首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Soil contamination with radionuclides and potential remediation   总被引:5,自引:0,他引:5  
Zhu YG  Shaw G 《Chemosphere》2000,41(1-2):121-128
Soils contaminated with radionuclides, particularly 137Cs and 90Sr, pose a long-term radiation hazard to human health through exposure via the foodchain and other pathways. Remediation of radionuclide-contaminated soils has become increasingly important. Removal of the contaminated surface soil (often up to 40 cm) or immobilization of radionuclides in soils by applying mineral and chemical amendments are physically difficult and not likely cost-effective in practicality. Reducing plant uptake of radionuclides, especially 137CS and 90Sr by competitive cations contained in chemical fertilizers has the general advantage in large scale, low-level contamination incidents on arable land, and has been widely practiced in central and Western Europe after the Chernobyl accident. Phytoextraction of radionuclides by specific plant species from contaminated sites has rapidly stimulated interest among industrialists as well as academics, and is considered to be a promising bio-remediation method. This paper examines the existing remediation approaches and discusses phytoextraction of radionuclides from contaminated soils in detail.  相似文献   

2.
In this study, we investigated Phragmites australis’ use of different forms of nitrogen (N) and associated soil N transformations in response to petroleum contamination. 15N tracer studies indicated that the total amount of inorganic and organic N assimilated by P. australis was low in petroleum-contaminated soil, while the rates of inorganic and organic N uptake on a per-unit-biomass basis were higher in petroleum-contaminated soil than those in un-contaminated soil. The percentage of organic N in total plant-assimilated N increased with petroleum concentration. In addition, high gross N immobilization and nitrification rates relative to gross N mineralization rate might reduce inorganic-N availability to the plants. Therefore, the enhanced rate of N uptake and increased importance of organic N in plant N assimilation might be of great significance to plants growing in petroleum-contaminated soils. Our results suggest that plants might regulate N capture under petroleum contamination.  相似文献   

3.
Chlorophyll plays a pivotal role in the plant physiology and its productivity. Cultivation of plants in crude oil contaminated soil has a great impact on the synthesis of chlorophyll pigment. Morpho-anatomy of the experimental plant also shows structural deformation in higher concentrations. Keeping this in mind, a laboratory investigation has been carried out to study the effect of crude oil on chlorophyll content and morpho-anatomy of Cyperus brevifolius plant. Fifteen-day-old seedling of the plant was planted in different concentrations of the crude oil mixed soil (i.e., 10,000, 20,000, 30,000, 40,000, and 50,000 ppm). A control setup was also maintained without adding crude oil. Results were recorded after 6 months of plantation. Investigation revealed that there is a great impact of crude oil contamination on chlorophyll content of the leaves of the experimental plant. It also showed that chlorophyll a, chlorophyll b, and total chlorophyll content of leaves grown in different concentrations of crude oil were found to be lower than those of the control plant. Further, results also demonstrated that chlorophyll content was lowest in the treatment that received maximum dose of crude oil. It also showed that chlorophyll content was decreased with increased concentration of crude oil. Results also demonstrated that there was a reduction in plant shoot and root biomass with the increase of crude oil concentration. Results also revealed that the shoot biomass is higher than root biomass. Morphology and anatomy of the experimental plant also show structural deformation in higher concentrations. Accumulation of crude oil on the cuticle of the transverse section of the leaves and shoot forms a thick dark layer. Estimation of the level of pollution in an environment due to oil spill is possible by the in-depth study of the harmful effects of oil on the morphology and anatomy and chlorophyll content of the plants grown in that particular environment.  相似文献   

4.
Recent evidence from novel phytotron and free-air ozone (O3) fumigation experiments in Europe and America on forest tree species is highlighted in relation to previous chamber studies. Differences in O3 sensitivity between pioneer and climax species are examined and viewed for trees growing at the harsh alpine timberline ecotone. As O3 apparently counteracts positive effects of elevated CO2 and mitigates productivity increases, response is governed by genotype, competitors, and ontogeny rather than species per se. Complexity in O3 responsiveness increased under the influence of pathogens and herbivores. The new evidence does not conflict in principle with previous findings that, however, pointed to a low ecological significance. This new knowledge on trees' O3 responsiveness beyond the juvenile stage in plantations and forests nevertheless implies limited predictability due to complexity in biotic and abiotic interactions. Unravelling underlying mechanisms is mandatory for assessing O3 risks as an important component of climate change scenarios.  相似文献   

