首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From Red Lists to Species of Conservation Concern   总被引:3,自引:0,他引:3  
Abstract:  National red lists of threatened animal and plant species prepared according to the criteria of the World Conservation Union (IUCN) adequately reflect the extinction risk of species within a country but cannot be used directly to set conservation priorities. In particular, the significance of national populations for the conservation of the species as a whole is not taken into account. We present a procedure that can be used to assess national responsibility based on the national red-list status of a species, the international importance of the national population, and the species' "historical rarity" status. We distinguished five responsibility classes for breeding birds: B1, threatened species with internationally important populations in Switzerland; B2, threatened species with internationally less important populations; B3, nonthreatened species with internationally important populations; B4, nonthreatened species with internationally less important populations; and B5, species that have never been common in Switzerland. Two responsibility classes were distinguished for birds occurring in Switzerland as visitors: G1, species with large concentrations in Switzerland and an unfavorable conservation status in Europe, and G2, species with large concentrations in Switzerland and a favorable conservation status in Europe. Two additional classes (G3 and G4) for visiting species occurring in internationally less important numbers are possible but were not analyzed in detail. Responsibility classes B1, B2, B3, G1, and G2 were defined as species of national conservation concern. We developed the method for birds in Switzerland, but it can be used in other countries and for other taxonomic groups as well. It is particularly suitable where national red lists are established according to IUCN guidelines.  相似文献   

2.
Abstract:  A World Conservation Union (IUCN) regional red list is an objective assessment of regional extinction risk and is not the same as a list of conservation priority species. Recent research reveals the widespread, but incorrect, assumption that IUCN Red List categories represent a hierarchical list of priorities for conservation action. We developed a simple eight-step priority-setting process and applied it to the conservation of bees in Ireland. Our model is based on the national red list but also considers the global significance of the national population; the conservation status at global, continental, and regional levels; key biological, economic, and societal factors; and is compatible with existing conservation agreements and legislation. Throughout Ireland, almost one-third of the bee fauna is threatened (30 of 100 species), but our methodology resulted in a reduced list of only 17 priority species. We did not use the priority species list to broadly categorize species to the conservation action required; instead, we indicated the individual action required for all threatened, near-threatened, and data-deficient species on the national red list based on the IUCN's conservation-actions template file. Priority species lists will strongly influence prioritization of conservation actions at national levels, but action should not be exclusive to listed species. In addition, all species on this list will not necessarily require immediate action. Our method is transparent, reproducible, and readily applicable to other taxa and regions.  相似文献   

3.
Abstract:  The World Conservation Union (IUCN) has developed guidelines that enable the assessment of extinction risk at a regional scale. We used these guidelines to assess the extinction risk of birds in the United Kingdom for comparison with an existing assessment of conservation status. Sixty-four species were categorized as regionally threatened, of which 12 were critically endangered. The categorizations of the 223 species assessed agreed broadly with those from the existing U.K. system, which considers more than extinction risk, thus giving a more complete assessment of conservation status. There was, however, a tendency for the IUCN process to give higher risk status to edge-of-range species (some of which are relatively recent colonists considered of comparatively low conservation concern) and low status to those that have declined substantially but remain common (such as many farmland birds, the focus of considerable conservation effort in the United Kingdom). The final red list depended heavily on the subjective decisions made during the assessment process. An alternative interpretation of the guidelines could have resulted in as many as 19 or as few as 6 species being listed as critically endangered. We recommend the revision of the IUCN guidelines to reduce this subjectivity, in particular with respect to the effect of extralimital populations on the likelihood of regional extinction, and hence the potential for variation in the manner of application between regional red-list assessors. Preventing extinction does not have to be the principal driving force behind conservation action at a regional scale if the continuance of a species is safeguarded in other regions.  相似文献   

