首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以某化工厂Cr(VI)污染土壤及建筑物为研究对象,分别开展了污染土壤柱洗脱、药剂修复和污染建筑物浸洗小试实验。结果表明:1)污染土壤柱洗脱实验经过6 d运行后,土壤中残留的Cr(VI)含量较低,为28.5 mg/kg,此时洗脱固液比约为1∶4,洗脱效率可达97%;2)修复污染土壤中,FeSO_4和CaS_5两种药剂对Cr(VI)污染土壤的修复均具有一定的效果,FeSO_4+CaS_5混用的情况下,可在降低药剂投加量的情况下,大幅降低土壤中TCr和Cr(VI)的浸出浓度以及土壤的Cr(VI)含量,铬的稳定性增强,迁移性降低;3)破碎后的污染建筑物经1次清水+1次药剂浸洗后,浸洗效果较好。  相似文献   

2.
改性生物炭负载nZVI对土壤Cr(VI)的修复差异研究   总被引:2,自引:0,他引:2  
考察了生物炭(BC)、酸洗生物炭(HCl-BC)和纳米零价铁负载生物炭(n ZVI-HCl-BC)对土壤中Cr(VI)还原和总Cr形态转化的影响.结果表明,生物炭对Cr(VI)还原率随土壤含水率的升高而显著提高.在较高土壤含水率(70%)条件下,各生物炭对Cr(VI)的最高还原率排序为:HCl-BC(97.26%)n ZVI-HCl-BC(88.36%)BC(87.61%).在不同Cr(VI)污染水平下(150、300、600和900 mg·kg~(-1)),HCl-BC对土壤中Cr(VI)的还原率最高.随Cr(VI)含量升高,BC和HCl-BC对Cr(VI)的还原率呈降低趋势,而n ZVI-HCl-BC对Cr(VI)的还原率为先降低后升高.形态分析表明,生物炭在不同程度上增加了土壤中Cr残渣态的比例:n ZVI-HCl-BC(11.58%)HCl-BC(9.53%)BC(1.42%),表明生物炭对土壤Cr起到稳定作用.综上,改性生物炭显著促进Cr(VI)还原及总Cr向残渣态转化,表明其具有修复Cr污染土壤的潜力.  相似文献   

3.
绿色合成纳米零价铁铜淋洗修复Cr(Ⅵ)污染土壤   总被引:1,自引:1,他引:0       下载免费PDF全文
祝方  刘涛  石建惠 《环境工程》2019,37(4):172-176
采用自制的绿色合成纳米零价铁铜(GT-nZVI/Cu)对Cr(Ⅵ)污染土壤进行淋洗修复。分别测定了土壤浸出液中Cr(Ⅵ)浓度、pH值和电导率,并使用改进的BCR连续提取法分析了淋洗前后污染土壤中铬的形态变化。结果表明:淋洗过程分为2个阶段,Cr(Ⅵ)的释放主要在前3个孔隙体积(PV)内;浸出液中电导率的变化趋势与Cr(Ⅵ)浓度变化一致;浸出液pH值随着淋洗体积的增加而增加,土壤的平衡作用变得稳定;土壤中Cr(Ⅵ)浓度、悬浮液pH值和GT-nZVI/Cu浓度对铬污染土壤的修复效果均有一定影响。铬的形态分析表明:铬污染土壤在淋洗后可还原态铬含量降低,氧化态铬和残渣态铬的含量增加。GT-nZVI/Cu悬浮液对污染土壤淋洗后,土壤中铬形态更加稳定。  相似文献   

