首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 876 毫秒
1.
Around 76% of the world's population lives in developing countries where more fertilizer-N is currently applied than in developed countries. Fertilizers are applied preferentially in regions where irrigation is available, and soil and climatic conditions are favorable for the growth of crop plants. Due to low N application rates during the last 3 or 4 decades, negative N balances in the soil are a characteristic feature of the crop production systems in developing countries. In the future, with increasing fertilizer-N application rates, the possibility of nitrate pollution of groundwater in developing countries will be strongly linked with fertilizer-N use efficiency. A limited number of investigations from developing countries suggest that, in irrigated soils of Asia or in humid tropics of Africa, the potential exists for nitrate pollution of groundwater, especially if fertilizer-N is inefficiently managed. In a large number of developing countries in West and Central Asia and North Africa, the small amount of fertilizer applied to soils (mostly Aridisols) that remain dry almost all the year, do not constitute a major threat for nitrate pollution of groundwater, except possibly when soils are irrigated. In Asia and the Pacific regions, where 70% of the fertilizers are used to grow wetland rice on soils with low percolation rates, leaching of nitrates is minimal. Climatic water balance and soil moisture conditions do not favor leaching of nitrates from the small amount of fertilizer-N applied to Oxisols and Ultisols in Latin America. In developing countries located in the humid tropics, attempts have not been made to correlate fertilizer-N use with nitrate level in groundwater; however, fertilizers are being increasingly used. Besides high rainfall, irrigation is becoming increasingly available to farmers in the humid tropics and substantial leaching of N may also increase.  相似文献   

2.
Nitrogen fertility and abiotic stresses management in cotton crop: a review   总被引:1,自引:0,他引:1  
This review outlines nitrogen (N) responses in crop production and potential management decisions to ameliorate abiotic stresses for better crop production. N is a primary constituent of the nucleotides and proteins that are essential for life. Production and application of N fertilizers consume huge amounts of energy, and excess is detrimental to the environment. Therefore, increasing plant N use efficiency (NUE) is important for the development of sustainable agriculture. NUE has a key role in crop yield and can be enhanced by controlling loss of fertilizers by application of humic acid and natural polymers (hydrogels), having high water-holding capacity which can improve plant performance under field conditions. Abiotic stresses such as waterlogging, drought, heat, and salinity are the major limitations for successful crop production. Therefore, integrated management approaches such as addition of aminoethoxyvinylglycine (AVG), the film antitranspirant (di-1-p-menthene and pinolene) nutrients, hydrogels, and phytohormones may provide novel approaches to improve plant tolerance against abiotic stress-induced damage. Moreover, for plant breeders and molecular biologists, it is a challenge to develop cotton cultivars that can tolerate plant abiotic stresses while having high potential NUE for the future.  相似文献   

3.

The overuse of nitrogen (N) fertilizer for wheat is a serious problem in China, and previous studies seldom distinguish between the use of basal and topdressing N fertilizer. Data from 225 households in Jiangsu Province, China (a wheat planting area), were collected through face-to-face interviews with each head of the household. Regression models were used to study factors affecting farmers’ application of basal and topdressing N fertilizers separately. Fertilizer retailers proposed fertilizer application levels that were in opposition to their concern for the environment. Farmers’ concern for the environment only affected their application of topdressing N fertilizer and had no significant influence for use of total N fertilizer. The farmland area and amount of experience planting wheat had negative effects on basal N fertilizer use, but not on topdressing fertilizer. In the study area, the optimal strategy for decreasing N fertilizer application is designing policies to rent more farmlands to farmers with the most experience first. These farmers with their higher farm income would decrease basal N fertilizer use and the basal-topdressing ratio to improve N fertilizer use efficiency and then decrease the N fertilizer leaching into the environment.

  相似文献   

4.
The environmental degradation of lakes in China has become increasingly serious over the last 30 years and eutrophication resulting from enhanced nutrient inputs is considered a top threat. In this study, a quasi-mass balance method, net anthropogenic N inputs (NANI), was introduced to assess the human influence on N input into three typical Chinese lake basins. The resultant NANI exceeded 10 000 kg N km−2 year−1 for all three basins, and mineral fertilizers were generally the largest sources. However, rapid urbanization and shrinking agricultural production capability may significantly increase N inputs from food and feed imports. Higher percentages of NANI were observed to be exported at urban river outlets, suggesting the acceleration of NANI transfer to rivers by urbanization. Over the last decade, the N inputs have declined in the basins dominated by the fertilizer use but have increased in the basins dominated by the food and feed import. In the foreseeable future, urban areas may arise as new hotspots for nitrogen in China while fertilizer use may decline in importance in areas of high population density.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-015-0638-8) contains supplementary material, which is available to authorized users.  相似文献   