4.
Abstract: The International Union for Conservation of Nature (IUCN) Red List of Threatened Species was increasingly used during the 1980s to assess the conservation status of species for policy and planning purposes. This use stimulated the development of a new set of quantitative criteria for listing species in the categories of threat: critically endangered, endangered, and vulnerable. These criteria, which were intended to be applicable to all species except microorganisms, were part of a broader system for classifying threatened species and were fully implemented by IUCN in 2000. The system and the criteria have been widely used by conservation practitioners and scientists and now underpin one indicator being used to assess the Convention on Biological Diversity 2010 biodiversity target. We describe the process and the technical background to the IUCN Red List system. The criteria refer to fundamental biological processes underlying population decline and extinction. But given major differences between species, the threatening processes affecting them, and the paucity of knowledge relating to most species, the IUCN system had to be both broad and flexible to be applicable to the majority of described species. The system was designed to measure the symptoms of extinction risk, and uses 5 independent criteria relating to aspects of population loss and decline of range size. A species is assigned to a threat category if it meets the quantitative threshold for at least one criterion. The criteria and the accompanying rules and guidelines used by IUCN are intended to increase the consistency, transparency, and validity of its categorization system, but it necessitates some compromises that affect the applicability of the system and the species lists that result. In particular, choices were made over the assessment of uncertainty, poorly known species, depleted species, population decline, restricted ranges, and rarity; all of these affect the way red lists should be viewed and used. Processes related to priority setting and the development of national red lists need to take account of some assumptions in the formulation of the criteria.  相似文献   

5.
The International Union for Conservation of Nature (IUCN) Red List Index (RLI) is used to measure trends in extinction risk of species over time. The development of 2 red lists for Spanish vascular flora during the past decade allowed us to apply the IUCN RLI to vascular plants in an area belonging to a global biodiversity hotspot. We used the Spanish Red Lists from 2000 and 2010 to assess changes in level of threat at a national scale and at the subnational scales of Canary Islands, Balearic Islands, and peninsular Spain. We assigned retrospective IUCN categories of threat to 98 species included in the Spanish Red List of 2010 but absent in the Spanish Red List of 2000. In addition, we tested the effect of different random and taxonomic and spatial Spanish samples on the overall RLI value. From 2000 to 2010, the IUCN categories of 768 species changed (10% of Spanish flora), mainly due to improved knowledge (63%), modifications in IUCN criteria (14%), and changes in threat status (12%). All measured national and subnational RLI values decreased during this period, indicating a general decline in the conservation status of the Spanish vascular flora. The Canarian RLI value (0.84) was the lowest, although the fastest deterioration in conservation status occurred on peninsular Spain (from 0.93 in 2000 to 0.92 in 2010). The RLI values based on subsamples of the Spanish Red List were not representative of RLI values for the entire country, which would discourage the use of small areas or small taxonomic samples to assess general trends in the endangerment of national biotas. The role of the RLI in monitoring of changes in biodiversity at the global and regional scales needs further reassessment because additional areas and taxa are necessary to determine whether the index is sufficiently sensitive for use in assessing temporal changes in species’ risk of extinction.  相似文献   

6.
The International Union for Conservation of Nature (IUCN) Red List Index (RLI) is recognized as one of the key indicators of trends in the status of species. The red‐list assessment done by Finnish authorities of species in Finland is taxonomically one of the most extensive national assessments. We used the Finnish Red Lists from 2000 and 2010 to calculate for the first time the national RLIs for 11 taxonomic groups at different trophic levels and with different life cycles. The red‐list index is calculated on the basis of changes in red‐list categories and indicates trends in the status of biological diversity of sets of species. The RLI value ranges from 0 to 1. The lower the value the faster the set of species is heading toward extinction. If the value is 1, all species in the set are least concern and if the value is 0, all species are (regionally) extinct. The overall RLI of Finnish species decreased. This means that, in Finland, these taxonomic groups were heading toward extinction faster in 2010 than in 2000. Of the analyzed groups of organisms, RLIs of 5 decreased and RLIs of 6 increased. At the national level, the RLIs and status trends varied markedly between species groups. Thus, we concluded that generalizations on the basis of RLIs of a few taxa only may yield a biased view of ongoing trends in the status of biological diversity at the species level. In addition, one overall RLI that includes many different species groups may also be misleading if variation in RLI among species groups is not considered and if RLI values are not presented separately for each group. Aplicación del Índice de la Lista Roja a Nivel Nacional para Grupos de Especies Múltiples  相似文献   

