首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 162 毫秒
1.
A series of CeO_2–ZrO_2–WO_3(CZW)catalysts prepared by a hydrothermal synthesis method showed excellent catalytic activity for selective catalytic reduction(SCR)of NO with NH_3 over a wide temperature of 150–550°C.The effect of hydrothermal treatment of CZW catalysts on SCR activity was investigated in the presence of 10% H_2O.The fresh catalyst showed above 90% NO_x conversion at 201–459°C,which is applicable to diesel exhaust NO_x purification(200–440°C).The SCR activity results indicated that hydrothermal aging decreased the SCR activity of CZW at low temperatures(below 300°C),while the activity was notably enhanced at high temperature(above 450°C).The aged CZW catalyst(hydrothermal aging at 700°C for 8 hr)showed almost 80% NO_x conversion at 229–550°C,while the V_2O_5–WO_3/TiO_2 catalyst presented above 80% NO_x conversion at 308–370°C.The effect of structural changes,acidity,and redox properties of CZW on the SCR activity was investigated.The results indicated that the excellent hydrothermal stability of CZW was mainly due to the CeO_2–ZrO_2 solid solution,amorphous WO_3 phase and optimal acidity.In addition,the formation of WO_3 clusters increased in size as the hydrothermal aging temperature increased,resulting in the collapse of structure,which could further affect the acidity and redox properties.  相似文献   

2.
A series of WO3/CeO2 (WOx/CeO2) catalysts were synthesized by wet impregnation of ammonium metatungstate on a CeO2 support. The resulting solid acid catalysts were characterized by X-ray diffraction (XRD), UV-Vis spectroscopy (UV-Vis), Raman spectroscopy (Raman), in-situ Fourier transform infrared spectroscopy (in-situ FT-IR) of ammonia adsorption, NH3-TPD, H2 temperature-programmed reduction (H2-TPR), NH3/NO oxidation and activity measurements for NOx reduction by NH3 (NH3-SCR). The results show that polytungstate (WOx) species are the main species of tungsten oxide on the surface of ceria. The addition of tungsten oxide enhances the Brönsted acidity of ceria catalysts remarkably and decreases the amount of surface oxygen on ceria, with strong interaction between CeO2 and WOx. As a result, the N2 selectivity of NH3 oxidation and NH3-SCR at high temperatures (> 300℃) is enhanced. Therefore, a wide working temperature window in which NOx conversion exceeds 80% (NOx conversion > 80%) from 200 to 450℃, is achieved over 10 wt.% WOx/CeO2 catalyst. A tentative model of the NH3-SCR reaction route on WOx/CeO2 catalysts is presented.  相似文献   

3.
CuFe-SSZ-13 catalyst showed excellent performance in the selective catalytic reduction of NOx with NH3 (NH3-SCR) for diesel engine exhaust purification. To investigate the effect of preparation methods on NH3-SCR performance, Fe was loaded into one-pot synthesized Cu-SSZ-13 catalysts through solid-state ion-exchange (SSIE), homogeneous deposition precipitation (HDP) and liquid ion-exchange (IE), respectively. Three CuFe-SSZ-13 catalysts showed similar SO2 resistance, which was better than that of Cu-SSZ-13. The improvement was attributed to the protection of Fe species. Hydrothermal stability of three CuFe-SSZ-13 catalysts was significantly different, which was attributed to the state of active species caused by different preparation methods. Compared with the other two catalysts, more active species existed inside the zeolite pores of CuFe-SSZ-13SSIE. During hydrothermal aging, the aggregation of these active species in the pores caused the collapse of catalyst structure, ultimately leading to the deactivation of CuFe-SSZ-13SSIE. In contrast, Fe species was dispersed better on the surface over CuFe-SSZ-13IE, enhancing the hydrothermal stability of catalysts. Consequently, Fe loading effectively improved the resistance of SO2 and H2O over Cu-SSZ-13. For CuFe-SSZ-13, large amounts of active species located inside the zeolite pores are not beneficial for the hydrothermal stability.  相似文献   

4.
A Ce_(0.3)TiO_xoxide carrier was synthesized via a sol–gel process,and Ce_(0.3)TiO_xsupported metal(M=Cd,Mn,Fe,W,Mo)oxide catalysts were prepared by the method of incipient-wetness impregnation.The catalysts were characterized by means of X-ray diffraction(XRD),Brunauer–Emmett–Teller(BET)analysis,scanning electron microscopy(SEM),transmission electron microscopy(TEM),Fourier transform infrared(FT–IR)spectroscopy,UV–Visdiffusereflectancespectroscopy(UV–VisDRS),and Temperature-programmed reduction with H_2(H_2-TPR).The catalytic activities for de-NO_(x )were evaluated by the NH_3-SCR reaction.Among all the catalysts tested,the 2 wt.%Cd/Ce_(0.3)TiO_xcatalyst exhibited the best NH_3-SCR performance,with a wide temperature window of 250–450°C for NO conversion above 90%.Moreover,the catalyst showed N_2 selectivity greater than 99%from 200 to 450°C.  相似文献   