5.
The Asian nitrogen cycle case study   总被引:4,自引:0,他引:4  
Zheng X  Fu C  Xu X  Yan X  Huang Y  Han S  Hu F  Chen G 《Ambio》2002,31(2):79-87
We analyzed nitrogen budgets at national and regional levels on a timeline from 1961-2030 using a model, IAP-N 1.0. The model was designed based upon the Inter-governmental Panel on Climate Change (IPCC) methods using Asia-specific parameters and a Food and Agriculture Organization of the United Nations (FAO) database. In this paper we discuss new reactive-nitrogen and its various fates, and environmental nitrogen enrichment and its driving forces. The anthropogenic reactive nitrogen of Asia dramatically increased from approximately 14.4 Tg N yr-1 in 1961 to approximately 67.7 Tg N yr-1 in 2000 and is likely to be 105.3 Tg N yr-1 by 2030. Most of the anthropogenic reactive-nitrogen has accumulated in the environment. We found that an increasing demand for food and energy supplies and the lack of effective measures to improve the efficiency of fertilizer nitrogen use, as well as effective measures for the prevention of NOx emissions from fossil-fuel combustion, are the principal drivers behind the environmental nitrogen-enrichment problem. This problem may be finally solved by substituting synthetic nitrogen fertilizers with new high-efficiency nitrogen sources, but solutions are dependent on advances in biological technology.  相似文献   

6.
Nitrogen inputs to the US from human activity doubled between 1961 and 1997, with most of the increase in the 1960s and 1970s. The largest increase was in use of inorganic N fertilizer, but emissions of NOx from fossil-fuel combustion also increased substantially. In 1961, N fixation in agricultural systems was the largest single source of reactive N in the US. By 1997, even though N fixation had increased, fertilizer use and NOx emissions had increased more rapidly and were both larger inputs. In both 1961 and 1997, two thirds of reactive N inputs were denitrified or stored in soils and biota, while one third was exported. The largest export was in riverine flux to coastal oceans, followed by export in food and feeds, and atmospheric advection to the oceans. The consumption of meat protein is a major driver behind N use in agriculture in the US Without change in diet or agricultural practices, fertilizer use will increase over next 30 years, and fluxes to coastal oceans may increase by another 30%. However, substantial reductions are possible.  相似文献   

7.
Phosphorus management in Europe in a changing world   总被引:2,自引:0,他引:2  
Food production in Europe is dependent on imported phosphorus (P) fertilizers, but P use is inefficient and losses to the environment high. Here, we discuss possible solutions by changes in P management. We argue that not only the use of P fertilizers and P additives in feed could be reduced by fine-tuning fertilization and feeding to actual nutrient requirements, but also P from waste has to be completely recovered and recycled in order to close the P balance of Europe regionally and become less dependent on the availability of P-rock reserves. Finally, climate-smart P management measures are needed, to reduce the expected deterioration of surface water quality resulting from climate-change-induced P loss.  相似文献   

8.
This paper presents an overview of the environmental consequences of fertilizers and pesticides in agriculture and the measures needed to mitigate the adverse impact of these chemicals on environment. The issues are then analysed from the perspective of the use of fertilizers and pesticides in Indian agriculture. Fertilizer consumption in India is concentrated in about one-third of the cultivated area. Its use has been increasing but it is being used inefficiently. Pesticide use is also concentrated in five states and on a few crops such as rice, cotton and chillies. Evidence from micro studies on the environmental consequences of these chemicals is presented. It is suggested that the present methods of fertilizer and pesticide use and growth are not sustainable. There are several possible technologies and alternatives to reduce the adverse impact of these chemicals on the environment, such as biological control of pests, integrated pest management, development of pest-resistant varieties of crops, vermiculture. etc., that need to be supplemented through an economic approach. These issues need to be considered while formulating strategies for sustainable agriculture in India and other developing countries.  相似文献   

9.
Urine contains about 50 % of the phosphorus (P) and about 90 % of the nitrogen (N) excreted by humans and is therefore an interesting substrate for nutrient recovery. Source-separated urine can be used to precipitate struvite or, through a newly developed technology, nitrified urine fertilizer (NUF). In this study, we prepared 33P radioisotope- and stable 15N isotope-labeled synthetic NUF (SNUF) and struvite using synthetic urine and determined P and N uptake by greenhouse-grown ryegrass (Lolium multiflorum var. Gemini) fertilized with these products. The P and N in the urine-based fertilizers were as readily plant-available in a slightly acidic soil as the P and N in reference mineral fertilizers. The ryegrass crop recovered 26 % of P applied with both urine-based fertilizers and 72 and 75 % of N applied as struvite and SNUF, respectively. Thus, NUF and urine-derived struvite are valuable N and P recycling fertilizers.  相似文献   