7.
Conservation actions need to be prioritized, often taking into account species’ extinction risk. The International Union for Conservation of Nature (IUCN) Red List provides an accepted, objective framework for the assessment of extinction risk. Assessments based on data collected in the field are the best option, but the field data to base these on are often limited. Information collected through remote sensing can be used in place of field data to inform assessments. Forests are perhaps the best‐studied land‐cover type for use of remote‐sensing data. Using an open‐access 30‐m resolution map of tree cover and its change between 2000 and 2012, we assessed the extent of forest cover and loss within the distributions of 11,186 forest‐dependent amphibians, birds, and mammals worldwide. For 16 species, forest loss resulted in an elevated extinction risk under red‐list criterion A, owing to inferred rapid population declines. This number increased to 23 when data‐deficient species (i.e., those with insufficient information for evaluation) were included. Under red‐list criterion B2, 484 species (855 when data‐deficient species were included) were considered at elevated extinction risk, owing to restricted areas of occupancy resulting from little forest cover remaining within their ranges. The proportion of species of conservation concern would increase by 32.8% for amphibians, 15.1% for birds, and 24.7% for mammals if our suggested uplistings are accepted. Central America, the Northern Andes, Madagascar, the Eastern Arc forests in Africa, and the islands of Southeast Asia are hotspots for these species. Our results illustrate the utility of satellite imagery for global extinction‐risk assessment and measurement of progress toward international environmental agreement targets.  相似文献   

8.
Abstract:  The national systems used in the evaluation of extinction risk are often touted as more readily applied and somehow more regionally appropriate than the system of the International Union for Conservation of Nature (IUCN). We compared risk assessments of the Mexican national system (method for evaluation of risk of extinction of wild species [MER]) with the IUCN system for the 16 Polianthes taxa (Agavaceae), a genus of plants with marked variation in distribution sizes. We used a novel combination of herbarium data, geographic information systems (GIS), and species distribution models to provide rapid, repeatable estimates of extinction risk. Our GIS method showed that the MER and the IUCN system use similar data. Our comparison illustrates how the IUCN method can be applied even when all desirable data are not available, and that the MER offers no special regional advantage with respect to the IUCN regional system. Instead, our results coincided, with both systems identifying 14 taxa of conservation concern and the remaining two taxa of low risk, largely because both systems use similar information. An obstacle for the application of the MER is that there are no standards for quantifying the criteria of habitat condition and intrinsic biological vulnerability. If these impossible-to-quantify criteria are left out, what are left are geographical distribution and the impact of human activity, essentially the considerations we were able to assess for the IUCN method. Our method has the advantage of making the IUCN criteria easy to apply, and because each step can be standardized between studies, it ensures greater comparability of extinction risk estimates among taxa.  相似文献   

9.
The IUCN (International Union for Conservation of Nature) Red List categories and criteria are the most widely used framework for assessing the relative extinction risk of species. The criteria are based on quantitative thresholds relating to the size, trends, and structure of species’ distributions and populations. However, data on these parameters are sparse and uncertain for many species and unavailable for others, potentially leading to their misclassification or classification as data deficient. We devised an approach that combines data on land-cover change, species-specific habitat preferences, population abundance, and dispersal distance to estimate key parameters (extent of occurrence, maximum area of occupancy, population size and trend, and degree of fragmentation) and hence predict IUCN Red List categories for species. We applied our approach to nonpelagic birds and terrestrial mammals globally (∼15,000 species). The predicted categories were fairly consistent with published IUCN Red List assessments, but more optimistic overall. We predicted 4.2% of species (467 birds and 143 mammals) to be more threatened than currently assessed and 20.2% of data deficient species (10 birds and 114 mammals) to be at risk of extinction. Incorporating the habitat fragmentation subcriterion reduced these predictions 1.5–2.3% and 6.4–14.9% (depending on the quantitative definition of fragmentation) for threatened and data deficient species, respectively, highlighting the need for improved guidance for IUCN Red List assessors on the application of this aspect of the IUCN Red List criteria. Our approach complements traditional methods of estimating parameters for IUCN Red List assessments. Furthermore, it readily provides an early-warning system to identify species potentially warranting changes in their extinction-risk category based on periodic updates of land-cover information. Given our method relies on optimistic assumptions about species distribution and abundance, all species predicted to be more at risk than currently evaluated should be prioritized for reassessment.  相似文献   