5.
Environmental Science and Pollution Research - The interaction between oil and stock market returns is one of the most important relationships that have a significant influence on the economy of...  相似文献   

6.
Environmental Science and Pollution Research - The phytoremediation potential and enzymatic defense of a medicinal herb Leucas aspera was studied in the crude oil contaminated soil. The...  相似文献   

7.
Arctic terrain was divided into three layers, moss, detritus and clay, and each layer was contacted with Norman Wells crude oil. Chromatographic analysis of the crude oil extracts of the terrain layers showed that the adsorption capacity of the terrain increased with increasing organic content. The higher molecular weight n-alkanes were adsorbed to a greater extent than lower n-alkanes on the moss and detritus layers. Of the aromatics, p-xylene was adsorbed to a greater extent than benzene on all three layers of the terrain. Retention of crude oil components on Arctic terrain in the event of an oil spill would be in accord with these findings.  相似文献   

8.
The expected increase in offshore oil exploration and production in the Arctic may lead to crude oil spills along arctic shorelines. To evaluate the potential effectiveness of bioremediation to treat such spills, oil spill bioremediation in arctic sediments was simulated in laboratory microcosms containing beach sediments from Barrow (Alaska), spiked with North Slope Crude, and incubated at varying temperatures and salinities. Biodegradation was measured via respiration rates (CO2 production); volatilization was quantified by gas chromatography/mass spectrophotometry (GC/MS) analysis of hydrocarbons sorbed to activated carbon, and hydrocarbons remaining in the sediment were quantified by GC/flame ionization detector (FID). Higher temperature leads to increased biodegradation by naturally occurring microorganisms, while the release of volatile organic compounds was similar at both temperatures. Increased salinity had a small positive impact on crude oil removal. At higher crude oil dosages, volatilization increased, however CO2 production did not. While only a small percentage of crude oil was completely biodegraded, a larger percentage was volatilized within 6–9 weeks.  相似文献   

9.
This study examines cadmium (Cd) contamination in orchard soils and fruit trees in Guangzhou, China, and assesses its potential health risk. Soils and tissues samples of three species of fruit trees were collected from three orchards. The average soil Cd concentration was 1.27, 1.84 and 0.68 mg/kg in orchards I, II, and III, respectively. The carambola (Averrhoa carambola) accumulated exceptionally high concentrations of Cd (7.57, 10.84, 9.01 and 2.15 mg/kg dw in root, twig, leaf and fruit, respectively), being 6.0-24 times and 4.0-10 times the corresponding tissue Cd in the longan (Dimocarpus longan) and wampee (Clausena lansium), respectively. Furthermore, all Cd concentrations (0.04-0.25 mg Cd/kg fw) of the fruits exceeded the tolerance limit of cadmium in foods of PR China (0.03 mg/kg fw). Our results indicate that the carambola tree has high Cd accumulation capacity and might be a Cd accumulator; and its fruit, among the three species of fruits studied, also poses the highest potential health risk to local residents.  相似文献   

10.
Environmental Science and Pollution Research - Oil spills generate several environmental impacts and have become more common with the increase in petroleum extraction, refining, transportation, and...  相似文献   