10.
Nitrogen fertilizers: meeting contemporary challenges   总被引:1,自引:0,他引:1  
Fixen PE  West FB 《Ambio》2002,31(2):169-176
At 81.7 million tonnes (Mt), commercial fertilizer nitrogen (N) accounts for approximately half of all N reaching global croplands today and supplies basic food needs for at least 40% of the population. The challenge is to continue to help meet that need while minimizing the risk of negative environmental impacts through improved N-use efficiency. Fertilizer-N efficiency on corn in the US has increased more than 30% over the last 20 years, but additional progress can be made for corn and other crops. Current N efficiency and productivity are generally lower in most of Asia than in North America, but they are improving. The fertilizer industry recognizes its crucial role in meeting basic human needs, now and in the future. It stands ready to meet the challenge of adopting new practices and technologies that will allow it to do so with greater efficiency and in a way that not only sustains life, but also sustains the quality of life.  相似文献   

11.
This paper reports on research designed to test the hypothesis that differences in peat composition will cause differences in amounts of N and P retained during contact with liquid swine manure (LSM) and liquid poultry manure (LPM). Peat types representing a wide range of properties were tested in order to establish which chemical and physical properties might be most indicative of their capacities to retain N and P from LSM and LPM. Eight-percent slurries (peat/LSM and peat/LPM) were measured for total nitrogen (TKN) and total phosphorous (TP) after 6, 24 and 96 hours. Tests were done to determine the TKN and TP contents of these peats, the LSM, and the LPM, both before and after they were mixed together. The N and P retention results revealed that most peats worked reasonably well at retaining N and P from either LSM or LPM. However, some peats were more effective than others. These peats also decreased the N and P levels in the liquid portion of the LSM. Peats with higher N retention capacities tended to have lower ash contents, but higher macroporosities and total cellulose contents. Peats with higher P retention capacities tended to have lower bulk densities, ash contents, total guaiacyl lignins contents, fulvic acids contents, but higher microporosities, macroporosities, H contents, and total cellulose contents. Peats with higher N and P retention capacities also had humic acid contents between 5-7%. The results of this study suggest that if these peats are used to reduce odors and N and P contamination, possible byproducts could be the production of odorless fertilizers.  相似文献   

12.
Cotton (Gossypium hirustum L.) is grown globally as a major source of natural fiber. Nitrogen (N) management is cumbersome in cotton production systems; it has more impacts on yield, maturity, and lint quality of a cotton crop than other primary plant nutrient. Application and production of N fertilizers consume large amounts of energy, and excess application can cause environmental concerns, i.e., nitrate in ground water, and the production of nitrous oxide a highly potent greenhouse gas (GHG) to the atmosphere, which is a global concern. Therefore, improving nitrogen use efficiency (NUE) of cotton plant is critical in this context. Slow-release fertilizers (e.g., polymer-coated urea) have the potential to increase cotton yield and reduce environmental pollution due to more efficient use of nutrients. Limited literature is available on the mitigation of GHG emissions for cotton production. Therefore, this review focuses on the role of N fertilization, in cotton growth and GHG emission management strategies, and will assess, justify, and organize the researchable priorities. Nitrate and ammonium nitrogen are essential nutrients for successful crop production. Ammonia (NH3) is a central intermediate in plant N metabolism. NH3 is assimilated in cotton by the mediation of glutamine synthetase, glutamine (z-) oxoglutarate amino-transferase enzyme systems in two steps: the first step requires adenosine triphosphate (ATP) to add NH3 to glutamate to form glutamine (Gln), and the second step transfers the NH3 from glutamine (Gln) to α-ketoglutarate to form two glutamates. Once NH3 has been incorporated into glutamate, it can be transferred to other carbon skeletons by various transaminases to form additional amino acids. The glutamate and glutamine formed can rapidly be used for the synthesis of low-molecular-weight organic N compounds (LMWONCs) such as amides, amino acids, ureides, amines, and peptides that are further synthesized into high-molecular-weight organic N compounds (HMWONCs) such as proteins and nucleic acids.  相似文献   