5.
Series of Cu-USY zeolite catalyst with different Cu loading content were synthesized through simple impregnation method. The obtained catalysts were subjected to selective catalytic reduction of NOx with NH3 (NH3-SCR) performance evaluation, structural/chemical characterizations such as X-ray diffraction (XRD), N2 adsorption/desorption, H2 temperature-programmed reduction (H2-TPR), NH3 temperature-programmed desorption (NH3-TPD) as well as detailed in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments including CO adsorption, NH3 adsorption and NO+O2 in situ reactions. Results show that Cu-USY with proper Cu loading (in this work 5Cu-USY with 5 wt.% Cu) could be promising candidates with highly efficient NH3-SCR catalytic performance, relatively low byproduct formation and excellent hydrothermal stability, although its SO2 poisoning tolerability needs alleviation. Further characterizations reveal that such catalytic advantages can be attributed to both active cu species and surface acid centers evolution modulated by Cu loading. On one hand, Cu species in the super cages of zeolites increases with higher Cu content and being more conducive for NH3-SCR reactivity. On the other hand, higher Cu loading leads to depletion of Brønsted acid centers and simultaneous formation of abundant Lewis acid centers, which facilitates NH4NO3 reduction via NH3 adsorbed on Lewis acid centers, thus improving SCR reactivity. However, Cu over-introduction leads to formation of surface highly dispersed CuOx, causing unfavorable NH3 oxidation and inferior N2 selectivity.  相似文献   

6.
采用超声辅助浸渍法成功合成了高铁含量的Fe MOR-5%-UL催化剂,并且测试其催化还原NO性能.研究发现在超声辅助条件下浸渍制得的催化剂可以引入更高比例的离子交换位上的孤立的Fe~(3+),这些铁离子具有更强的NO还原活性,因此超声辅助浸渍法制备的催化剂催化性能显著高于传统的离子交换法和浸渍法.其中活性最高的FeMOR-5%-UL催化剂在添加SO_2等多种气氛时,催化活性下降不显著.并且在持续100 h的汽车尾气条件下进行的稳定性实验中,FeMOR-5%-UL的催化活性没有明显下降.FeMOR-5%-UL的优异的催化活性和稳定性非常具有应用前景和研究价值.  相似文献   

7.
A series of cobalt doped TiO_2(Co-TiO_2) and Co Oxloaded TiO_2(Co/TiO_2) catalysts prepared by sol–gel and impregnation methods respectively were investigated on selective catalytic reduction with NH_3(NH_3-SCR) of NO. It was found that Co-TiO_2 catalyst showed more preferable catalytic activity at low temperature range. From characterization results of XRD,TEM, Raman and FT-IR, Co species were proved to be doped into TiO_2 lattice by replaced Ti atoms. After being characterized and analyzed by NH_3-TPD, PL, XPS, EPR and DRIFTS, it was found that the better NH_3-SCR activities of Co-TiO_2 catalysts, compared with Co/TiO_2 catalyst, were ascribed to the formation of more oxygen vacancies which further promoted the production of more superoxide ions(O-2). The superoxide ions were crucial for the formation of low temperature SCR reaction intermediates(NO-3) by reacting with adsorbed NO molecule. Therefore, these aspects were responsible for the higher low temperature NH_3-SCR activity of Co-TiO_2 catalysts.  相似文献   

8.
Me/SAPO-34 (Me = Mn, Ni, Co) series of catalysts were prepared by a wetness impregnation method and investigated for the selective catalytic reduction of nitrogen oxides with ammonia (NH3-SCR). Among them, Mn/SAPO-34 catalyst was found as the most promising candidate based on its superior low-temperature activity. The catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy images (TEM), nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and desorption (TPR and TPD), and diffuse reflectance infrared Fourier transformed spectroscopy (DRIFTS) of NH3/NOx adsorption. Mn/SAPO-34 is obviously different from Ni/SAPO-34 and Co/SAPO-34 in the active species state and distribution. Surface MnOx species which play an essential role in NO oxidation and NO2 adsorption, act as better active sites than nickel and cobalt mostly in the form of the aluminates and silicates.  相似文献   