11.
The disposal of hazardous crude oil tank bottom sludge (COTBS) represents a significant waste management burden for South Mediterranean countries. Currently, the application of biological systems (bioremediation) for the treatment of COTBS is not widely practiced in these countries. Therefore, this study aims to develop the potential for bioremediation in this region through assessment of the abilities of indigenous hydrocarbonoclastic microorganisms from Libyan Hamada COTBS for the biotreatment of Libyan COTBS-contaminated environments. Bacteria were isolated from COTBS, COTBS-contaminated soil, treated COTBS-contaminated soil, and uncontaminated soil using Bushnell Hass medium amended with Hamada crude oil (1 %) as the main carbon source. Overall, 49 bacterial phenotypes were detected, and their individual abilities to degrade Hamada crude and selected COBTS fractions (naphthalene, phenanthrene, eicosane, octadecane and hexane) were evaluated using MT2 Biolog plates. Analyses using average well colour development showed that ~90 % of bacterial isolates were capable of utilizing representative aromatic fractions compared to 51 % utilization of representative aliphatics. Interestingly, more hydrocarbonoclastic isolates were obtained from treated contaminated soils (42.9 %) than from COTBS (26.5 %) or COTBS-contaminated (30.6 %) and control (0 %) soils. Hierarchical cluster analysis (HCA) separated the isolates into two clusters with microorganisms in cluster 2 being 1.7- to 5-fold better at hydrocarbon degradation than those in cluster 1. Cluster 2 isolates belonged to the putative hydrocarbon-degrading genera; Pseudomonas, Bacillus, Arthrobacter and Brevundimonas with 57 % of these isolates being obtained from treated COTBS-contaminated soil. Overall, this study demonstrates that the potential for PAH degradation exists for the bioremediation of Hamada COTBS-contaminated environments in Libya. This represents the first report on the isolation of hydrocarbonoclastic bacteria from Libyan COTBS and COTBS-contaminated soil.  相似文献   

12.
13.
The effects of crude oil and three oil spill dispersants (Corexit 9600, 9550 and 7664) on nitrogenase activity in the cyanobacteria Nostoc sp. were examined. The addition of oil to Nostoc sp. cultures resulted in a catastrophic decline in nitrogenase activity with activity ceasing 7 h after treatment. The addition of a dispersant with the oil did not ameliorate this effect. Cultures exposed to high concentrations of dispersants showed lower rates on nitrogenase activity than untreated cultures. However, it is unlikely that dispersant concentrations of this magnitude would occur in the field. At the lowest concentration tested, which approximates the manufacturer's recommended application rate, the effects of the dispersant appear to be negligible.  相似文献   

14.
秸秆固定化石油降解菌降解原油的初步研究   总被引:1,自引:0,他引:1  
用秸秆做载体固定嗜碱芽孢杆菌(Bacillus alcalophilus SG)降解原油,其原油去除率为73.88%,高于单纯投加菌液或者菌液与秸秆的混合物的原油去除率.秸秆的最佳投加量(干重)为25.0 g/L,最佳固定化时间为30 h.用预处理过的秸秆固定SG,降低了固定化SG的原油去除率.在固定化培养基中添加无机盐离子,促进了固定化SG对原油的降解.不同初始pH的原油培养基在固定化SG降解原油的过程中逐渐呈中性或偏碱性.固定化SG在pH 6.0~10.0时对原油均有不错的降粘能力.  相似文献   

15.
Maki H  Sasaki T  Harayama S 《Chemosphere》2001,44(5):1145-1151
We investigated the physicochemical changes resulting from irradiation by sunlight of biodegraded crude oil. An Arabian light crude oil sample was first subjected to microbial degradation. n-Alkanes and aromatic compounds such as naphthalenes, fluorenes, dibenzothiophenes and phenanthrenes possessing short, alkyl side chain(s) were almost completely degraded, while the contents of the saturated and aromatic fractions were reduced by 70% and 40%, respectively. This biodegraded oil was then suspended in seawater and exposed to sunlight irradiation for several weeks. The most remarkable change caused by the irradiation was a substantial decline in the aromatic fraction with a concomitant increase in the resin and asphaltene fractions. A 13C-nuclear magnetic resonance (NMR) spectroscopic analysis showed that the aromaticity of the biodegraded oil was significantly lower in the irradiated sample. A field desorption-mass spectrometric (FD-MS) analysis showed that sunlight irradiation reduced the average molecular weight of the oil components and formed oxygenated compounds. Consistent with this observation is that the oxygen content in the oil increased as the irradiation was prolonged. The bioavailability of the biodegraded oil was increased by the photo-oxidation: the growth of seawater microbes was minimal when the non-irradiated biodegraded oil was used as the source of carbon and energy; however, growth was significant when irradiated biodegraded oil was used. The concentration of dissolved organic carbon (DOC) increased linearly during the sunlight irradiation of the biodegraded oil, and this increase was matched by an increase in ultraviolet-absorptive materials in the seawater. The photochemically formed, water-soluble fraction (WSF) showed acute toxicity against the halophilic crustacean, Artemia.  相似文献   