4.
采用一次平衡法研究Cr(Ⅵ)在棕壤中的吸附解吸行为,并针对pH值和土壤有机质对吸附反应的影响进行研究。结果表明,Langmuir方程和Freundlich方程可以很好地拟合Cr(Ⅵ)在土壤中的吸附,Cr(Ⅵ)在土壤中的最大吸附为204.08 mg/kg。在pH值3.0~7.0范围内,供试土壤吸附量随pH值增加而减少;土壤对Cr(Ⅵ)的吸附量与土壤中的有机质含量呈负相关。在酸性条件下,低分子量有机酸抑制土壤对Cr(Ⅵ)的吸附。加入供试有机酸后土壤对Cr(Ⅵ)最大吸附量的顺序为:无有机酸>乙酸>草酸>酒石酸>柠檬酸。柠檬酸更适用于Cr(Ⅵ)污染土壤中污染因子的萃取和淋洗。  相似文献   

5.
通过对某铬渣堆场的重度铬污染土壤进行解吸动力学和难溶态Cr (Ⅵ)还原实验,揭示限制重度铬污染土壤有效修复的关键因素。结果表明:室温下,采用柠檬酸淋洗可显著降低土壤中难溶态Cr (Ⅵ)浓度,将淋洗温度提高至90℃,可进一步显著降低难溶态Cr (Ⅵ)浓度。淋洗后土样中难溶态Cr (Ⅵ)浓度越低,其还原效果越好。供试土样经柠檬酸高温淋洗+FeSO4高温还原工艺修复后,Cr (Ⅵ)浓度从(1813.2±59.8) mg/kg降至(99.1±8.8) mg/kg。此外,淋洗实验中柠檬酸对难溶态Cr (Ⅵ)的还原可忽略不计;土样中残留的柠檬酸对土壤Cr (Ⅵ)的检测结果无显著影响。研究证明了难溶态Cr (Ⅵ)的还原效果是重度铬污染土壤修复的关键限制因素,结果可为铬污染土壤修复工艺研发提供参考。  相似文献   

6.
本研究通过引入沼生植物香蒲构建植物微生物燃料电池系统(P-MFC)修复Cr(VI)污染湿地土壤,考察了植物、不同初始Cr(VI)浓度对系统产电及去除效率的影响.结果显示,香蒲种植能显著提高P-MFC运行性能,系统最大功率密度与Cr(VI)去除率分别提高至23.83 mW·m~(-2)、33.01%,随着Cr(VI)暴露浓度的升高,系统运行性能降低.利用P-MFC修复Cr(VI)污染土壤过程中,电化学还原作用是Cr(VI)去除的主要机制,近90%的Cr(VI)通过电化学还原去除,系统中0.3%~1.86%的Cr(VI)被香蒲吸收富集,3.5%~9.5%的Cr(VI)被微生物与还原性有机物直接还原.通过高通量测序技术分析发现,香蒲种植与低浓度Cr(VI)暴露下阳极微生物群落多样性较大,优势门类Proteobacteria相对丰度最高为63.9%,较未种植香蒲与高浓度Cr(VI)暴露条件下提高了3.4%~19.0%,电化学活性微生物Geobacter相对丰度最高为12.4%,较未种植香蒲与高浓度Cr(VI)暴露条件下提高了4.4%~6.8%.系统中对Cr(VI)具有较强耐受性与还原能力的Acinetobacter、Bacillus占有较大比例,且相对丰度随暴露浓度升高而增大,最高分别为19.0%、14.4%,进一步说明微生物群落在Cr(VI)去除上发挥了一定作用.上述结果表明,P-MFC在去除湿地土壤Cr(VI)污染方面具有良好的潜力.  相似文献   

7.
通过静态批试验与动态土柱试验,研究了壤质砂土、壤土、壤质黏土、黏土的特性对Cr(Ⅵ)修复的影响规律。该试验针对污染土壤的多样性,研究了不同土壤种类对试验的影响。试管批试验证明,当土壤pH值为6时,CMC-nZVI修复土壤的效果最好,Cr(Ⅵ)的去除率达97.9%。通过动态土柱试验证明,CMC-nZVI在土柱中的穿透能力很强,在土壤中的穿透能力的顺序为壤质砂土壤土壤质黏土黏土,在壤质砂土中的穿透率达89%,在黏土中穿透率为45%。在壤质砂土土柱中,当CMC-nZVI浓度为0.12 g/L,用量为6 BV时,Cr(Ⅵ)的最大去除率和还原量分别为98%和181.4 mg/g,而在黏土中其去除率和还原量为65%和108 mg/g。壤质砂土经过修复后Cr的TCLP溶出浓度减小了92%。研究表明CMC-nZVI作为Cr(Ⅵ)污染土壤原位修复的分散还原体系是适宜的。  相似文献   