9.
为了考察制备方法对Cu-SSZ-13催化剂在氨选择性催化还原NO_x(NH_3-SCR)中催化性能的影响,使用不同的方法和载体,制备出理化性质有明显差异的3种催化剂(Cu_(3.9)-Na_(0.8)-SSZ-13、Cu_(5.1)-H-SSZ-13和Cu_(4.0)-Na_(4.0)-SSZ-13),并考察3种催化剂的水热稳定性和抗硫中毒性能.结果表明,由于具有适宜的Cu负载量,并且Cu物种的稳定性极高,一步合成法制备的Cu_(3.9)-Na_(0.8)-SSZ-13催化剂的水热稳定性优于液相离子交换法制备的两种催化剂.而以H-SSZ-13为载体,液相离子交换法负载Cu物种制备的Cu_(5.1)-H-SSZ-13催化剂具有最优的抗硫中毒能力,这与其较多的酸性位有关.因此,含有较多酸性位并且活性物种稳定性高是制备水热稳定性和抗硫中毒能力较优的Cu-SSZ-13催化剂的关键.  相似文献   

10.
A series of meso-microporous Cu-SAPO-34 catalysts were successfully synthesized by a one-pot hydrothermal crystallization method, and these catalysts exhibited excellent NH_3-SCR performance at low temperature. Their structure and physic chemical properties were characterized by means of X-ray diffraction patterns(XRD), Scanning electron microscopy(SEM), Transmission electron microscopy(TEM), N_2 sorption-desorption, nuclear magnetic resonance(NMR), Inductively Coupled Plasma-Atomic Emission spectrometer(ICP-AES), X-ray absorption spectroscopy(XPS),Temperature-programmed desorption of ammonia(NH_3-TPD), Ultraviolet visible diffuse reflectance spectroscopy(UV-Vis DRS) and Temperature programmed reduction(TPR).The analysis results indicate that the high activities of Cu-SAPO-34 catalysts could be attributed to the enhancement of redox property, the formation of mesopores and the more acid sites. Furthermore, the kinetic results verify that the formation of mesopores remarkably reduces diffusion resistance and then improves the accessibility of reactants to catalytically active sites. The 1.0-Cu-SAPO-34 catalyst exhibited the high NO conversion( 90%) among the wide activity temperature window in the range of 150–425℃.  相似文献   

11.
A series of H-SAPO-34 zeolites were synthesized by a hydrothermal method in fluoride media. The as-synthesized H-SAPO-34 zeolites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 physisorption, temperature-programmed desorption of NH3 (NH3-TPD) and nuclear magnetic resonance (NMR) measurements. The results showed that a certain concentration of F anions promoted the nucleation and crystallization of H-SAPO-34. The H-SAPO-34 synthesized in the fluoride media showed high crystallinity, uniform particle size distribution, large specific surface area and pore volume, and enhanced acidity. Therefore, Cu/SAPO-34 based on the fluoride-assisted zeolite showed a broadened temperature window for the selective catalytic reduction of NO by NH3 (NH3-SCR) reaction due to the enhanced acidity of the zeolite and the improved dispersion of copper species.  相似文献   

12.
Series of Fe/Cu-SSZ-13 catalysts with different Fe loading content were synthesized by simple one-pot strategy. The obtained catalysts were subjected to selective catalytic reduction (SCR) of NOx with NH3 and were characterized by various techniques. The results show that Fe0.63/Cu1.50-SSZ-13 catalyst with proper Fe content exhibits excellent catalytic activity with widest operation temperature window from 160 to 580°C, excellent hydrothermal stability as well as good resistance to sulfur poisoning when compared with Cu-SSZ-13, signifying its great potential for practical applications. Further characterizations reveal that the synthesized Fe/Cu-SSZ-13 catalysts present typical chabazite (CHA) structure with good crystallinity, while isolated Cu2+ and monomeric Fe3+ are revealed as the predominant copper and iron species. At low temperatures, isolated Cu2+ species act as primary active sites for SCR reaction, while monomeric Fe3+ species provide sufficient active sites for sustain the SCR activity at high temperature. Moreover, Fe over doping would lead to the damage of zeolite structure, destruction of isolated Cu2+ site, as well as the formation of highly oxidizing Fe2O3, thus causing deterioration of catalytic performances.  相似文献   