16.
Environmental Science and Pollution Research - The oil-water separation is a popular issue and the removal of oil from bulk water is also meaningful especially in oil spill incident, which not only...  相似文献   

17.
Chaillan F  Gugger M  Saliot A  Couté A  Oudot J 《Chemosphere》2006,62(10):1574-1582
Cyanobacterial mats are ubiquitous in tropical petroleum-polluted environments. They form a high biodiversity microbial consortium that contains efficient hydrocarbons degraders. A cyanobacterial mat collected from a petroleum-contaminated environment located in Indonesia was studied for its biodegradation potential. In the field, the natural mat was shown to degrade efficiently the crude oil present in the environment. This natural mat demonstrated also a strong activity of degradation on model crude oil under laboratory conditions. In axenic cultures, the monospecific cyanobacterium Phormidium animale that constitute the bulk of the biomass did not exhibit any degradative capacity on hydrocarbons in the range of C13-C35 carbon atom number either in autotrophic or heterotrophic conditions. It was concluded that this cyanobacterial strain living on a heavily contaminated site had no direct effect on biodegradation of crude oil, the degradation activity being exclusively achieved by the other microorganisms present in the microbial consortium of the mat.  相似文献   

18.
Glyphosate has been the most widely used herbicide during the past three decades. The US Environmental Protection Agency (EPA) classifies glyphosate as ‘practically non-toxic and not an irritant’ under the acute toxicity classification system. This classification is based primarily on toxicity data and due to its unique mode of action via a biochemical pathway that only exists in a small number of organisms that utilise the shikimic acid pathway to produce amino acids, most of which are green plants. This classification is supported by the majority of scientific literature on the toxic effects of glyphosate. However, in 2005, the Food and Agriculture Organisation (FAO) reported that glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA), are of potential toxicological concern, mainly as a result of accumulation of residues in the food chain. The FAO further states that the dietary risk of glyphosate and AMPA is unlikely if the maximum daily intake of 1 mg kg?1 body weight (bw) is not exceeded. Research has now established that glyphosate can persist in the environment, and therefore, assessments of the health risks associated with glyphosate are more complicated than suggested by acute toxicity data that relate primarily to accidental high-rate exposure. We have used recent literature to assess the possible risks associated with the presence of glyphosate residues in food and the environment.  相似文献   

19.
Biochars are biological residues combusted under low oxygen conditions, resulting in a porous, low density carbon rich material. Their large surface areas and cation exchange capacities, determined to a large extent by source materials and pyrolysis temperatures, enables enhanced sorption of both organic and inorganic contaminants to their surfaces, reducing pollutant mobility when amending contaminated soils. Liming effects or release of carbon into soil solution may increase arsenic mobility, whilst low capital but enhanced retention of plant nutrients can restrict revegetation on degraded soils amended only with biochars; the combination of composts, manures and other amendments with biochars could be their most effective deployment to soils requiring stabilisation by revegetation. Specific mechanisms of contaminant-biochar retention and release over time and the environmental impact of biochar amendments on soil organisms remain somewhat unclear but must be investigated to ensure that the management of environmental pollution coincides with ecological sustainability.  相似文献   

20.
Climate change: potential impact on plant diseases   总被引:1,自引:0,他引:1  
Global climate has changed since pre-industrial times. Atmospheric CO(2), a major greenhouse gas, has increased by nearly 30% and temperature has risen by 0.3 to 0.6 degrees C. The intergovernmental panel on climate change predicts that with the current emission scenario, global mean temperature would rise between 0.9 and 3.5 degrees C by the year 2100. There are, however, many uncertainties that influence these predictions. Despite the significance of weather on plant diseases, comprehensive analysis of how climate change will influence plant diseases that impact primary production in agricultural systems is presently unavailable. Evaluation of the limited literature in this area suggests that the most likely impact of climate change will be felt in three areas: in losses from plant diseases, in the efficacy of disease management strategies and in the geographical distribution of plant diseases. Climate change could have positive, negative or no impact on individual plant diseases. More research is needed to obtain base-line information on different disease systems. Most plant disease models use different climatic variables and operate at a different spatial and temporal scale than do the global climate models. Improvements in methodology are necessary to realistically assess disease impacts at a global scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号