8.
从某受铬污染的土壤中分离出一株铬吸附菌,经初步分离鉴定为芽孢杆菌。利用微生物培养基对其进行扩大培养,然后制备生物吸附剂,研究了吸附剂对Cr(Ⅵ)的吸附行为及pH、Cr(Ⅵ)初始浓度、温度和共存离子对吸附的影响。结果表明,吸附剂对Cr(Ⅵ)有较好的吸附效果,最佳吸附条件为pH=9.0,初始浓度为40mg/L,最佳温度为3...  相似文献   

9.
老化过程对土壤重金属有效性和毒性起着关键性作用.由于我国土壤类型的复杂性,目前对于我国土壤中铬(Cr)的老化过程、转变速率及影响Cr在土壤中老化的关键因子仍然不清楚.本研究选取了全国22种典型土壤,使用0.01 mol.L-1CaCl2作为有效态提取剂,研究我国典型土壤中外源Cr(Ⅲ)的老化过程及影响因子,为准确评价重金属污染的生态环境风险提供科学依据.结果表明,有效态Cr含量随时间先是快速下降,然后缓慢持续降低.在培养期间的前21 d下降速率快,而以后则变化比较缓慢.Elovich方程可以有效拟合有效态Cr在我国22种典型土壤中转化的动力学过程,方程的斜率参数可以作为Cr在土壤中老化速率的表征参数,并用它来比较不同土壤中Cr的老化速率快慢.老化速率与土壤性质的逐步回归分析结果表明,土壤性质中对老化速率影响最大的是有机质,其次是pH和活性氧化铁.  相似文献   

10.
针对酸溶态占比高的Cr(Ⅵ)污染土壤还原解毒不彻底、后期易返黄的问题,确定了水溶态Cr(Ⅵ)快速还原、酸溶态Cr(Ⅵ)长效缓释还原的修复思路。试验考察了单独添加硫铁矿对Cr(Ⅵ)处理的效果,并采用FeSO4·7H2O、硫铁矿分步还原法探究处理后污染土壤的长效稳定性,进行了540 d的长期监测。结果表明:FeSO4·7H2O还原药剂长效性较差,在自然环境中容易发生氧化,失去还原效能,无法完全还原缓慢释放的酸溶态Cr(Ⅵ),有必要加入长效还原缓释药剂对酸溶态Cr(Ⅵ)进行持续还原。硫铁矿单独修复水溶态Cr(Ⅵ)为主的污染土壤,在添加20%的硫铁矿,反应14 d的条件下,土壤中Cr(Ⅵ)浸出浓度降至30.4 mg/L。采用FeSO4·7H2O和硫铁矿分步还原酸溶态Cr(Ⅵ)污染土壤,先加入2%的FeSO4·7H2O,养护3 d后再加入3%的硫铁矿反应27 d,Cr(Ⅵ)浸出浓度即降至0.29 mg/L,加入5%的硫铁矿,反应4 d后Cr(Ⅵ)浸出浓度即可降至0.43 mg/L,之后Cr(Ⅵ)浸出浓度保持稳定。经过540 d的长期监测未发现浸出浓度有上升情况。  相似文献   