13.
Livestock production and the use of synthetic fertilizer are responsible for about half of the global emission of NH3. Depending on the animal category between 10 and 36% of the N in animal excreta is lost as NH3. The current annual NH3 emission in developing countries of 15 million ton N accounts for of the global emission from animal excreta. In addition, 7.2 million tons NH3N of synthetic N fertilizers are lost as NH3 in developing countries. This is 80% of the global NH3 emission from synthetic fertilizer's use. Along with human population increase and economic growth, livestock production in developing countries may even increase by a factor of 3 between now and 2025. The net result of rapid increase of livestock production combined with higher efficiency is an increase in NH3 emissions of only 60% from 15 to 24 million tons NH3N between 1990 and 2025 in developing countries. Livestock production is an important consumer of feedstuffs, mainly cereals, thereby inducing additional demand for synthetic fertilizers. Despite the projected major increase of synthetic fertilizer use from 42 to 106 million ton N between 1990 and 2025, the NH3 loss in developing countries may decrease if a shift towards other fertilizer types, that are less vulnerable to NH3 volatilization, is realized. According to the scenario, the total emission of NH3 associated with food production in developing countries will increase from 22 to 30 million ton N yr−1 between 1990 and 2025. Although the NH3 emission increases more slowly than food production, in particular, animal production may show geographic concentration in certain regions, which may lead to high local emission densities and associated environmental problems.  相似文献   

14.
Looking back 50 years at classic literature was a reminder of inspiring discoveries and clever theories that were formative to the field of environmental chemistry, but also of the irreparable costs that persistent global pollutants have had on ecosystems and human society. In my view, these three papers have greatly impacted contemporary science and influenced development of policies that have limited the spread of hazardous contaminants. At the same time, a sobering reality is that reversing decades of past pollution has proven impossible in our lifetime, and global trends are dire for both legacy and emerging contaminants. Lessons in these papers are clear to most environmental scientists, but I argue have not resulted in adequate investment in infrastructure or manpower to enable systematic unbiased searching for pollutants as proposed by Sören Jensen in 1972. Acknowledging that the costs of new global contaminants will be too high, we must incentivize safer chemicals and their sustainable use, increase international exchange of lists of chemicals in commerce, and coordinate international efforts in nontarget screening to identify new contaminants before they circulate the world.  相似文献   

15.
The importance of the use of potassium in agriculture is increasing in South Asia for making most productive use of the nutrient in terms of economic returns. Nutrient supply traditionally by cattle manure is constrained by its insufficient availability. Municipal waste compost may be an alternative source of nutrient supplements. Field experiments were conducted at the Experimental Farm of Calcutta University, West Bengal, India during the wet seasons of 1997, 1998 and 1999 on flooded lowland rice. Potassium fractions in municipal waste compost and cattle manure were determined by sequential extraction and also the potassium uptake by rice to compare the effectiveness of municipal waste compost with traditional manure. Potassium was significantly bound to the organic matter in municipal waste compost. Potassium uptake by rice grain and straw increased significantly with the combined application of organics and fertilizers and it was higher in grain than in straw. Water-soluble and non-exchangeable potassium contents of municipal waste compost and cattle manure were highly correlated with the uptake of potassium by straw and grain. Exchangeable and residual potassium were also significantly correlated with the uptake of potassium by straw and grain of rice. Much higher uptake of K in rice straw and rain resulted from applying the manures in conjunction with fertilizers than when applied singly.  相似文献   

16.
210Pb analysis in the sediment core C11 was used to reconstruct the historical fluxes of Hg, Cu, Pb, Zn, Cd, Cr and As in the Nanliu River estuary during the last ∼81 year. The 210Pbxs-derived sedimentation rates, molar C/N ratios, enrichment factors and excess fluxes indicated that the natural inputs prevailed till the early 1990s. When the erosion related to land-use modifications enhanced, it promoted higher accumulation rates of the sedimentary material. In the recent sediments they were found a moderate enrichment of Cd and Hg (maximum 3.5- and 2.8-fold corresponding to the local background levels, respectively) and a slight enrichment of Cr, Zn, As and Pb (maximum 1.3-, 1.3-, 1.3- and 1.2-fold, respectively). The excess metal fluxes also showed a consistently increasing tread since the early 1990s, which could be associated with the intensive use of phosphate fertilizers and the combustion of fossil fuels derived from human activities.  相似文献   