13.
The selective catalytic reduction(SCR) activities of the MoO_3 doped V/WTi catalysts prepared by the incipient wetness impregnation method at low temperature were investigated.The results showed that the addition of MoO_3 could enhance the NO_ xconversion at low temperature and the best SCR activity was obtained when the dosage of MoO_3 reached5 wt.%. The NH3-TPD and DRIFTS experiments indicated that the addition of MoO_3 changed the type and number of acid sites on the surface of catalysts and reaction activities of acid sites were altered at the same time. The redox capacity and amount of active oxygen species got improved for V3Mo5/WTi catalyst, which could be confirmed by the H_2-TPR and transient response experiments. Water vapor inhibited the NO_xconversion at low temperature. Deposition of ammonium sulfate or bisulfate might be main reason for the loss of catalytic activity in the presence of SO_2 at low temperature. Choosing the suitable NH_3/NO ratio and elevation of reaction temperature both could weaken the influence of SO_2 on the SCR activity of the V3Mo5/WTi catalyst. Thermal treatment of the deactivated catalyst at350°C could get the low temperature activity recovered. The decrease of GHSV improved the de NO_x efficiency at low temperature and we speculated that the rational technological process and operation parameters could contribute to the application of this kind of catalysts in real industrial environment.  相似文献   

14.
NH3-SCR performances were explored to the relationship between structure morphology and physio-chemical properties over low-dimensional ternary Mn-based catalysts prepared by one-step synthesis method.Due to its strong oxidation performance,Sn-MnOx was prone to side reactions between NO,NH3 and O2,resulting in the generation of more NO2 and N2 O,here most of N2 O was driven from the non-selective oxidation of NH3,while ...  相似文献   

15.
Characteristics of toluene decomposition and formation of nitrogen oxide (NOx) by-products were investigated in a dielectric barrier discharge (DBD) reactor with/without catalyst at room temperature and atmospheric pressure. Four kinds of metal oxides, i.e., manganese oxide (MnOx), iron oxide (FeOx), cobalt oxide (CoOx) and copper oxide (CuO), supported on Al2O3/nickel foam, were used as catalysts. It was found that introducing catalysts could improve toluene removal efficiency, promote decomposition of by-product ozone and enhance CO2 selectivity. In addition, NOx was suppressed with the decrease of specific energy density (SED) and the increase of humidity, gas flow rate and toluene concentration, or catalyst introduction. Among the four kinds of catalysts, the CuO catalyst showed the best performance in NOx suppression. The MnOx catalyst exhibited the lowest concentration of O3 and highest CO2 selectivity but the highest concentration of NOx. A possible pathway for NOx production in DBD was discussed. The contributions of oxygen active species and hydroxyl radicals are dominant in NOx suppression.  相似文献   

16.
A catalyst composed of manganese oxides supported on titania(MnO_x/TiO_2) synthesized by a sol–gel method was selected to remove nitric oxide and mercury jointly at a relatively low temperature in simulated flue gas from coal-fired power plants. The physico-chemical characteristics of catalysts were investigated by X-ray fluorescence(XRF), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS) analyses, etc. The effects of Mn loading,reaction temperature and individual flue gas components on denitration and Hg~0 removal were examined. The results indicated that the optimal Mn/Ti molar ratio was 0.8 and the best working temperature was 240°C for NO conversion. O_2 and a proper ratio of [NH_3]/[NO]are essential for the denitration reaction. Both NO conversion and Hg~0 removal efficiency could reach more than 80% when NO and Hg~0 were removed simultaneously using Mn0.8 Tiat 240°C.Hg~0 removal efficiency slightly declined as the Mn content increased in the catalysts. The reaction temperature had no significant effect on Hg~0 removal efficiency. O_2 and HCl had a promotional effect on Hg~0 removal. SO2 and NH_3were observed to weaken Hg~0 removal because of competitive adsorption. NO first facilitated Hg~0 removal and then had an inhibiting effect as NO concentration increased without O_2, and it exhibited weak inhibition of Hg~0 removal efficiency in the presence of O_2. The oxidation of Hg~0 on Mn O x/TiO_2 follows the Mars–Maessen and Langmuir–Hinshelwood mechanisms.  相似文献   

17.
Pt/Al2O3 catalysts with mean Pt particle size ranged from 2.7 to 7.1 nm were synthesized by chemical reduction method, and the sulfated counterparts were prepared by impregnation of sulfuric acid. The turnover frequency of platinum for soot oxidation under loose contact conditions in a feed flow containing NO and O2 are positively correlated with the size of platinum. The sulfated Pt/Al2O3 exhibits higher catalytic activity for soot oxidation in the presence of NO despite their reduced ability for NO2 production. Such a contradiction is more significant for those catalysts with smaller platinum particles. Herein, the catalysts were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), transmission electron microscopy (TEM), inductive coupled plasma (ICP) emission spectrometry, CO chemisorption, thermogravimetric analysis (TGA), NH3 temperature-programmed desorption (NH3-TPD), NO temperature-programmed oxidation (TPO) and NOx temperature-programmed desorption (TPD). Possible effect of Pt particle size for the catalytic oxidation of soot in the presence of NO was presented based primarily on the promoted NO2 transfer efficiency onto the soot pushed by the acidic catalysts.  相似文献   