10.
Red lists are a crucial tool for the management of threatened species and ecosystems. Among the information red lists provide, the threats affecting the listed species or ecosystem, such as pollution or hunting, are of special relevance. This information can be used to quantify the relative contribution of different threat factors to biodiversity loss by disaggregating the cumulative extinction risk across species into components that can be attributed to certain threats. We devised and compared 3 metrics that accomplish this and may be used as indicators. The first metric calculates the portion of the temporal change in red list index (RLI) values that is caused by each threat. The second metric attributes the deviation of an RLI value from its reference value to different threats. The third metric uses extinction probabilities that are inferred from red list categories to estimate the contribution of a threat to the expected loss of species or ecosystems within 50 years. We used data from Norwegian Red Lists to test and evaluate these metrics. The first metric captured only a minor portion of the biodiversity loss caused by threats because it ignores species whose red list category does not change. Management authorities will often be interested in the contribution of a given threat to the total deviation from the optimal state. This was measured by the remaining metrics. The second metric was best suited for comparisons across countries or taxonomic groups. The third metric conveyed the same information but uses numbers of species or ecosystem as its unit, which is likely more intuitive to lay people and may be preferred when communicating with stakeholders or the general public.  相似文献   

11.
Hei F 《Ecology》2012,93(5):974-980
Underpinning the International Union for Conservation of Nature (IUCN) Red List is the assessment of extinction risk as determined by the size and degree of loss of populations. The IUCN system lists a species as Critically Endangered, Endangered, or Vulnerable if its population size declines 80%, 50%, or 30% within a given time frame. However, effective implementation of the system faces substantial challenges and uncertainty because geographic scale data on population size and long-term dynamics are scarce. I develop a model to quantify extinction risk using a measure based on a species' distribution, a much more readily obtained quantity. The model calculates the loss of the area of occupancy that is equivalent to the loss of a given proportion of a population. It is a very simple yet general model that has no free parameters and is independent of scale. The model predicted well the distributions of 302 tree species at a local scale and the distributions of 348 species of North American land birds. This area-based model provides a solution to the long-standing problem for IUCN assessments of lack of data on population sizes, and thus it will contribute to facilitating the quantification of extinction risk worldwide.  相似文献   

12.
Abstract: Studies of species diversity, macroecology, and conservation are usually based on lists of species, but lists found in the scientific literature vary in completeness. The use of such data sets can produce misleading results, making it necessary to test species lists for completeness before undertaking an analysis. Species-richness estimators are useful for judging the completeness of species lists but have limitations. To add rigor to studies based on species lists, we propose that species lists should test for " omnipresent" taxa—species, genera, and families that occur throughout the region concerned—and for a minimum number of species and families. As a case study, we compared species assemblages in diverse habitats in Mexico and found that seven families and two genera of land birds are omnipresent in mainland Mexico (excluding treeless areas) and that the most depauperate assemblage known contains 35 species from 21 families. We concluded that a list of land birds from Mexico that lacks any of these omnipresent taxa or that contains fewer than 35 species or 21 families is incomplete. Similar analyses can be done for other taxa and other parts of the world. Tests for omnipresent taxa and for a minimum number of species and families can be used in combination with other existing criteria, such as species-richness functions, to better evaluate the completeness of species lists. Realistic results may be produced in macroecological and conservation studies only if they are based on reasonably complete species lists.  相似文献   

