx). Annual averages for PM10–2.5 and PM10 exhibited similar downwind trends from 1994 to 1999, with a slightly less pronounced decrease in the coarse fraction.  相似文献   

11.
The effect of elemental carbon (EC) on global as well as regional climate forcing is potentially very important. However, the EC data for northeastern U.S. is sparse. Daily EC concentrations, [EC], and [SO4] were measured in the northeastern U.S. at a regionally representative rural site, Whiteface Mountain (WFM; 44.366°N, 73.903°W, 1.5 km amsl, above mean sea level), New York (NY), for 1997. The air mass origin was determined using 6-h backward in time air trajectories obtained from the Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT 4). [EC] and [SO4] were highly variable and influenced by synoptic–scale meteorology (rainy vs dry periods). The maximum daily [EC] and [SO4] were 364 ± 55 and 28,800 ± 3000 ng m?3, respectively. [EC] and [SO4] also showed seasonal variations at WFM. Occurrences of high daily [EC] were mainly in spring months, while peak daily [SO4] concentrations occurred in summer months. This behavior of aerosols is due to the fact that the sources of EC and SO4 are not the same and also due to the enhanced photochemical activity during summer months that increased the production of SO4 from SO2. High [EC] and [SO4] values were associated with westerly air flow from the industrialized Midwestern U.S. Sector analysis using HYSPLIT 4 air trajectories showed that regions lying between the southwest and northwest of the WFM contributed 81% and 83% of the [EC] and [SO4], respectively. The monthly net direct radiative forcing for shortwave (SW) due to EC and SO4 aerosols at the top of the atmosphere (TOA) varied from ?0.05 to ?0.50 W m?2, with an annual average of ?0.20 ± 0.15 W m?2 that gives a net cooling effect. Average net radiative forcing at WFM for clear sky is lower than the global average radiative forcing reported by IPCC (Foster and Ramaswamy, 2007).  相似文献   

12.
Aqueous solutions of Fenton's reagent (Fe2+ + H2O2) have been used to effect the total decomposition of the chlorophenols: 2-chlorophenol, 3-chlorophenol, 4-chlorophenol, 3,4-dichlorophenol and 2,4,5-trichlorophenol. The mineralization of these chlorinated aromatic substrates to CO2 and free Cl has been studied as a function of [Fe2+] and [HClO4]. Increasing the concentration of Fe2+ enhances the decomposition process, while an increase in the concentration of HClO4, inhibits the reaction. The presence of Fe3+ alone (without any Fe2+) with H2O2 has no effect on the degradation of the chlorophenols. In all cases, the stoichiometric quantity of free Cl was obtained at the completion of the decomposition reaction; but the rates of disappaearance of the chlorophenol and of the formation of the Cl are not similar. This suggests that some chlorinated aliphatic species may be formed as possible intemediates.  相似文献   

13.
Previous comparisons of the data from the National Atmospheric Deposition Program, National Trends Network (NTN) against collocated event sampled data and daily sampled data suggest a substantial bias in the concentration of ammonium [NH4+] and concentrations of several base cations, while the comparability of other ion concentrations ranges among the studies. Eight years of collocated data from five NTN and Atmospheric Integrated Research and Monitoring Network (AIRMoN) sites are compared here. Unlike previous analyses, the data from these two data sets were analyzed in the same laboratory using the same analytical methods; therefore, factors that influence concentration differences can be isolated to sampling frequency and sample preservation techniques. For comparison, the relative biases for these data have been calculated using both median value and volume-weighted mean concentrations, following two different approaches in the literature. The results suggest a relative bias of about 10% in [NH4+] (NTN less than AIRMoN), which is smaller than previous estimates that included the influence of inter-laboratory comparisons. The annual relative bias of [H+] increases over the analysis period, which results in a larger total relative bias for [H+] than found in a previous analysis of AIRMoN and NTN data. When comparing NTN and AIRMoN data on monthly time scales, strong seasonal variations are evident in the relative bias for [H+], [NH4+], and [SO42−]. Large biases in [SO42−] (NTN greater than AIRMoN) on monthly times scales have not been detected in previous analyses where data for all seasons were considered together.  相似文献   