17.
Savage C 《Ambio》2005,34(2):145-150
This paper reviews the use of stable nitrogen isotopes (delta15N) to delineate the influence of sewage nitrogen (N) in coastal ecosystems, drawing extensively on the case of Himmerfj?rden, a Baltic Sea bay that receives 15N-enriched tertiary treated sewage that is discharged mainly as dissolved inorganic N (DIN). Gradients of delta15N in macroalgae (Fucus vesiculosus) and surface sediments traced sewage-derived N to 24 km from the outfall but elevated delta15N values (> 7 per thousand) indicated that the sewage influence was most pronounced within 10 km. Comparison of macroalgal delta15N values before and after enhanced tertiary treatment showed a decrease in the spatial impact of sewage N from about 24 km to 12 km from the outfall and a decrease to more marine delta15N values in more recent growth tissues. Sedimentary delta15N records showed that sewage has had a dominant influence on organic matter production in the bay with dramatic increases in sedimentary delta15N during the years of maximum sewage N loads. In cases where sewage N introduces a distinct isotopic signature into a system and where it has had a dominant influence on organic matter production, delta15N values in biota and sediments can be used to trace the spatial and temporal influence of sewage N in aquatic ecosystems.  相似文献   

18.
Ammonia volatilization from nitrogen (N) fertilizer applied throughout the year to two soil types was measured using a system of small wind tunnels. Losses from urea ranged from 12 to 46% of the applied N. Small losses, averaging <1%, were measured from ammonium nitrate (AN) and calcium nitrate applications. Factors influencing these losses are discussed. Using these results and those from other workers, emission factors for urea and AN applications to grassland in the UK were determined as 23.0 and 1.6% of the applied N, respectively. Emission factors for these fertilizers when applied to arable land were estimated as 11.8 and 0.8%, respectively. The emission factor for all other applied N (as straight and compound fertilizers) was assumed to be similar to that for AN. Calculations showed that fertilizer applications to agricultural land in the UK contributes 34 kt NH3-N per year, equivalent to 17% of the total annual NH3 emission.  相似文献   

19.
Methane and nitrous oxide emissions from an irrigated rice of North India   总被引:18,自引:0,他引:18  
Ghosh S  Majumdar D  Jain MC 《Chemosphere》2003,51(3):181-195
Upland rice was grown in the kharif season (June-September) under irrigated condition in New Delhi, India (28 degree 40'N and 77 degree 12'E) to monitor CH4 and N2O emission, as influenced by fertilizer urea, ammonium sulphate and potassium nitrate alone (at 120 kg ha-1) and mixed with dicyandiamide (DCD), added at 10% of applied N. The experimental soil was a typic ustochrept (Inceptisol), clay loam, in which rice (Oryza sativa L., var. Pusa-169, duration: 120-125 days) was grown and CH4 and N2O was monitored for 105 days by closed chamber method, starting from the 5 days and 1 day after transplanting, respectively. Methane fluxes had a considerable temporal variation (CV=52-77%) and ranged from 0.05 (ammonium sulphate) to 3.77 mg m-2 h-1 (urea). There was a significant increase in the CH4 emission on the application of fertilizers while addition of DCD with fertilizers reduced emissions. Total CH4 emission (105 days) ranged from 24.5 to 37.2 kg ha-1. Nitrous oxide fluxes were much lower than CH4 fluxes and had ranged from 0.18 to 100.5 g m-2 h-1 with very high temporal variation (CV=69-143%). Total seasonal N2O emission from different treatments ranged from 0.037 to 0.186 kg ha-1 which was a N loss of 0.10-0.12% of applied N. All the fertilizers significantly increased seasonal N2O emission while application of DCD reduced N2O emissions significantly in the range of 10-53%.  相似文献   

20.
Nitrate leaching can be reduced by the adoption of less intensive grassland systems which, though requiring a greater land area to achieve the same agricultural output, result in less nitrate leaching per unit of production than do intensively managed grasslands. The economic penalties associated with reductions in output can be partly offset by greater reliance on symbiotic nitrogen fixation and the use of clover-based swards in place of synthetic N fertilisers. Alternatively, specific measures can be adopted to improve the efficiency of nitrogen use in intensively managed systems in order to maintain high outputs but with reduced losses. Controls should take account of other forms of loss and flows of nitrogen between grassland and other components of the whole-farm system and, in most instances, should result in an overall reduction in nitrogen inputs. Removing stock from the fields earlier in the grazing season will reduce the accumulation of high concentrations of potentially leachable nitrate in the soil of grazed pastures but will increase the quantity of manure produced by housed animals and the need to recycle this effectively. Supplementing grass diets with low-nitrogen forages such as maize silage will reduce the quantity of nitrogen excreted by livestock but may increase the potential for nitrate leaching elsewhere on the farm if changes to cropping patterns involve more frequent cultivation of grassland. Improved utilisation by the sward of nitrogen in animal excreta and manures and released by mineralisation of soil organic matter will permit equivalent reductions to be made in fertiliser inputs, provided that adequate information is available about the supply of nitrogen from these non-fertiliser sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号