13.
The International Union for Conservation of Nature (IUCN) Red List of Threatened Species, a species extinction risk assessment tool, has been guiding conservation efforts for over 5 decades. It is widely assumed to have been instrumental in preventing species from moving closer to extinction and driving recoveries. However, the impact of the IUCN Red List in guiding conservation has not been evaluated. We conducted, transcribed, and coded interviews with experts who use the IUCN Red List across a range of sectors to understand how the list is used in conservation. We developed a theory of change to illustrate how and why change is expected to occur along causal pathways contributing to the long-term goal of the IUCN Red List and an evaluation framework with indicators for measuring the impact of the IUCN Red List in generating scientific knowledge, raising awareness among stakeholders, designating priority conservation sites, allocating funding and resources, influencing development of legislation and policy, and guiding targeted conservation action (key themes). Red-list assessments were the primary input leading to outputs (scientific knowledge, raised awareness), outcomes (better informed priority setting, access to funding and resource availability, improved legislation and policy), and impact (implemented conservation action leading to positive change) that have resulted in achievement of IUCN Red List goals. To explore feasibility of attributing the difference made by the IUCN Red List across themes, we studied increased scientific knowledge, raised awareness, access to funding and resource allocation, and increased conservation activity. The feasibility exploration showed increased scientific knowledge over time identified through positive trends in publications referring to the IUCN Red List in the literature; raised awareness of the list following high IUCN activity identified by peaks in online search activity; an increased proportion of conservation funding bodies requesting IUCN Red List status in the application process; and, based on interviews with Amphibian Specialist Group members, red-list assessments were essential in connecting relevant stakeholders and ensuring conservation action. Although we identified the IUCN Red List as a vital tool in global conservation efforts, it was challenging to measure specific impacts because of its ubiquitous nature. We are the first to identify the influence of the IUCN Red List on conservation.  相似文献   

14.
In International Union for Conservation of Nature (IUCN) Red List assessments, extent of occurrence (EOO) is a key measure of extinction risk. However, the way assessors estimate EOO from maps of species’ distributions is inconsistent among assessments of different species and among major taxonomic groups. Assessors often estimate EOO from the area of mapped distribution, but these maps often exclude areas that are not habitat in idiosyncratic ways and are not created at the same spatial resolutions. We assessed the impact on extinction risk categories of applying different methods (minimum convex polygon, alpha hull) for estimating EOO for 21,763 species of mammals, birds, and amphibians. Overall, the percentage of threatened species requiring down listing to a lower category of threat (taking into account other Red List criteria under which they qualified) spanned 11–13% for all species combined (14–15% for mammals, 7–8% for birds, and 12–15% for amphibians). These down listings resulted from larger estimates of EOO and depended on the EOO calculation method. Using birds as an example, we found that 14% of threatened and near threatened species could require down listing based on the minimum convex polygon (MCP) approach, an approach that is now recommended by IUCN. Other metrics (such as alpha hull) had marginally smaller impacts. Our results suggest that uniformly applying the MCP approach may lead to a one‐time down listing of hundreds of species but ultimately ensure consistency across assessments and realign the calculation of EOO with the theoretical basis on which the metric was founded.  相似文献   