14.
In this study, photocatalytic (photo-Fenton and H2O2/UV) and dark Fenton processes were used to remove ethylenethiourea (ETU) from water. The experiments were conducted in a photo-reactor with an 80 W mercury vapor lamp. The mineralization of ETU was determined by total organic carbon analysis, and ETU degradation was qualitatively monitored by the reduction of UV absorbance at 232 nm. A higher mineralization efficiency was obtained by using the photo-peroxidation process (UV/H2O2). Approximately 77% of ETU was mineralized within 120 min of the reaction using [H2O2]0 = 400 mg L?1. The photo-Fenton process mineralized 70% of the ETU with [H2O2]0 = 800 mg L?1 and [Fe2+] = 400 mg L?1, and there is evidence that hydrogen peroxide was the limiting reagent in the reaction because it was rapidly consumed. Moreover, increasing the concentration of H2O2 from 800 mg L?1 to 1200 mg L?1 did not enhance the degradation of ETU. Kinetics studies revealed that the pseudo-second-order model best fit the experimental conditions. The k values for the UV/H2O2 and photo-Fenton processes were determined to be 6.2 × 10?4 mg L?1 min?1 and 7.7 × 10?4 mg L?1 min?1, respectively. The mineralization of ETU in the absence of hydrogen peroxide has led to the conclusion that ETU transformation products are susceptible to photolysis by UV light. These are promising results for further research. The processes that were investigated can be used to remove pesticide metabolites from drinking water sources and wastewater in developing countries.  相似文献   

15.
Previous studies suggest that interactions between dust particles and clouds are significant; yet the conditions where dust particles can serve as cloud condensation nuclei (CCN) are uncertain. Since major dust components are insoluble, the CCN activity of dust strongly depends on the presence of minor components. However, many minor components measured in dust particles are overlooked in cloud modeling studies. Some of these compounds are believed to be products of heterogeneous reactions involving carbonates. In this study, we calculate Kohler curves (modified for slightly soluble substances) for dust particles containing small amounts of K+, Mg2+, or Ca2+ compounds to estimate the conditions where reacted and unreacted dust can activate. We also use an adiabatic parcel model to evaluate the influence of dust particles on cloud properties via water competition. Based on their bulk solubilities, K+ compounds, MgSO4·7H2O, Mg(NO3)2·6H2O, and Ca(NO3)2·4H2O are classified as highly soluble substances, which enable activation of fine dust. Slightly soluble gypsum and MgSO3·6H2O, which may form via heterogeneous reactions involving carbonates, enable activation of particles with diameters between about 0.6 and 2 μm under some conditions. Dust particles>2 μm often activate regardless of their composition. Only under very specialized conditions does the addition of a dust distribution into a rising parcel containing fine (NH4)2SO4 particles significantly reduce the total number of activated particles via water competition. Effects of dust on cloud saturation and droplet number via water competition are generally smaller than those reported previously for sea salt. Large numbers of fine dust CCN can significantly enhance the number of activated particles under certain conditions. Improved representations of dust mineralogy and reactions in global aerosol models could improve predictions of the effects of aerosol on climate.  相似文献   

16.
Ion-induced binary H2SO4–H2O nucleation is an important mechanism of aerosol formation in the atmosphere. Ions are created in the atmosphere mainly by galactic cosmic rays. The importance of ion-induced nucleation is recognized in some of the observed nucleation events in the background atmosphere. However, the predictions of current ion–aerosol models are highly uncertain mostly due to the lack of detailed experimental information concerning the thermodynamics and kinetics of ion clustering reactions. Here we continue the report of results of our laboratory experiments on the formation and growth of positive and negative cluster ions in H2SO4–H2O vapours in the flow reactor started in Wilhelm et al. [2004. Ion-induced aerosol formation: new insights from laboratory measurements of mixed cluster ions HSO4(H2SO4)a(H2O)w and H+ (H2SO4)a(H2O)w. Atmospheric Environment 38, 1735–1744] and Sorokin et al. [2006. Formation and growth of sulphuric acid–water cluster ions: experiments, modelling, and implications for ion-induced aerosol formation. Atmospheric Environment 40, 2030–2045]. The main attention is given to the definition of the concentration of gaseous sulphuric acid in experiment and also to some aspects of the kinetics of small cluster ions formation. The performed analysis has indicated a threshold concentration of gaseous sulphuric acid for binary homogeneous nucleation of at least about 1010 cm−3 at room temperature and low relative humidity.  相似文献   