18.
Pt supported on mesoporous silica SBA-15 was investigated as a catalyst for low temperature selective catalytic reduction(SCR) of NO by C 3 H 6 in the presence of excess oxygen.The prepared catalysts were characterized by means of XRD,BET surface area,TEM,NO-TPD,NO/C 3 H 6-TPO,NH 3-TPD,XPS and 27 Al MAS NMR.The effects of Pt loading amount,O 2 /C 3 H 6 concentration,and incorporation of Al into SBA-15 have been studied.It was found that the removal efficiency increased significantly after Pt loading,but an optimal loading amount was observed.In particular,under an atmosphere of 150 ppm NO,150 ppm C 3 H 6,and 18 vol.% O 2,0.5% Pt/SBA-15 showed remarkably high catalytic performance giving 80.1% NOx reduction and 87.04% C 3 H 6 conversion simultaneously at 140°C.The enhanced SCR activity of Pt/SBA-15 is associated with its outstanding oxidation activities of NO to NO 2 and C 3 H 6 to CO 2 in low temperature range.The research results also suggested that higher concentration of O 2 and higher concentration of C 3 H 6 favored NO removal.The incorporation of Al into SBA-15 improved catalytic performance,which could be ascribed to the enhancement of catalyst surface acidity caused by tetrahedrally coordinated AlO 4.Moreover,the catalysts could be easily reused and possessed good stability.  相似文献   

19.
A series of MnM/palygorskite (PG) (M = La, W, Mo, Sb, Mg) catalysts was prepared by the wetness co-impregnation method for low-temperature selective catalytic reduction (SCR) of NO with NH3. Conversion efficiency followed the order Sb > Mo > La > W > Mg. A combination of various physico-chemical techniques was used to investigate the influence of Sb-modified Mn/PG catalysts. MnSb0.156/PG catalyst showed highest NO conversion at low temperatures in the presence of SO2 which reveals that addition of Sb oxides effectively enhances the SCR activity of catalysts. A SO2 step-wise study showed that MnSb0.156/PG catalyst displays higher durable resistance to SO2 than Mn/PG catalyst, where the sulfating of active phase is greatly inhibited after Sb doping. Scanning electron microscopy and X-ray diffraction results showed that Sb loading enhances the dispersion of Mn oxides on the carrier surface. According to the results of characterization analyses, it is suggested that the main reason for the deactivation of Mn/PG is the formation of manganese sulfates which cause the permanent deactivation of Mn-based catalysts. For Sb-doped Mn/PG catalyst, SOx ad-species formed were mainly combined with SbOx rather than MnOx. This preferential interaction between SbOx and SO2 effectively shields the MnOx as active species from being sulfated by SO2 resulting in the improvement of SO2 tolerance on Sb-added catalyst. Multiple information support that, owing to the addition of Sb, original formed MnOx crystallite has been completely transformed into highly dispersed amorphous phase accounting for higher SCR activity.  相似文献   

20.
不同SAPO分子筛负载MnOx催化剂的低温NH3-SCR性能研究   总被引:1,自引:1,他引:0  
以磷酸硅铝分子筛SAPO-5、SAPO~(-1)1和SAPO-34为载体,采用乙醇分散法制备了用于低温氨选择性还原(NH_3-SCR)NO_x的分子筛负载MnO_x催化剂.活性测试结果显示,3种分子筛催化剂均展现出优良的NH_3-SCR活性,但三者在低温区间的SCR活性存在较明显差异,其SCR活性顺序如下:MnO_x/SAPO-34MnO_x/SAPO-5MnO_x/SAPO~(-1)1.借助XRD、N2吸附-脱附、XPS、H2-TPR、NH_3-TPD、NH_3FT-IR等技术对催化剂的表面活性物种及表面酸性等进行表征分析,结果表明,MnO_x主要以无定型状态分散于载体上,负载后载体的比表面积和孔体积均有所下降.XPS和H2-TPR分析证实,不同分子筛载体上MnO_x的表面浓度与氧化态明显不同.NH_3-TPD和NH_3FT-IR分析揭示了催化剂表面均存在Bronsted酸位和Lewis酸位,其中,Lewis酸性位对低温SCR反应起着关键作用.研究表明,催化剂的催化性能会因载体不同而存在差异,高Mn4+表面浓度和丰富的Lewis酸性位对催化剂在低温区间实现优良的催化活性尤为重要.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号