15.
The European Union has made extensive biodiversity conservation efforts with the Habitats and Birds Directives and with the establishment of the Natura 2000 network of protected areas, one of the largest networks of conservation areas worldwide. We performed a gap analysis of the entire Natura 2000 system plus national protected areas and all terrestrial vertebrates (freshwater fish excluded). We also evaluated the level of connectivity of both systems, providing therefore a first estimate of the functionality of the Natura 2000 system as an effective network of protected areas. Together national protected areas and the Natura 2000 network covered more than one‐third of the European Union. National protected areas did not offer protection to 13 total gap species (i.e., species not covered by any protected area) or to almost 300 partial gap species (i.e., species whose representation target is not met). Together the Natura 2000 network and national protected areas left 1 total gap species and 121 partial gap species unprotected. The terrestrial vertebrates listed in the Habitats and Birds Directives were relatively well covered (especially birds), and overall connectivity was improved considerably by Natura 2000 sites that act as stepping stones between national protected areas. Overall, we found that the Natura 2000 network represents at continental level an important network of protected areas that acts as a good complement to existing national protected areas. However, a number of problems remain that are mainly linked to the criteria used to list the species in the Habitats and Birds Directives. The European Commission initiated in 2014 a process aimed at assessing the importance of the Birds and Habitats Directives for biodiversity conservation. Our results contribute to this assessment and suggest the system is largely effective for terrestrial vertebrates but would benefit from further updating of the species lists and field management.  相似文献   

16.
At local scales, infectious disease is a common driver of population declines, but globally it is an infrequent contributor to species extinction and endangerment. For species at risk of extinction from disease important questions remain unanswered, including when does disease become a threat to species and does it co‐occur, predictably, with other threats? Using newly compiled data from the International Union for Conservation of Nature (IUCN) Red List, we examined the relative role and co‐occurrence of threats associated with amphibians, birds, and mammals at 6 levels of extinction risk (i.e., Red List status categories: least concern, near threatened, vulnerable, endangered, critically endangered, and extinct in the wild/extinct). We tested the null hypothesis that the proportion of species threatened by disease is the same in all 6 Red List status categories. Our approach revealed a new method for determining when disease most frequently threatens species at risk of extinction. The proportion of species threatened by disease varied significantly between IUCN status categories and linearly increased for amphibians, birds, and all species combined as these taxa move from move from least concern to critically endangered. Disease was infrequently the single contributing threat. However, when a species was negatively affected by a major threat other than disease (e.g., invasive species, land‐use change) that species was more likely to be simultaneously threatened by disease than species that had no other threats. Potential drivers of these trends include ecological factors, clustering of phylogenetically related species in Red List status categories, discovery bias among species at greater risk of extinction, and availability of data. We echo earlier calls for baseline data on the presence of parasites and pathogens in species when they show the first signs of extinction risk and arguably before. La Amenaza de Enfermedades Incrementa a Medida que las Especies se Aproximan a la Extinción  相似文献   

17.
Abstract:  Endangered species lists are important tools in conservation. It is essential that these lists be prepared using categorization systems that objectively assess species extinction risk. To determine which threatened species categorization system is the most appropriate and the virtues and limitations of systems used on the American continent, we evaluated 25 categorization systems from 20 countries. These systems included examples of international lists, most national systems used on the American continent, and some systems independently proposed by academics. We based our assessment on 15 characteristics that categorization systems should have, in terms of categories, criteria, and other relevant issues, in order to evaluate species conservation status objectively. Of all evaluated systems, the current World Conservation Union system is the most suitable for assessing species extinction risk. Most categorization systems, but particularly national systems, have serious deficiencies and need to be improved substantially. We recommend governments use three types of lists: (1) threatened species lists constructed following a sound categorization system, (2) lists of species of conservation priority, and (3) lists that serve as normative tools (e.g., Convention on International Trade in Endangered Species of Wild Fauna and Flora). Additionally, the information used to categorize species should be explicit and available to the public. To make the most of threatened species lists in conservation, it is imperative that all countries use the same categorization system.  相似文献   