11.
Cr(Ⅵ)不同于Cr(Ⅲ),它具有明显的毒性、致癌性、致突变性,且在水体和土壤中迁移性强,因此,将Cr(Ⅵ)还原为Cr(Ⅲ)继而以Cr(OH)3沉淀形式去除,是治理Cr(Ⅵ)污染的重要措施之一.本文研究了生物制备β-Fe OOH光催化酒石酸还原Cr(Ⅵ)的效率及影响因素.结果表明:在生物合成的β-Fe OOH存在条件下,光催化酒石酸还原Cr(Ⅵ)的效率大幅提高,是没有β-Fe OOH对照处理的4.35倍.β-Fe OOH存在下光催化酒石酸还原Cr(Ⅵ)受p H、β-Fe OOH浓度和酒石酸浓度的影响.在p H 2.0~5.0实验范围内,p H越低,还原率越高.当p H=5.0时,Cr(Ⅵ)还原率只有45%,p H=2.0时,Cr(Ⅵ)还原率可达到90%.β-Fe OOH浓度为0.6 g·L-1时,Cr(Ⅵ)还原率达到最高.酒石酸浓度的增加有利于Cr(Ⅵ)的光催化还原.在β-Fe OOH浓度为0.6 g·L-1,酒石酸浓度为200μmol·L-1,溶液p H=2.0的最佳条件下,溶液中Cr(Ⅵ)可在80min内100%光催化还原成Cr(Ⅲ).本研究为生物制备β-Fe OOH的应用和Cr(Ⅵ)污染治理提供了新的选择.  相似文献   

12.
环境中氧化锰对Cr(Ⅲ)氧化机理的研究   总被引:8,自引:1,他引:8       下载免费PDF全文
研究了几种人工合成的氧化锰和新鲜田间土样对Cr(Ⅲ)的氧化作用.结果表明,自然土壤环境中,氧化锰是Cr(Ⅲ)氧化的主要电子接受体,氧化能力δ-MnO_2>α-MnO_2>γ-MnOOH.土壤对Cr(Ⅲ)氧化能力与易还原性氧化锰含量显著相关.土壤风干后,氧化Cr(Ⅲ)的能力明显降低.并提出了Cr(Ⅲ)在MnO_2表面氧化的机理.  相似文献   

13.
以某铬盐厂铬渣堆存场地内Cr(Ⅵ)污染土壤为研究对象,采用七水硫酸亚铁(Fe SO_4·7H_2O)、多硫化钙(Ca Sx)、Fe SO_4·7H_2O和Ca Sx、Fe SO_4·7H_2O和水泥4种药剂开展Cr(Ⅵ)污染土壤的还原稳定化实验,并利用BCR连续提取法进行铬形态分析。结果表明,Cr(Ⅵ)还原效果:Fe SO_4·7H_2O和Ca Sx复配药剂在4种药剂中对Cr(Ⅵ)的整体还原效果最好。铬稳定效果:Fe SO_4·7H_2O和水泥复配药剂在4种药剂中对土壤铬的稳定性最好,Fe SO_4·7H_2O和水泥复配药剂处理对铬的形态分布的影响是使弱酸提取态、可还原态和可氧化态转化成残渣态,处理后残渣态铬质量分数高达30.98%。污染土壤中铬的形态分布为可氧化态(63.67%)残渣态(23.29%)弱酸提取态(6.80%)可还原态(6.25%),4种药剂处理后土壤中铬的形态分布为可氧化态残渣态可还原态弱酸提取态。  相似文献   