17.
The purpose of this study was to characterize size distributions of atmospheric polycyclic aromatic hydrocarbons (PAHs) with 4–6 rings at the roadside in Ho Chi Minh City, Vietnam. Ten PAHs (fluoranthene, pyrene, triphenylene, benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, benzo[ghi]perylene and indeno[1,2,3-cd]pyrene) in atmospheric particulate matters (PM) at the roadside were measured in the dry and rainy seasons in 2005 at Ho Chi Minh City, using a low-pressure cascade impactor. The PM were separated into nine fractions by their aerodynamic diameter, i.e. >9.0, 9.0–5.8, 5.8–4.7, 4.7–3.3, 3.3–2.1, 2.1–1.1, 1.1–0.7, 0.7–0.4 and <0.4 μm (a final filter). PAHs were analyzed by high-performance liquid chromatography with fluorescence detection. Total PAHs measured were higher in the rainy season than in the dry season. The mass of coarse particles occupied a higher fraction than that of fine particles in both seasons. Total PAHs were mainly concentrated in particles with aerodynamic diameter smaller than 0.4 μm. The particle size distributions of PAHs investigated were bi-modal with a peak in fine particle mode (<2.1 μm) and another peak in coarse particle mode (>2.1 μm). Generally, 5,6-ring PAHs associated mainly with fine particles and 4-ring PAHs spread out in both fine and coarse particles.  相似文献   

18.
Under typical atmospheric conditions, sulfuric acid and water vapors are likely most important species in the nucleation of new aerosol particles. The main source of H2SO4 in the atmosphere is oxidation of SO2. Hence, an understanding of the subsequent chemical reactions followed by aerosol-particles formation is of fundamental importance. Here we analyze the results of laboratory experiments in Svensmark et al. (2007) in which (i) the formation of neutral aerosol particles was observed at reported sulfuric acid concentrations well below the range where the binary homogeneous nucleation in a mixture of H2SO4–H2O vapors could be important and (ii) an electron catalytic effect on particle nucleation was suggested as an explanation of the experimental results and as a potential source of aerosol-particles formation in the Earth's atmosphere. In the article we give an interpretation of these experimental data based on a known mechanism of the neutral particles formation via ion-induced nucleation followed by recombination of charged clusters. The main results of our investigation are the following: (i) the observed neutral particles were likely formed via the recombination of ion clusters; (ii) the phenomena of electron photodetachment from ion clusters under UV radiation was improbable in conditions of this experiment and likely unrealized for typical negative ion clusters found in the Earth's atmosphere. In total, these experiments and model investigations show that far more and specially directed laboratory experiments are needed to clarify the ways by which cosmic rays and solar radiation may link to the Earth's climate.  相似文献   

19.
Recent epidemiologic studies have emphasized a relationship between alteration in lung function, respiratory symptoms in asthmatics, and elevated levels of sulfate air pollutants. In asthmatics, it has been reported that 1) the more acidic sulfate aerosols, sulfuric acid (H2SO4) and ammonium bisulfate (NH4HSO4), provoked the greatest changes in lung function and 2) a definite exposure-response relationship exists for H2SO4 inhalation. To determine if sulfate aerosol exposure caused increased reactivity to a known bronchoconstrictor, normal and asthmatic subjects inhaled subthreshold doses of carbachol after the following sulfates: H2SO4, NH4HSO4, and sodium bisulfate. A NaCI aerosol served as a control. Exposure times averaged 16 minutes with sulfate concentrations ranging from 100 μ/m3 to 1000 jtg/m3. In normal subjects, prior inhalation of either 1000 yug/m3 H2SO4 or NH4HSO4 significantly potentiated (P < 0.05) the bronchoconstrictor action of carbachol on airway conductance compared to NaCI and carbachol or carbachol alone by t-tests. For the asthmatic group, prior inhalation of either 1000/tg/m3 H2SO4 or NH4HSO4 (P < 0.05), or 450 μ/m3 H2SO4 (P < 0.05) similarly enhanced the carbachol bronchoconstrictor effect compared to NaCI and carbachol. At the low 100 μ/m3, no sulfates altered the effects of carbachol on pulmonary function. Although mean changes between the sulfate groups did not attain significance by an analysis of variance, it was found that the bronchoconstrictor action of carbachol was potentiated by the sulfate aerosols more or less in relation to their acidity.  相似文献   

20.
This paper presents the results of a study to investigate the atmospheric oxidation of sulfur dioxide (SO2). A detailed model of gas-phase chemistry, aerosol thermodynamics and aerosol chemistry is employed to simulate atmospheric sulfate formation. The calculations indicate that, in addition to the gasphase oxidation by hydroxyl (OH) radicals, SO2 oxidation in aqueous aerosols may also contribute significantly to sulfate formation. Reactions of SO2 with hydrogen peroxide (H2O2) and O2 (catalyzed by Fe3+ and Mn2+) are identified as principal aqueous-phase oxidation mechanisms. The results of this study confirm the conclusions drawn from the analysis of ambient aerosol data qualitatively. However, some discrepancies also exist between the results of our modeling study and field data. Such discrepancies emphasize the need for the collection of ambient data for a more rigorous and quantitative evaluation of atmospheric aerosol models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号