18.
Birds have been comprehensively assessed on the International Union for Conservation of Nature (IUCN) Red List more times than any other taxonomic group. However, to date, generation lengths have not been systematically estimated to scale population trends when undertaking assessments, as required by the criteria of the IUCN Red List. We compiled information from major databases of published life-history and trait data for all birds and imputed missing life-history data as a function of species traits with generalized linear mixed models. Generation lengths were derived for all species, based on our modeled values of age at first breeding, maximum longevity, and annual adult survival. The resulting generation lengths varied from 1.42 to 27.87 years (median 2.99). Most species (61%) had generation lengths <3.33 years, meaning that the period of 3 generations—over which population declines are assessed under criterion A—was <10 years, which is the value used for IUCN Red List assessments of species with short generation times. For these species, our trait-informed estimates of generation length suggested that 10 years is a robust precautionary value for threat assessment. In other cases, however, for whole families, genera, or individual species, generation length had a substantial impact on their estimated extinction risk, resulting in higher extinction risk in long-lived species than in short-lived species. Although our approach effectively addressed data gaps, generation lengths for some species may have been underestimated due to a paucity of life-history data. Overall, our results will strengthen future extinction-risk assessments and augment key databases of avian life-history and trait data.  相似文献   

19.
International Union for Conservation of Nature (IUCN) Red List assessments rely on published data and expert inputs, and biases can be introduced where underlying definitions and concepts are ambiguous. Consideration of climate change threat is no exception, and recently numerous approaches to assessing the threat of climate change to species have been developed. We explored IUCN Red List assessments of amphibians and birds to determine whether species listed as threatened by climate change display distinct patterns in terms of habitat occupied and additional nonclimatic threats faced. We compared IUCN Red List data with a published data set of species’ biological and ecological traits believed to infer high vulnerability to climate change and determined whether distributions of climate change‐threatened species on the IUCN Red List concur with those of climate change‐threatened species identified with the trait‐based approach and whether species possessing these traits are more likely to have climate change listed as a threat on the IUCN Red List. Species in some ecosystems (e.g., grassland, shrubland) and subject to particular threats (e.g., invasive species) were more likely to have climate change as a listed threat. Geographical patterns of climate change‐threatened amphibians and birds on the IUCN Red List were incongruent with patterns of global species richness and patterns identified using trait‐based approaches. Certain traits were linked to increases or decreases in the likelihood of a species being threatened by climate change. Broad temperature tolerance of a species was consistently related to an increased likelihood of climate change threat, indicating counterintuitive relationships in IUCN assessments. To improve the robustness of species assessments of the vulnerability or extinction risk associated with climate change, we suggest IUCN adopt a more cohesive approach whereby specific traits highlighted by our results are considered in Red List assessments. To achieve this and to strengthen the climate change‐vulnerability assessments approach, it is necessary to identify and implement logical avenues for further research into traits that make species vulnerable to climate change (including population‐level threats).  相似文献   

20.
Assessing temporal changes in species extinction risk is necessary for measuring conservation success or failure and for directing conservation resources toward species or regions that would benefit most. Yet, there is no long‐term picture of genuine change that allows one to associate species extinction risk trends with drivers of change or conservation actions. Through a review of 40 years of IUCN‐related literature sources on species conservation status (e.g., action plans, red‐data books), we assigned retrospective red‐list categories to the world's carnivores and ungulates (2 groups with relatively long generation times) to examine how their extinction risk has changed since the 1970s. We then aggregated species’ categories to calculate a global trend in their extinction risk over time. A decline in the conservation status of carnivores and ungulates was underway 40 years ago and has since accelerated. One quarter of all species (n = 498) moved one or more categories closer to extinction globally, while almost half of the species moved closer to extinction in Southeast Asia. The conservation status of some species improved (toward less threatened categories), but for each species that improved in status 8 deteriorated. The status of large‐bodied species, particularly those above 100 kg (including many iconic taxa), deteriorated significantly more than small‐bodied species (below 10 kg). The trends we found are likely related to geopolitical events (such as the collapse of Soviet Union), international regulations (such as CITES), shifting cultural values, and natural resource exploitation (e.g., in Southeast Asia). Retrospective assessments of global species extinction risk reduce the risk of a shifting baseline syndrome, which can affect decisions on the desirable conservation status of species. Such assessments can help conservationists identify which conservation policies and strategies are or are not helping safeguard biodiversity and thus can improve future strategies. Una Evaluación Retrospectiva de la Declinación Global de Carnívoros y Ungulados  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号