14.
纳米零价铁铜双金属对铬污染土壤中Cr(Ⅵ)的还原动力学   总被引:1,自引:0,他引:1  
马少云  祝方  商执峰 《环境科学》2016,37(5):1953-1959
采用液相还原法制备纳米零价铁铜双金属(n ZVI/Cu),通过扫描电子显微镜(SEM)和X射线衍射(XRD)对其进行形貌观测和表征分析,用制备的n ZVI/Cu修复Cr(Ⅵ)污染的土壤,研究了不同反应条件对修复效果的影响,探讨了还原动力学规律.结果表明,n ZVI/Cu对土壤中的Cr(Ⅵ)有很好的降解效果,反应初始p H为7,温度为30℃时,加入2 g·L~(-1)的n ZVI/Cu材料,在10 min内Cr(Ⅵ)含量为88 mg·kg~(-1)的污染土壤中的Cr(Ⅵ)去除率可以达到99%以上.改变n ZVI/Cu加入量、p H值、反应温度以及添加腐殖酸都会对Cr(Ⅵ)的去除效果产生影响.改变p H值和反应温度对去除土壤中Cr(Ⅵ)的影响都比较明显,p H值越小,反应温度越高Cr(Ⅵ)的去除效果越好,添加腐殖酸对去除土壤中的Cr(Ⅵ)有一定的影响.n ZVI/Cu降解Cr(Ⅵ)的过程符合伪一级还原动力学模型,还原速率与反应温度的关系符合阿仑尼乌斯(Arrhenius)定律,反应活化能Ea为104.26 k J·mol~(-1).  相似文献   

15.
污染河流中Cr(Ⅵ)对浅层地下水的影响研究   总被引:6,自引:0,他引:6  
为了研究污染河流中Cr(Ⅵ)对浅层地下水的影响,选用3种天然砂土作为渗透介质进行室内试验,以生活污水模拟污染河水,发现铬在粗砂中第13d发生穿透,此后粗砂对铬的去除率为77%~99%;2种中砂对铬的去除率始终大于91%和96%,铬很难进入地下水.凉水河野外试验表明,凉水河沿岸的1#、2#、3#采样点和煤厂井中Cr(Ⅵ)浓度均不大于地下水中Cr(Ⅵ)的背景浓度,凉水河中的Cr(Ⅵ)对地下水影响较小.还原和沉淀反应是Cr(Ⅵ)去除的主要机理,由于长期污染河流下部渗透介质始终处于厌氧环境,其中富含还原性物质,Cr(Ⅵ)可以通过沉淀反应大部分得以去除,本次试验研究表明污染河流不是地下水铬污染的来源.  相似文献   

16.
通过紫色土对Cr(Ⅵ)在不同酸度的静态吸附实验,用Langmuir吸附模型进行拟合得到土壤对Cr(Ⅵ)的吸附曲线和曲线方程,得到酸度影响紫色土对Cr(Ⅵ)的吸附的规律。结果显示:在pH为3.0、5.0和7.0的溶液中,紫色土对Cr(Ⅵ)的吸附随pH降低而降低;不同亚类紫色土吸附能力为石灰性紫色土中紫色土酸性紫色土。石灰性紫色土胶体核的碳酸钙含较高,加强了土壤中碳酸盐、氧化物对铬的吸附和固定作用;不同pH环境紫色土对Cr(Ⅵ)吸附的不同,一方面是pH影响了土壤的电势,部分Cr(Ⅵ)转变为Cr(Ⅲ)而沉淀;另一方面是pH影响了土壤中的H+浓度,使胶体团的电位平衡发生破坏,土壤中活性铝和铁溶蚀作用使H+和Cr(Ⅵ)竞争吸附加强,降低对Cr(Ⅵ)的吸附。  相似文献   

17.
常规地下水修复技术如物理法、化学法和生物法难以同时降解地下水中重金属-有机物复合污染.本文提出多针-板脉冲放电等离子体同时降解地下水中重金属和有机物复合污染的方法 .以Cr(VI)和阿特拉津为目标污染物,研究复合污染中Cr(VI)和阿特拉津浓度、放电电压、溶液初始pH值和地下水中存在的主要离子对Cr(VI)和阿特拉津降解效果的影响,并探究放电过程生成的活性物质对复合污染中Cr(VI)和阿特拉津降解的作用效应.结果表明,相对单一污染物,复合污染物中Cr(VI)或阿特拉津的存在能够消耗放电过程产生的·H和·OH,阻碍其复合,Cr(VI)和阿特拉津在降解过程中产生协同效应.电压为13 kV时,单独处理10 mg·L-1的Cr(VI)和阿特拉津的降解效率分别为34.0%和51.5%,而复合污染中Cr(VI)和阿特拉津的初始浓度均为10 mg·L-1时,降解效率分别提高到45.0%和64.1%.放电电压增加,复合污染中Cr(VI)和阿特拉津的降解效率提高,但其能量效率呈下降趋势.增加溶液初始pH值,阿特拉津的降解效率减小,而Cr(VI)的降解效率呈现先...  相似文献   

18.
为降低地下水中的Cr (VI)污染,选择生物反应过程中常见的电子供体(糖蜜)和连二亚硫酸盐分别作为渗透性反应墙(PRB)的反应材料和生物杀灭剂,以期能促进生化反应还原Cr (VI)的同时还能阻止生物堵塞效应.采用PFLOTRAN软件模拟以糖蜜为反应材料和连二亚硫酸盐为生物杀灭剂的PRB修复非均质含水层中重金属污染的生物化学反应过程.结果表明,该PRB技术能有效降低Cr (VI)浓度至0.1mg/L以下;提高生物杀灭剂的注入浓度,注入速率以及降低糖蜜初始浓度可避免生物堵塞效应,达到修复Cr (VI)污染与提高PRB使用寿命的双重目标.研究成果可为类似场地地下水重金属污染修复的最优设计方案提供决策依据.  相似文献   

19.
以氯化钾为提取剂,氯化钠、二苯碳酰二肼、氨基磺酸混合试剂为固体显色剂,建立了土壤中可溶性Cr(Ⅵ)的快速现场测定方法,并将其用于某铬渣场地土壤污染调查。试验结果表明,采用0.3 mol/L的氯化钾提取液,现场反复震荡5次,每次震荡0.5 min,浸提效果达到最好,加标回收率(n=5)为82.40%~94.68%,相对标准偏差为1.67%~3.92%,检出限为0.5 mg/kg,测定结果能够准确反应不同深度土壤中Cr(Ⅵ)污染程度。该方法操作简便、快捷,尤其适用于铬污染土壤现场调查及污染事故的应急监测分析等领域。  相似文献   

20.
六价铬(Cr(Ⅵ))是极具危害的环境污染物,利用微生物治理Cr(Ⅵ)污染是目前生物修复的热点之一,其中耐Cr(Ⅵ)微生物的筛选是关键。针对传统筛选方法培养基与Cr(Ⅵ)易相互作用的问题,文章提出先利用磷酸-Cr(Ⅵ)缓冲液浸泡筛选耐Cr(Ⅵ)微生物,然后在无Cr(Ⅵ)培养基上筛选的新方法(PCB法)。通过3种纯菌株进行筛选效果验证,并在尾矿土和草地土中与常规高温灭菌筛选(HS法)和过滤灭菌筛选法(FS法)进行筛选效果比较。纯菌株筛选结果表明,用含200 mg/L K2Cr2O7磷酸缓冲液(pH 7.4)浸泡微生物细胞2 h能有效筛选耐Cr(Ⅵ)菌株。土壤筛选实验表明,运用PCB法在尾矿土中获取菌落数为7.5×10~4CFU/g,与HS法相当,显著高于FS法;而在草地土中获取菌落数为1.8×10~4CFU/g,与FS法相当,显著低于HS法。HS法Cr(Ⅵ)在含200 mg/L K_2Cr_2O_7的牛肉膏蛋白胨培养基中回收率仅为53.8%,这是HS法获取菌落数高的原因。FS法筛选过程中微生物与Cr(Ⅵ)接触时间长,超过了微生物细胞生长对Cr(Ⅵ)的耐受极限,可能是FS法获得菌落数少的原因。总体而言,PCB法有效避免了上述缺陷,具有快速,准确,菌落生长好的特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号